
Chapter 4
Phylogenetic Trees

Figure 8.1 in R. Shamir, Orly Stettiner, R. Gabor: Algorithms for Molecular Biology 8.1 Preface: Phylogenetics and Phylogenetic Trees

• A: most recent common ancestor of bird and jellyfish

• X: portion of history shared by bird and jellyfish



What is Phylogenetics?

• Find the evolutionary relationships between species.

• Basic idea: compare specific features of the species.
Assumption: similar species are genetically close.

• The term phylogeny refers to these relationships,
usually presented as a phylogenetic tree.

• Classic phylogeny: physical or morphological features
– size, color, shape, number of legs, ...

• Modern phylogeny uses information extracted from
genetic material – mainly DNA and protein sequences.

Features (characters): DNA or protein sites within
conserved blocks of multiple alignments.
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The Tree of Life

LUCA: Last universal common ancestor: the most recent common ancestor of all current life on Earth.

User:Crion / CC BY (https://creativecommons.org/licenses/by/3.0)

https://commons.wikimedia.org/wiki/File:Phylogenetic Tree of Life.png
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Approaches To Phylogenetic Tree Construction
Distance based methods:
require definition of a distance function between objects.
Construct tree so that the pairwise distances can be mapped to
the tree as accurately as possible.

Character based methods:
character or trait = a discrete property of an object. E.g.
• “mammal” (all animals are either mammals or not)
• “unicellular” (either unicellular or multicellular)
Species are grouped according to similarity of characters.

Probabilistic methods:
Classification may be based on the likelihood of a certain tree
explaining the set of objects.
Alternative: Bayesian approach. Combine likelihood with prior
over trees⇝ posterior distribution of trees.
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Phylogenetic Trees

• Phylogenetic information usually represented as a tree:

– every node represents a species,
– edges represent the genetic connections.

• Difference between leaf nodes⇝ real species,
and internal nodes⇝ hypothetical evolutionary ancestors.

• Phylogenetic trees take several forms:

– rooted ⇝ one of the nodes is the root
⇝ direction of ancestral relationships is determined,

– unrooted ⇝ induces no hierarchy,
– binary (or bifurcating)⇝ a node has only 0 to 2 subnodes,
– general (not covered here).
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A Simple Solution?
Trivial solution: enumerate over all possible trees and calculate
the target function for each one.

Problem: number of non-isomorphic, labeled, binary, rooted trees
containing n leaves, is super-exponential:

(2n− 3)!! =

n∏
i=2

(2i− 3) = 1 · 3 · 5 · 7 · · · (2n− 3)

(or (2n− 5)!! for unrooted trees). For n = 20: about 1021 trees
→ infeasible even for a relatively small number of species.

Theorem: Phylogenetic Tree Construction (for almost all
reasonable models) is NP-Complete.
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Number of nodes and edges

• Suppose there are n leaves in a rooted tree. As we move up
the tree, two edges join as a new node is reached.
Each time, the number of edges is reduced by one.

• So there must be (n − 1) inner nodes ⇝ (2n − 1) nodes and
(2n− 2) edges (not counting the edge above the root)

9

1 2

8

3 4 5

6

7

• Unrooted tree: (2n− 2) nodes and (2n− 3) edges.
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Consider an unrooted tree with n leaf nodes:
• An extra edge with new label at its leaf can be added at any edge
⇝ there are (2n− 3) times as many trees with n+ 1 leaves.
• Instead of an extra edge, we can add a root
⇝ there are (2n− 3) times as many rooted trees as unrooted ones.
• There are 1 · 3 · 5 · · · · · (2n− 5) = (2n− 5)!! unrooted trees with n leaves
⇝ (2n− 3)!! rooted trees.
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Distance-Based Methods

• Assume we have a measure of distance between each pair of
species.

• Approach: find a tree that predicts the observed set of dis-
tances as closely as possible.

• This leaves out some of the information contained in the raw
sequence (due to reduction to table of pairwise distances).

• It seems that in many cases most of the evolutionary infor-
mation is conveyed in these distances.
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Least Squares Methods
• Idea: approximate an observed distance matrix.

• Goal: find a tree T , whose leaves are the n given species, and
that predicts distances dTij between the species, so that the fol-
lowing expression is minimized:

SSQ(T ) ≡
n∑

i=1

∑
j ̸=i

(dij − dTij)
2

where dij is the observed distance between species i and j.

• SSQ is a measure of the discrepancy between the
observed distances dij and the path distances dTij in the tree T .
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The Least Squares Tree Problem
Problem: Least Squares Tree.
INPUT: The distance dij between species i and j,
for each 1 ≤ i, j ≤ n, arranged in distance matrix D.
QUESTION: Find the phylogenetic tree T , with the species as its
leaves, that minimizes SSQ(T ).

• Difficult problem, due to optimization over discrete set of topolo-
gies. One can show: NP-complete problem.

• Two polynomial heuristics - UPGMA and Neighbor-Joining.
These are efficient algorithms, but they will only work in some
particular cases.

Ultrametric trees: All the leaves have the same distance to the
root⇝ all species evolve at the same rate.

In such cases, UPGMA will find the correct topology.
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Efficiently solvable Special Cases
Additive distance matrices: There exists a tree that represents
exactly the given distances between species:
dij =

∑
of all edge lengths in the path between leaves i and j.

a b c
a 0 0.08 0.45
b 0.08 0 0.43
c 0.45 0.43 0

In such cases, neighbor joining will find the correct topology.

In general, given a set of pairwise distances
(⇝ scales quadratically in n) it is not possible to find a set
of internal edges (⇝ number is linear in n) that explain all the
observed distances as path distances in the tree.
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UPGMA

• UPGMA, or Unweighted Pair Group Method with Arithmetic
mean, is a heuristic algorithm that often generates satisfactory
results.

• The algorithm iteratively joins the two nearest clusters
(or groups of species), until one cluster is left.

Initialization:

1. Initialize n clusters Ci, one species per cluster.

2. Set the size of each cluster to 1: ni← 1.

3. In the output tree T , assign a leaf for each species.
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Iteration:

1. Find the i and j that have the smallest distance dij.

2. Create a new cluster - k by Ck = Ci ∪ Cj and compute the
distance from the new cluster to all other clusters as a weighted
average of the distances from its components:

dkl = (
ni

ni + nj
)dil + (

nj

ni + nj
)djl.

3. Connect i and j on the tree to the new node k, and place it
at height dij/2. Note: vertical axis represents time. Horizontal
connections do not contribute to path-length computations.

4. Delete the columns and rows in D that correspond to clusters i

and j, and add a column and row for cluster k.

5. Return to 1 until there is only one cluster left.
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UPGMA: Analysis
• A metric on a set of objects O is given by the assignment of a

real number d(x,y) to every pair x, y ∈ O where d(x,y) has to
fulfill the following requirements:

d(x, y) > 0 for x ̸= y , d(x, y) = 0 for x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z (triangle inequality)

• An ultrametric has to fulfill a restricted triangle inequality

d(x, y) ≤ max (d(x, z), d(y, z)).

• A clocklike, or ultrametric tree is a rooted tree, in which the
total branch length from the root to any leaf is equal
→ molecular clock that ticks in a constant pace, and all the
observed species are at an equal number of ticks from the root.
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UPGMA: Analysis

• One can show: If the input data are ultrametric then UPGMA is
guaranteed to return the optimal solution.
• For substantially non-clocklike trees, the algorithm might give

seriously misleading results.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Additive trees

• Ultrametric tree:

– #(mutations) ∝ temporal distance(node,ancestor),
– mutations took place with the same rate in all paths.

• But it’s a fact, that the evolutionary clock is running differently
for different species (and even for different regions in a se-
quence).

• Generalization: additive trees (i.e. trees built form additive dis-
tance matrices). Unrooted tree, reflection of our ignorance as to
where the common ancestor lies.

• All nodes (except for the leaves) have degree three
⇝ unrooted binary tree. More general, but undirected.
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Additive distance matrix
Distance matrix D is additive iff there exists a tree T with dTij = dij
⇝ SSQ(T ) =

∑n
i=1

∑
j ̸=i(dij − dTij)

2 = 0.
Every ultrametric is additive, but the converse is not true.

Simple test for additivity?

Four point condition: For every set of four leaves i, j, k and l,
two of the distances dij + dkl, dik + djl and dil + djk must be equal
and larger than the third. For instance

d(i, j) + d(k, l) ≤ d(i, k) + d(j, l) = d(i, l) + d(j, k).

Generalizes the triangle inequality (take k = l).
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Neighbor Joining
• Neighbor-Joining approximates the least squares tree, assum-

ing additivity, but without resorting to the assumption of a
molecular clock.
• Idea: Find direct ancestor of two species, join them, iterate.
• Distance computation: Asume we join i and j with ancestor k
→ remove i, j from list of leaves → add k to list with distances
to other leaves m defined as dkm = 1

2(dim + djm − dij).

i

j

k

m

djm = djk + dkm
dim = dik + dkm
dij = dik + dkj

dkm = 1
2(dim + djm − dij)
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Correcting distances

Problem: it is not sufficient
to pick simply the two closest
leaves.
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Solution: Join clusters that are not only close, but are also far from
the rest. For node i, define average distance ui to all other leaves:
ui =

∑
k ̸=i

dik
(n−2), and “correct” distances: qij = dij − (ui + uj).
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Neighbor Joining Theorem
(Studier & Keppler, Molecular Biology and Evolution 5:729-731,
1988): For a tree with additive lengths, qij minimal implies i, j are
neighboring leaves.

We know how to compute the branch lengths from a new node k

to all other nodes m ̸= (i, j).

i

j

k

m

djm = djk + dkm
dim = dik + dkm
dij = dik + dkj

dkm = 1
2(dim + djm − dij)
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Neighbor-Joining: Distance Computation
What about i and j? dik = 1

2(dij + dim − djm),∀m ̸= (i, j).

If observed distances are indeed fully additive, we can pick any
m ̸= (i, j). In practice, it might be better to average:

dik =
1

2
(dij + dim − djm),∀m ̸= (i, j) ⇒ average over m⇒

=
1

2
· 1

n− 2

∑
m ̸=(i,j)

(dij + dim − djm)

=
1

2
dij +

1

2
· 1

n− 2

∑
m ̸=(i,j)

(
dim︷ ︸︸ ︷

qim + ui + um − qjm − uj − um)

=
1

2
(dij + ui − uj) +

1

2
· 1

n− 2
·

∑
m ̸=(i,j)

(qim − qjm)︸ ︷︷ ︸
=0
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Neighbor-Joining algorithm: Initialization:
1. Initialize n clusters with the given species, one species per cluster.
2. Set the size of each cluster to 1: ni ← 1.
3. In the output tree T , assign a leaf for each species.

Iteration:
1. For each species, compute ui =

∑
k ̸=i

dik
(n−2)

2. Choose the i and j for which dij − ui − uj is smallest.
3. Join clusters i and j to new cluster, with corresponding node k and set

dkm =
1

2
(dim + djm − dij) ∀m ̸= (i, j) ∈ Nodes(T ).

Calculate the branch lengths from i and j to the new node as:

dik =
1

2
(dij + ui − uj) , djk =

1

2
(dij + uj − ui).

4. Delete clusters i and j from T and add k.
5. If more than two nodes remain, go back to 1. Otherwise, connect the two
remaining nodes by a branch of length dij.
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Reconstructing Trees from Non-additive Matrices

• Q: What if the distance matrix is not additive?

• A: We could still run NJ!

• Q: But can anything be said about the resulting tree?

• A: Not really. Resulting tree topology could even vary according
to way ties are resolved on the way.
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Almost Additive Distance Matrices
A distance matrix D′ is called “almost additive” if there exists an
additive matrix D (with corresponding tree T ) such that

|D −D′|∞ = max
i,j
{|di,j − d′i,j|} ≤ min

e
{l(e)/4},

where e is an edge in the tree T (corresponding to the additive
matrix D) with length l(e).

Theorem: If D′ is almost additive with respect to a tree T , then
the output of NJ is a tree T ′ with the same topology as T .

D’ −> T

D −> T
Additive distance matrices

All distance matrices

UM
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Character Based Methods
Problem: Optimal Phylogenetic Tree. INPUT:
• A set of n species.
• A set of m characters pertaining to all of these species,
• For each species, the values of each of the characters.
• Notation: n ×m matrix M , where Mi,j represents the value of

the j-th character of the i-th species. The value of each char-
acter is taken from a known alphabet Σ.

Question: What is the fully labeled phylogenetic tree that best
explains the data, i.e., maximizes some target function.

Limiting assumptions: (probably not exactly correct in practice)

• Characters are mutually independent (→ change in one char-
acter has no effect on the distribution of another character).
• After two species diverged in the tree, they continue to evolve

independently.
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Character-based Methods: Parsimony

• Intuitive score for tree: number of changes along edges.

• Minimizing this score is called parsimony.

Notation: V (T ): vertices of a tree, E(T ): edges.
vj: value of j-th character at vertex v ∈ V (T ).

Given a phylogenetic tree T , its parsimony score is defined as

S(T ) =
∑

(v,u)∈E(T )

|{j : vj ̸= uj}|

That is - the total number of times the value of some character
changes along some edge.
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Most parsimonious 5-species phylogeny for 6 characters:

TGCGTA

CAGGTA

TGGGTA

CGGGTA

Adapted from Figure 8.8 in R. Shamir, Orly Stettiner, R. Gabor: Algorithms for Molecular Biology 8.1 Preface:

Phylogenetics and Phylogenetic Trees

1 2 3 4 5 6
Aardvark C A G G T A
Bison C A G A C A
Chimp C G G G T A
Dog T G C A C T
Elephant T G C G T A
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Weighted Small Parsimony

• Cost of a change is not necessarily constant:
Cc

ij = cost of the character c changing from state i to state j.

• Goal: minimize the total cost of the tree given the topology and
the leaf labels.

Problem: Weighted Small Parsimony.
INPUT: The topology of a rooted phylogenetic tree with leaves hav-
ing labels in Σ. The costs Cc

ij for i, j ∈ Σ. There are k possible
character values, |Σ| = k.

QUESTION:
1. What is the minimum possible cost for this topology?
2. What is the optimal labeling of the internal nodes?
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Recall: Tree traversals

Public Domain, https://commons.wikimedia.org/w/index.php?curid=83230146

Depth-first traversal of an example tree:
pre-order (red): F, B, A, D, C, E, G, I, H
in-order (yellow): A, B, C, D, E, F, G, H, I
post-order (green): A, C, E, D, B, H, I, G, F.
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Sankoff’s algorithm
Step 1: for each node v and each state t compute quantity Sc

t (v):
minimum cost of the subtree whose root is v, assuming that the
character value at v is t, i.e. (vc = t). In postorder: for each leaf
v:

Sc
t (v) =

{
0 vc = t

∞ otherwise

For an internal node v, with subnodes u and w:

Sc
t (v) = min

i
{Cc

ti + Sc
i (u)}+min

j

{
Cc

tj + Sc
j(w)

}
node v v  = tc

u  =ic

t −−> i t −−> j

node wnode u w  =jc
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Sankoff’s algorithm
For m characters, minimum total cost of a tree with root r:

S(T ) =
∑m

c=1mint S
c
t (r)

Step 2: Based on Sc
t (v), determine the optimal values for each

character in internal nodes. Preorder: For the root node r,
choose character value rc = argmint S

c
t (r).

For any other node v, with parent node u,

vc = argmin
t
(Cc

uct + Sc
t (v))

uc

u  −−> tc

node v vc t=

parent node u
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C

C

C

G

A C G T

A C G T

A C G T

A C G T

Adapted from Figure 8.10 in R. Shamir, Orly Stettiner, R. Gabor: Algorithms for Molecular Biology 8.1 Preface:

Phylogenetics and Phylogenetic Trees
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Large Parsimony
Final goal: find the optimal phylogeny, not just the optimal internal
labeling of a given phylogeny.

Problem: Large Parsimony.
INPUT: A matrix M describing m characters of a set of n species,
QUESTION: What is the optimal phylogeny for these species, i.e.,
the one minimizing the parsimony score?

Remark: weighted and a non-weighted version, but difference is
not essential. It can be shown that this problem is NP-hard. How-
ever, several approximation heuristics exist.
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Branch and Bound

• Branch-and-Bound (B&B) deals with optimization problems
over a search space that can be presented as the leaves of
a tree.

• First used for parsimony by (Hendy and Penny, 1982).

• Works when the search tree is monotonous: the score of each
node in the search tree is at least as bad as that of any of its
ancestors.

• B&B is guaranteed to find the optimal solution, but its com-
plexity in the worst case is as high as that of exhaustive search.

• Basic version: Tree is traversed in some order, cost of the best
leaf found so far is kept as a bound C ′. When a node is reached
whose cost is C > C ′, the tree is pruned at that node.
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Branch and Bound for Parsimony

• Parsimony: present the search-space as a search tree:

– k-th level of search tree: nodes represent all possible phylo-
genetic trees with k leaves for the first k species,

– Children of such a node: all phylogenetic trees created by
adding the (k + 1)-th species.

• Search tree is monotonous, since adding a node to a given tree
can never reduce its parsimony score.

• Does not lower worst-case time complexity. However, in real-
life test cases it proved to speed up the search considerably.

• Plausible strategy: Start with distance-based approach.
Neighbor joining⇝ initial topology T ′ ⇝ compute its parsimony
cost C ′⇝ use this as initial bound.
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Branch and Bound for Parsimony (cont’d)
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Maximum Likelihood Methods

• Given a tree, we often wish to have a statistical measure of how
well it describes our data.

• Likelihood function: P (Data|Parametrized model),
treated as a function of the parameters.

• In our case, the model is a phylogenetic tree, parametrized by its
topology T and the set of edge lengths t, representing biological
time, or genetic distance, between two connected nodes.

• Problem 1: For a set of species with observed values M ,
what is the likelihood score of a given tree (T, t)?

• Problem 2 (Maximum likelihood inference): What is the tree
that maximizes P (M |T, t), i.e. best explains the observations?
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Computing the Likelihood of a Tree

• Labels are the sets of m character values associated with each
species, or node in the tree.

• A reconstruction is a full labeling of the tree’s internal nodes.

• A branch length tvu measures the biological time, or genetic
distance, between the species associated with these nodes.

• Assumptions:

– characters are pairwise independent,
– branching is a Markov process: probability of a node having

a given label is a function only of the state of its parent node
and the branch length t between them.

– character frequencies are fixed throughout the evolutionary
history, and that they are given as P (x).
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The Maximum Likelihood Problem
Problem: Likelihood of a Tree.
INPUT:

• A matrix M describing a set of m characters for each one of n
given species.

• A tree with given topology T , with the above species as the
leaves and with known branch lengths tvu.

QUESTION: Calculate the likelihood L of the tree, assuming the
m characters are independent:

L = P (M |T, t) =
∏

character j

P (Mj|T, t)
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Likelihood of a treer

u

s

ttvu vw

trv

rst

w

v

Labels of internal nodes are un-
known ⇝ sum over all possible
reconstructions (=labelings of in-
ternal nodes).

L =
∑
r

∑
v

P (r) · Pr→s(trs) · Pr→v(trv) · Pv→u(tvu) · Pv→w(tvw)

Multiple independent characters:

L =
∏

character j

P (Mj|T, t) =
∏

character j

{ ∑
reconstruction R

P (r) ·
∏

edges

Pu→v(tuv)

}
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Computing the Likelihood
Dynamic-programming algorithm [Felsenstein, Evolutionary trees
from DNA sequences: a maximum likelihood approach. J. Mol.
Evol. (1981)17:386-376].

Notation:
Likelihood of v’s subtree, given that v has the label x at position j:

Cj(x, v) = P ( subtree whose root is v | vj = x )

vj = xnode v

Cj(x, v)
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Initialization: For each leaf v and label x:

Cj(x, v) =

{
1 if vj = x

0 otherwise

Recursion: Traverse the tree in postorder. For an internal node v

with children u and w, compute for each possible label x:

Cj(x, v) =
[ ∑

y

Cj(y, u) · Px→y(tvu)
]
·
[ ∑

y

Cj(y, w) · Px→y(tvw)
]
.

wj = yuj = y

tvw

Cj(y, w)Cj(y, u)

vj = x

tvu

Final solution: L =
∏m

j=1

[∑
xCj(x, root) · P (x)

]
.
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Maximizing the Likelihood

• Optimal Branch Lengths. Given the topology, find the optimal
branch length (optimality = maximum likelihood).

No analytical solution known. Use numerical methods such as
conjugate gradients, based on the derivatives ∂

∂tvw
Px→y(tvw).

• Optimal topology. Even harder problem.

EM-like methods have been proposed:
Iteratively optimize topology and branch lengths, e.g. “Structural
EM” [Friedman et al, J Comput Biol. 2002; 9(2):331-353].
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Bayesian approaches
• Instead of solving for the maximum likelihood tree,

investigate the distribution of trees, given the observations:
⇝ Posterior distribution of trees.
M : observed characters. T : topology. t: edge lengths.

P (T, t|M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (M |T, t)
P (M)

· P (T, t)︸ ︷︷ ︸
prior

.

• Typically, we do not have the posterior in analytic form, but we
might be able to draw samples from the posterior.
• Law of large numbers: Frequency of a property in the sample

will converge to the posterior probability.
• Example: If a particular tree topology is present in some fraction
r of the samples, then r is an estimate of the posterior probability
of this topology.
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The Metropolis Method

• A method for drawing samples from a posterior distribution.

• Proposal mechanism: A procedure f that generates a tree (T̃ , t̃)

randomly based on the current tree (T, t) by sampling from a
proposal distribution.

• Define posteriors P1 = P (T, t|M) and P2 = P (T̃ , t̃|M).

• Step 1: Build a random tree (T, t) and calculate P1.

• Step 2: Build a new f(T, t) = (T̃ , t̃) and calculate P2.

• Step 3: Accept new tree if P2 > P1.
If P2 < P1, accept only with probability P2/P1.
If accepted, new sample is (T̃ , t̃), otherwise sample is (T, t).

• Step 4: If an appropriate number of samples have been taken,
stop. Else, go to Step 2.
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The Metropolis Method (cont’d)

• Note: only the rate P2/P1 must be calculated
⇝ exponentially large sum P (M) =

∑
all trees (T,t)P (M,T, t)

in Bayes formula is avoided!

• Guaranteed to asymptotically sample correctly from the pos-
terior distribution, if the proposal distribution is symmetric:
Proposing (T̃ , t̃) from (T, t) is the same as proposing (T, t) from
(T̃ , t̃).

• Crucial point: find suitable proposal distribution for trees.
Exploration-exploitation trade-off:

– If proposed tree is merely sampled randomly, the posterior
probabilities will be low→ low acceptance rate.

– If proposed tree is too close to the current tree, many steps
will be needed to explore the space of trees.
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A Proposal Distribution for Trees
• (Mau et al., 1996): Traversal profile. Equivalent to the origi-

nal tree (so tree can be reconstructed from profile), but allowing
more convenient manipulations of the topology.

• Node is placed at height h = sum of the edge lengths from root
to that node.

• Nodes are regularly spaced horizontally, in the order given by
an in-order traversal of the tree.

• For a node k, all left children have numbers < k, and all right
children > k.

• Proposal procedure: Randomly shifting the positions of nodes
up and down.

• Relative heights of nodes switched⇝ new topology produced.

• Additional proposal mechanism reorders the leaves.
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A Proposal Distribution for Trees

Above: an example of a tree with its nodes numbered in the order of the traversal profile. Below: Reconstruction of the tree from the
traversal profile.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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A Proposal Distribution for Trees (cont’d)

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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