
Machine Learning and Neural
Networks

Introduction

Input OutputHidden

Author: BruceBlaus, Wikipedia

Regression

Goals:

• Explain a set of observations with a “simple” model.

• Given this model, make predictions about new objects.
1

Regression basics
• Strategy: Model the data generation process.

• Usual model: Response variable y ∈ R (also called “target” t) is
a noisy function of an input variable x ∈ Rd:

y = f(x) + η.

• Linear Gaussian regression: f(x) = wtx + η, η has zero-
mean Gaussian distribution with constant variance, η ∼
N(0, σ2).

• Can equivalently be written as

p(y|x = xk) = N(µ(xk), σ
2), with µ(xk) = wtxk.

• In one dimension: µ(xk) = wtxk = w0+w1xk and xk = (1, xk)
t.

w0 is the intercept or bias term and w1 is the slope.
2

Linear Gaussian regression
T

a
rg

e
ts

Inputs

f(0) = w0

f(x) = w0 + w1xy1 = f(x1) + η, η ∼ N(0, σ2)

f(x1) = E[y|x = x1]

x1

3

Least Squares and Maximum Likelihood

• Goal: Fit n input-target pairs (xi, yi) to a model that has d + 1

parameters wj, j = 0, . . . , d.
• Notation: x, y are random variables (RV), (xi, yi) is one sample.

Augmented xi← (1,xi)⇝ w0 is the intercept.
• We assume that the n targets yi are independent and identically

distributed (iid), given their locations xi in the input space.
• Linear model: yi = wtxi + ηi, ηi ∼ N(0, σ2).
• Model predicts a linear relationship between the conditional ex-

pectation of targets and inputs:

E[y|x = xi] = E[wtxi + ηi] = E[wtxi] + E[ηi]︸ ︷︷ ︸
0

= µi(xi) = wtxi = f(xi;w).

Regression function = conditional expectation.
4

LS and Maximum Likelihood
• Likelihood function: conditional probability of all observed yi

given their explanation, treated as a function of w:

L(w) ∝
∏
i

p(yi|xi,w) ∝
∏
i

exp
[
− 1

2σ2
(yi −

µi︷ ︸︸ ︷
wtxi)

2
]

• Maximizing L = finding model that best explains observations:

ŵ = argmax
w
L(w) = argmin

w
[−L(w)] = argmin

w
[− log(L(w))]

= argmin
w

∑
i

(yi −wtxi)
2

Least-squares fit = ML solution under Gaussian error model.
• ŵMLE minimizes the residual sum of squares

RSS(w) =

n∑
i=1

r2i =

n∑
i=1

[yi − f(xi;w)]2 = ∥y −Xw∥2.
5

Classification
Classification: Find class boundaries based on training data
{(x1, t1), . . . , (xn, tn)}. Use boundaries to classify new items x∗.
Here, the target ti is a discrete class indicator (or “label”).
Example: Fish-packing plant wants to automate the process of sorting fish on
conveyor belt using optical sensing.

2 4 6 8 10
14

15

16

17

18

19

20

21

22

width

lightness

salmon sea bass

FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

(Duda, Hart, Stork: Pattern classification. Wiley, 2001)

(Duda, Hart, Stork: Pattern classification. 2001)

6

Classification

z1 = f(x1) + η, η ∼ N(0, σ2)

f(x) = w0 + w1x

f(x1) = E[z|x = x1]

x1

x2

z2 = f(x2) + η

f(x2) = E[z|x = x2]

class 1

class 0

Again a generative model: First generate latent z ∼ N(f(x), σ2),
then choose t based on sign(z): t = 1, if z > 0, and t = 0 else.
Probit regression, a specific generalized linear model.

7

Basis functions and additive models
• Nonlinear generalization: Replacing x with some non-linear

function of the inputs, ϕ(x):

p(t|x) = N(wtϕ(x), σ2).

• Components of ϕ might be interpreted as fixed basis functions
ϕ(x) = {g0(x), g1(x), . . . , gm(x)}, with gi(x) : Rd 7→ R.
Intercept: g0(x) = 1. Example: Polynomial basis functions:

f(x;w) = w0 + w1x+ w2x
2.

0 5 10 15 20
−10

−5

0

5

10

15
degree 1

0 5 10 15 20
−10

−5

0

5

10

15
degree 2

Fig 1.7 in K. Murphy: Machine Learning. MIT press, 2012
8

Additive models as graphs
Graphical representation in terms of units and weights.

1

L(t, f)

ϕ1 = g1(x) ϕm = gm(x)

w1ϕ1 wmϕm

w0

t

f(wtϕ(x))

x1 x2

This is “almost” an artificial neural network.
There, the basis functions also have adjustable parameters.

9

Summary

• Model the data generation process with a parametrized model,
such as “target = function of x plus noise”, t = f(x;w) + η

• Infer parameters w:

– Maximize likelihood L⇝ point estimate ŵ = wMLE, equivalent
to minimizing a loss function L(t, f(x;w)) = − logL,

– or estimate a probability density over parameters p(w|x)
⇝ Bayesian inference.

• Use model(s) to predict the target t∗ for a new x∗

• Most neural networks basically follow the MLE idea:

– they implement the forward path x→ f(x;w),
– mapped values f(x) are compared with targets t via a loss

function,
– parameters (“weights”) w are trained by minimizing the loss.

10

Machine Learning and Neural
Networks

Neural networks: Biological and artificial

Input OutputHidden

Author: BruceBlaus, Wikipedia

11

Linear classifier
We can understand the simple linear classifier

ĉ = sign(wtx) = sign(w1x1 + · · ·+ wdxd)

as a way of combining expert opinion

majority rule

combined "votes"

expert 1

"votes"

t^
w xc = sign()

11w

x21x

xd

x

2w wd

...

d

x2
x

12

Additive models cont’d
View additive models graphically in terms of units and weights.

2

t

1
x

m m

ym1

x

1

1 m

1

y

1

w w

y = g (x)y = g (x)

f(w y)

In neural networks the basis functions themselves have ad-
justable parameters.

13

From Additive Models to Multilayer Networks
Separate units (⇝ artificial neurons) with activation f(net acti-
vation), where net activation is the weighted sum of all inputs,
netj = wt

jx.

Hidden layer

Output layer

Bias

Input layer

xx1 2

w
t
x)

1

f(t
y)w

y = f(wm
t x)y = f(m

1

14

Biological neural networks

• Neurons (nerve cells): core components of brain and spinal
cord. Information processing via electrical and chemical signals.
• Connected neurons form neural networks.
• Neurons have a cell body (soma), dendrites, and an axon.
• Dendrites are thin structures that arise from the soma, branch-

ing multiple times, forming a dendritic tree.
• Dendritic tree collects input from other neurons.

Author: BruceBlaus, Wikipedia
15

A typical cortical neuron

• Axon: cellular extension, contacts dendritic trees at synapses.

• Spike of activity in the axon
⇝ charge injected into post-synaptic neuron
⇝ chemical transmitter molecules released
⇝ they bind to receptor molecules⇝ in-/outflow of ions.

• The effect of inputs is controlled by a synaptic weight.

• Synaptic weights adapt⇝ whole network learns

Author: BruceBlaus, Wikipedia
16

By user:Looie496 created file, US National Institutes of Health, National Institute on Aging created original -
http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-unraveling-mystery/preface, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=8882110

17

Idealized Model of a Neuron

from (Haykin, Neural Networks and Learning Machines, 2009)

18

Hyperbolic tangent / Rectified / Softplus Neurons

• “Classical” activations are smooth and bounded, such as
tanh.
• In modern networks unbounded activations are more common,

like rectifiers (“plus”): f(x) = x+ = max(0, x) or
softplus f(x) = log(1 + exp(x)).

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Typical activation functions

x

ac
tiv

at
io

n

19

Machine Learning and Neural
Networks

Convolutional neural networks

Input OutputHidden

Author: BruceBlaus, Wikipedia

20

Simple NN for recognizing handwritten shapes
Two classes 10 classes

majority rule

combined "votes"

expert 1

"votes"

t^
w xc = sign()

11w

x21x

xd

x

2w wd

...

d

x2
x

0 1 2 3 4 5 6 7 98

• Consider a neural network with two layers of neurons.
• Each pixel can vote for several different shapes.
• The shape that gets the most votes wins.

21

Why the simple NN is insufficient
3 5 6 7 984210

• Simple two layer network is essentially equivalent to having a
rigid template for each shape.
• Hand-written digits vary in many complicated ways
⇝ simple template matches of whole shapes are not sufficient.
• To capture all variations we need to learn the features
⇝ add more layers.
• One possible way: learn different (linear) filters
⇝ convolutional neural nets (CNNs).

22

Convolutions

deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution

23

Pooling the outputs of replicated feature detectors

• Averaging neighboring detectors
⇝ Some amount of translational invariance.
• Reduces the number of inputs to the next layer.
• Taking the maximum works slightly better in practice.

Source: deeplearning.stanford.edu/wiki/index.php/File:Pooling schematic.gif

24

LeNet
Yann LeCun and his collaborators developed a really good recog-
nizer for handwritten digits by using backpropagation in a feed-
forward net with:

• many hidden layers
• many maps of replicated units in each layer.
• pooling of the outputs of nearby replicated units.

On the US Postal Service handwritten digit benchmark dataset
the error rate was only 4% (human error ≈ 2− 3%).

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Original Image published in [LeCun et al., 1998]
25

Machine Learning and Neural
Networks

Training & expressive power

OutputHidden

Target t

Loss L(t, f(x;w))

Input x

J K

f(x,w)
wjk

j k

26

Backpropagation
Assuming one output neuron, the error function is

E = Loss(t, f).

For each neuron j, its output oj is defined as

oj = φ(netj) = φ
(∑n

i=1
wijoi

)
.

netj = weighted sum of inputs (i.e. outputs of previous neurons).

By Chrislb, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=224555

27

Backpropagation
Networks are usually trained by gradient descent
Gradient = derivatives of loss w.r.t. weights:

∂E

∂wij
=
∂E

∂oj

∂oj
∂wij

=
∂E

∂oj

=
∂φ(netj)
∂netj︷ ︸︸ ︷
∂oj
∂netj

=oi︷ ︸︸ ︷
∂netj
∂wij

OutputHidden

Target t

Loss L(t, f(x;w))

Input x

J K

f(x,w)
wjk

j k

28

Backpropagation
First term: Consider E(oj) as a function of all neurons receiving
input from neuron j (those in layer K): E(netk1,netk2, . . . ,netkn)
Total derivative & chain rule⇝ recursive structure:

∂E

∂oj
=
∑
k∈K

(
∂E

∂netk
∂netk
∂oj

)
=
∑
k∈K

(
∂E

∂ok

∂ok
∂netk

∂netk
∂oj

)
=
∑
k∈K

(
∂E

∂ok

∂ok
∂netk

wjk

)

⇝ Derivatives in layer J depend only on those in next layer K
⇝ error is“backpropagated”.

OutputHidden

Target t

Loss L(t, f(x;w))

Input x

J K

f(x,w)
wjk

j k

29

Expressive Power of Networks

two layer

three layer

x1 x2

x1

x2

...

x1 x2

R1

R2

R1

R2

R2

R1

x2

x1

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 6.3 in (Duda, Hart & Stork)

30

Expressive Power of Networks

• Question: can every decision be implemented by a
three-layer network?

• Answer: Basically yes – if the input-output relation is continuous
and if there are sufficiently many hidden units.

• Theorem (Kolmogorov 61, Arnold 57, Lorentz 62): every con-
tinuous function f(x) on the hypercube Id (I = [0, 1], d ≥ 2) can
be represented in the form

f(x) =

2d+1∑
j=1

Φ

(
d∑

i=1

ψji(xi)

)
,

for properly chosen functions Φ, ψji.

• Note that we can always rescale the input region to lie in a hy-
percube.

31

Expressive Power of Networks
Relation to three-layer network:

• Each of 2d + 1 hidden units takes as
input a sum of d nonlinear functions,
one for each input feature xi.

• Each hidden unit emits a nonlinear
function Φ of its total input.

• The output unit emits the sum of all
contributions of the hidden units.

x

x

Σ

ψ
 (x

)

11

1

1

2

1

2

3

4

5

Φ

Φ

Φ

Φ

Φ

Problem: Theorem guarantees only existence
⇝ might be hard to find these functions.

Are there “simple” function families for Φ, ψji?

32

Universal approximations by ridge functions
Theorem (Cybenko 89, Hornik 91, Pinkus 99). Let φ(·) be a
non-constant, bounded, and monotonically-increasing continuous
function. Let Id denote the unit hypercube [0, 1]d, and C(Id) the
space of continuous functions on Id. Then, given any ε > 0 and
any function f ∈ C(Id), there exist an integer N , real constants
vi, bi ∈ R and real vectors wi ∈ Rd, i = 1, · · · , N , such that we
may define:

F (x) =
N∑
i=1

viφ
(
wt

ix+ bi
)

as an approximate realization of the function f , i.e. ∥F −f∥∞ < ε.

In other words, functions of the form F (x) are universal ap-
proximators for continuous functions.

33

Artificial Neural Networks: Rectifiers
• Classic activation functions are indeed bounded and

monotonically-increasing continuous functions like tanh.
• In practice, however, it is often better to use “simpler” activations.
• Rectifier: activation function defined as:

f(x) = x+ = max(0, x),

where x is the input to a neuron.
• A unit employing the rectifier is called rectified linear unit (ReLU).
• What about approximation guarantees? Basically, we have the

same guarantees, but at the price of wider layers:
Theorem (Shekhtman (1982), using classical results from
polygonal approximations due to Lebesgue (1898)). Networks
with one (wide enough) hidden layer of ReLU are universal ap-
proximators for continuous functions.

34

Why should we use more hidden layers?

Input OutputHidden

• Characterize the expressive power by counting into how many cells we can
partition Rd with combinations of rectifying units.
• A rectifier is a piecewise linear function. It partitions Rd into two open half

spaces (and a border face):

H+ = x : wtx+ b > 0 ∈ Rd

H− = x : wtx+ b < 0 ∈ Rd

• Question: by linearly combining m rectified units, into how many cells is Rd

maximally partitioned?
• Explicit formula (Zaslavsky 1975): An arrangement of m hyperplanes in Rn

has at most
∑n

i=0

(
m
i

)
regions.

35

Deep Learning

Input OutputHidden

Applied to ReLu networks:
Theorem (Montufar et al, 2014). A rectifier neural network with
d input units and L hidden layers of width m ≥ d can compute
functions that have Ω

((
m
d

)(L−1)d
md
)

linear regions.

Important insights:
• The number of linear regions of deep models grows

exponentially in L and polynomially in m.

• This growth is much faster than that of shallow networks with
the same number mL of hidden units in a single wide layer.

36

Recurrent Neural Networks

• Classical form of a dynamical system:

h(t) = f(h(t−1);θ),

where h(t) is the state of the system.

• Often, a dynamical system is driven by an external signal:

h(t) = f(h(t−1),x(t);θ).

ff f f

f Unfold

(t)x

(...) (...)h h

(t−1) (t+1)x x

(t−1) (t+1)h hh

x

(t)h

37

Unfolding Computational Graphs

• The network typically learns to use the fixed length state h(t) as
a lossy summary of the task-relevant aspects of x(1:t).

UUUUU

V

WWWWW

(...)h

(t−1) (t+1)x x

(t−1) (t+1)h h

(τ)o

y

(τ)L

(τ)

(τ)h

(τ)x

(t)h

(t)x

(...)h

(...)x

Such a network can be used to summarize a sequence and produce a
fixed-size representation for sequences of any length.

38

Long short-term memory (LSTM) cells

• Theory: RNNs can keep track of arbitrary long-term dependencies.
• Practical problem: computations in finite-precision:
⇝ Gradients can vanish or explode.
• RNNs using LSTM units partially solve this problem:

LSTM units allow gradients to also flow unchanged.
Exploding gradients may still occur⇝ use gradient clipping.
• Common architectures composed of a cell and three regulators

or gates: input, output and forget gate.
• Variations: gated recurrent units (GRUs) do not have an output

gate.
• Input gate controls to which extent a new value flows into the

cell
• Forget gate controls to which extent a value remains in the cell
• Output gate controls to which extent the current value is used

to compute the output activation.
39

Long short-term memory (LSTM) cells

tanhtanh

Vector Transfer Concatenate CopyNeural Network Layer

h
(t−1)

h
(t)

x
(t) (t+1)

xx
(t−1)

h(t) = tanh(W [h(t−1),x(t)] + b)

RNN cell takes current input x(t) and outputs the hidden state h(t)

⇝ pass to the next RNN cell.

40

Long short-term memory (LSTM) cells

σ σ

tanh

σσ tanh

cc

hh

tanh

CopyConcatenateNN Layer Pointwise
Operation

Vector
Transfer

h
(t)

x
(t)

(t−1)

(t−1)

(t)

(t)

(t+1)

x

h
(t−1)

Cell states allows flow of unchanged information
⇝ helps preserving context, learning long-term dependencies.

41

LSTM cells: Forget gate

σ σ

tanh

σ tanh

cc

hh

f

CopyConcatenateNN Layer Pointwise
Operation

Vector
Transfer

h
(t)

(t)

(t)

x
(t)

(t−1)

(t−1)

(t)

f (t) = σ(W f [h(t−1),x(t)] + bf)

Forget gate alters cell state based on current input x(t) and output
h(t−1) from previous cell.

42

LSTM cells: Input gate

σ σ

tanh

σ tanh

cc

hh

i

C

CopyConcatenateNN Layer Pointwise
Operation

Vector
Transfer

h
(t)

(t)

(t)

x
(t)

(t−1)

(t−1)

(t)

(t)

i(t) = σ(W i[h(t−1),x(t)] + bi)

c̃(t) = tanh(W c[h(t−1),x(t)] + bc)

Input gate decides and computes values to be updated in the cell
state.

43

LSTM cells: Input gate (cont’d)

σ σ

tanh

σ tanh

cc

hh

i

c

f

CopyConcatenateNN Layer Pointwise
Operation

Vector
Transfer

h
(t)

(t)

(t)

x
(t)

(t−1)

(t−1)

(t)

(t)

(t)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t)

Forget and input gate together update old cell state.

44

LSTM cells: Output gate

σ σσ tanh

cc

hh

i

tanh

c

o

CopyConcatenateNN Layer Pointwise
Operation

Vector
Transfer

(t)

(t)

x
(t)

(t−1)

(t−1)

(t)

(t)

h
(t)

(t)

o(t) = σ(W o[h(t−1),x(t)] + bo)

h(t) = tanh(c(t)) ◦ o(t)

Output gate computes output from cell state to be sent to next
cell.

45

Movie review example

Embed Embed Embed

"positive"

best movie ever

Inputs: words in a movie review

46

Movie review example: refined model

Embed Embed Embed

"positive"

best movie ever

47

Left vs. right context

Embed Embed

"positive"

EmbedEmbedEmbed

moviethe terribly excitingwas

48

Bidirectional RNNs

Embed Embed EmbedEmbedEmbed

moviethe terribly

Concatenated hidden states containing left and right context

excitingwas

49

Word embeddings

encode decode
O

n
e
−

h
o

t
e
n

c
o

d
e
d

 w
o

r
d

space
Latent

fox

The quick brown fox jumps over the lazy

quick

brown

jumps

over

dog

yzx

C
o

n
te

x
t

w
o

r
d

Multidimensional, distributed representation of words in a vector
space.

50

Word embeddings

https://www.cs.cmu.edu/˜dst/WordEmbeddingDemo/tutorial.html

51

(Simple) neural Language Models
As the proctor started the clock︸ ︷︷ ︸

ignore

, the students opened their︸ ︷︷ ︸
fixed window

.......

Output layer:
probability for
next word

Hidden layer:
enables flexible (non-
linear) mappings

Word embeddings:
context-specific
representation of words

x
(1)

x
(2)

x
(3)

x
(4)

the students opened their

W

U

books
laptops

a zoo

exams$

P
ro

b
a

b
il
it
y

We need an architecture that can process any length input.

52

Recurrent neural language models
...started the clock, the students opened their︸ ︷︷ ︸

arbitrary window

.......

Output layer:
probability for
next word

Hidden layer:
enables flexible (non-
linear) mappings

Word embeddings:
context-specific
representation of words

WeWeWe

WhWhWh

x (1)

(1)e

h(0)

books

laptops

a

P
ro

b
a

b
il
it
y

exams

zoo

x (4)

We

Wh

We

Wh

x (3)x (2)

EEE

e e(2) (3)

h h h(1) (2) (3)

E

(4)e

h(4)

their

E

(4)e

h

U

(5)

x (5)

openedstudentsthe,

53

Recurrent neural language models: Training
Get a big corpus of text (long sequence of words, {x(1), . . . ,x(T)}).
For every step t: predict next word and compare with actual next
word via a loss function. Averaged loss is minimized during train-
ing.

WeWe

WhWhWh

(1)e

h(0)
UU

Wh

WeWe

Wh

UU

x (4)x (1) x (2) x (3)

WeWe

Wh

UU

EE

e e(2)

h h h(1) (2)

students opened

l
(1)

l
(2)

e

h

E E

e

h

l l

theirthe students opened

E E

(4)e(3)

h(3) (4)

their exams

l l
(3) (4)

exams

Then

.

.

(5) (6)

(5) (6)

(5) (6)

x x(5) (6)

Then ,

,

54

Recurrent neural language models
Generating new text

wordgenerated

word

input

step’s input

step’sis next

is nextgeneratedeverySTART

55

Recurrent neural language models

RNN trained on Obama speeches

https://commons.wikimedia.org/w/index.php?curid=23956389

RNN trained on

By Oxyman - Own work, CC BY 2.5

https://commons.wikimedia.org/w/index.php?curid=3225840

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

56

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Neural Encoder/Decoder Models for Machine
Translation

m’

a

il he

hit

me

with

a

pie

entarte

https://commons.wikimedia.org/w/index.php?curid=9105527

no single−word
equivalent in English

<START>entarteail m’

Summary of input sequence

Input sequence

Target sequence
<END>ahe hit me with pie

ahe hit me with pie

Target sequence (shifted right)

E
n

c
o

d
e

r
R

N
N

D
e

c
o

d
e

r
R

N
N

57

Sequence-to-sequence: Training

he hit <END>ame with pie

<START>entarteail m’

Target sequence (shifted right)

he ahit me with pie

Input sequence from corpus

Target sequence from corpus

ŷ2ŷ1

L1 L2 L3 L4 L5 L6 L7Loss L = 1
T (L1 + L2 + · · ·+ LT)

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

Get a big parallel corpus containing input/target sequence pairs!

58

Sequence-to-sequence: Test time behavior

he hit <END>ame with pie

<START>entarteail m’ he ahit me with pie

Input sequence from corpus
Last decoder output used as next step’s input

Test time behavior:

ŷ2ŷ1

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

59

Sequence-to-sequence: Training

he hit <END>ame with pie

<START>entarteail m’

Target sequence (shifted right)

he ahit me with pie

Input sequence from corpus

Target sequence from corpus

ŷ2ŷ1

L1 L2 L3 L4 L5 L6 L7Loss L = 1
T (L1 + L2 + · · ·+ LT)

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

Get a big parallel corpus containing input/target sequence pairs!

60

Sequence-to-sequence: Test time behavior

he hit <END>ame with pie

<START>entarteail m’ he ahit me with pie

Input sequence from corpus
Last decoder output used as next step’s input

Test time behavior:

ŷ2ŷ1

x1 x3x2 x4

ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

61

Sequence-to-sequence: bottleneck problem

Input sequence

he hit <END>ame with pie

<START>entarteail m’

Target sequence (shifted right)

Needs to capture all information

−> bottleneck!

Summary of input sequence

he ahit me with pie

Target sequence

lo
s
s

ŷ2

x1 x3x2 x4

ŷ1 ŷ3 ŷ4 ŷ5 ŷ6 ŷ7

Idea: allow the decoder to look directly at input, bypass bottleneck.

62

Sequence-to-sequence with attention

lo
s
s

<START>entarteail m’

he

Encoder RNN

Attention scores

Attention distribution

Attention output

Dot product similarity

softmax turns scores into

Hidden state for "il"

received high attention

probabilities

Query

(= 1st decoder hidden state)

attends to values

(= all encoder hidden states)

to produce

and decoder hidden state

Concatenate attention output

Weighted sum of encoder hidden states

Input sequence

h2 h3

x1 x3x2 x4

ŷ1

h4

s1

a4 = s⊤1 h4

a4

α = softmax(a)

α

z =
∑
i

αihi

h1

a1 a2 a3

ŷ1

63

Sequence-to-sequence with attention

lo
s
s

<START>entarteail m’

Encoder RNN

Attention scores

Attention distribution

Attention output

Input sequence

he

hit

x1 x3

ŷ2

x2 x4

64

Sequence-to-sequence with attention

Input sequence

lo
s
s

<START>entarteail m’

Encoder RNN

Attention scores

Attention distribution

Attention output

he ahit me with

pie

x1 x3x2 x4

ŷ6

65

Attention is great

• Attention solves the bottleneck problem: It allows decoder to
look directly at the input sequence, bypass bottleneck
• Attention helps with vanishing gradient problem:

Provides shortcut to faraway states

• Interpretability: Attention distribution pro-
vides (probabilistic) word alignments for
free!

• We never explicitly trained an alignment
system, the network learned it by itself!

m’

a

il he

hit

me

with

a

pie

entarte

no single−word
equivalent in English

• Attention is also the main builing block of transformers:
We “transform” queries st to attention outputs zt, conditioned on
inputs and previous queries.

66

Attention: General setting

Figure 16.6 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. Attention layer. (a) Mapping a single query

q to a single output, given a set of keys and values.

67

Attention and Self-Attention

similarity
scores

attention
weights

softmax

q

o

V

K

softmax

q

K K

V

o

V

softmax

inputs X

output

queries

outputs

+

+

+

+

+

+

++

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

11

32

13

23

3331

2221

12

1 2 3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

11

32

13

23

3331

2221

12

1 2 3

1 2 3

Left: Mapping a single query q to a single output o, given a set of keys and values. Middel: simplified notation. Right: Mapping multiple
queries to multiple outputs, either for given values and keys (without the red arrows and without inputs X), or in the self-attention case,
where queries, values and keys are functions of inputs X (red arrows) .

68

Attention in Language Models
The animal didn’t cross the street because it was too tired

https://jalammar.github.io/illustrated-transformer/

Attention distribution provides word alignments for free!
Attention is also the main building block of transformers.

69

“Transformer”-language models

• RNNs process one token at a time⇝ representation of word at
t depends on hidden state st (summary of previous words).
• Alternative approach: use attention to compute representation

directly as a function of all other words.
• This is the idea of a encoder-only transformer, used by LMs

such as BERT (Bidirectional Encoder Representations from
Transformers).

Fig. 16.16 in K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. Original Image published in C. Joshi.
Transformers are Graph Neural Networks. Tech. rep. 2020.

70

“Transformer”-language models

• Alternative: Decoder-only transformer: each output yt only at-
tends to all previously generated outputs, y1:(t−1) .

• This can be implemented using masked self-attention, and is
useful for generative language models, such as GPT.

• Combination: Sequence-to-sequence models, p(y1:Ty|x1:Tx).

Figure 16.1 in the supplement of K.Murphy: Probabilistic Machine Learning, Advanced Topics. MIT Press, 2023. High level structure of

the encoder-decoder transformer architecture. https://jalammar.github.io/illustrated-transformer/

71

Transformer: Encoder

https://jalammar.github.io/illustrated-transformer/

72

Seq2Seq with Transformers

https://jalammar.github.io/illustrated-transformer/

73

Example applications
DanQ: A hybrid convolutional and recurrent deep neural
network for quantifying the function of DNA sequences

D. Quang, X. Xie. Nucleic Acids Res. 2016 Jun 20;44(11):e107. doi: 10.1093/nar/gkw226.

74

DanQ: A hybrid CNN/RNN
• Goal: predict function directly from sequence, instead of from curated

datasets (gene models, multiple alignments).
• > 98% of the human genome is non-coding. GWAS identified 6500 disease-

related single-nucleotide polymorphisms (SNPs), 93% in non-coding regions.
• Example: Introns are non-coding sections of genes. Some have significant

biological function (such as regulating RNA activity).

Illustration of an unspliced pre-mRNA precursor, with five introns and six exons (top). After the introns have been removed via

splicing, the mature mRNA sequence is ready for translation (bottom). By Nastypatty - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=49282051

75

DanQ: A hybrid CNN/RNN
First layers: designed to scan sequences for motif sites through
convolution filtering.

D. Quang, X. Xie. Nucleic Acids Res. 2016 Jun 20;44(11):e107. doi: 10.1093/nar/gkw226.

76

DanQ: A hybrid CNN/RNN
First layers: Scannning sequences for motif sites.
Bi-directional LSTM layer: Modelling spatial arrangements and fre-
quencies of combinations of motifs.
Hybrid CNN-RNN architecture⇝ simultaneous learning of motifs
and sequential arrangement of motifs.

D. Quang, X. Xie. Nucleic Acids Res. 2016 Jun 20;44(11):e107. doi: 10.1093/nar/gkw226.

77

DeepFam: Deep learning based alignment-free
method for protein family modeling and prediction

S. Seo et al. Bioinformatics. 2018 Jul 1; 34(13): i254–i262. doi: 10.1093/bioinformatics/bty275

78

DeepFam: Motivation
• Most widely adopted method to compare two protein se-

quences: Smith-Waterman algorithm
• Works less well for distant sequences.
• Protein family approaches are better. Two variants:

– Alignment-based: profile Hidden Markov Models.
Position-specific scoring + explicit insertion/deletion states.

– Alignment-free protein family modeling.
Usually based on frequencies of k-mers.
Example: ATGG has two 3-mers: ATG and TGG.
TGG
ATGC
ATG
Problems: Order information is lost, requires exact matches.
But: In some applications, better performance.

79

DeepFam: Architecture
• First layers: designed to scan sequences for motif sites through

convolution filtering.
• Convolutional units: Position-specific, functioning similarly as

position-specific scoring matrix in MSA.
• Interpretability: In experiments, convolution units correspond to

well-known protein motifs.

S. Seo et al. Bioinformatics. 2018 Jul 1; 34(13): i254–i262. doi: 10.1093/bioinformatics/bty275

80

Sequence-to-function deep learning

• Predicting phenotypes from genotypes: the aim is to both predict
and classify toehold switch performance (phenotype) from
RNA sequences (genotype).
• Toehold switches are RNA molecules of increased interest be-

cause they act as programmable sensors for precision diagnos-
tics.
• One-hot encoding turns RNA into a 4×L tensor, where L is the

length of the RNA sequence.
• For the prediction task, CNNs are used.
• On the other hand, the RNA sequences are tokenized into 3-

mers and fed into a LSTM-RNN for binary classification.

81

Sequence-to-function deep learning

Sequence-to-function deep learning frameworks for engineered riboregulators, Valeri et al, Nat Commun. 2020 Oct 7;11(1):5058. doi:

10.1038/s41467-020-18676-2.

82

Protein 3D structure prediction

• Formally, protein structure prediction is the inference of the 3D
structure of a protein from its amino acid sequence (input).
• In biological terms, the 3D structure is the secondary and ter-

tiary structure (output).
• One can formulate the problem as a 3D contact prediction.

Left: Two globular proteins with some contacts in them shown in black dotted lines along with the contact distance in Armstrong.
The alpha helical protein (left) has many long-range contacts, the beta sheet protein (right) has more short-/medium-range contacts.

Source: Protein Residue Contacts and Prediction Methods.

Right: By en:User:Bikadi, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16236442

83

Secondary Structure Prediction
Secondary structure: two main types: β-sheet and α-helix

The School of Biomedical Sciences Wiki

Short range interactions in the AA chain are important for the secondary struc-
ture: α-helix performs a 100◦ turn per amino acid ⇝ full turn after 3.6 AAs.
Formation of a helix mainly depends on interactions in a 4 AA window.

84

Example: Cytochrome C2 Precursor
Secondary structure (h=helix)
amino acid sequence

hhhhhhhhhhh
MKKGFLAAGVFAAVAFASGAALAEGDAAAGEKVSKKCLACHTFDQGGANKVGPNLFGVFE
hhhhhhhh hhhhhhhhh hhhhhhhhh
NTAAHKDDYAYSESYTEMKAKGLTWTEANLAAYVKDPKAFVLEKSGDPKAKSKMTFKLTK

hhhhhhhhhhhhh

DDEIENVIAYLKTLK

Given: Examples of known helices and non-helices in several pro-
teins
⇝ training set

Goal: Predict, mathematically, the existence and position of α-
helices in new proteins.

85

Classification of Secondary Structure

Idea: Use a sliding window to cut the AA chain into pieces. 4
AAs are enough to capture one full turn ⇝ choose window of
size 5.

Decision Problem: Find function f(. . .) that predicts for each
substring in a window the structure:

f(AADTG) =

{
”Yes”, if the central AA belongs to an α-helix,
”No”, otherwise

Problem: How should we numerically encode a string like AADTG?

Simple encoding scheme: Count the number of occurrences
of each AA in the window. First order approximation, neglects
AA’s position within the window.

86

Example
...RAADTGGSDP...
...xxxhhhhhhx...
...xxxhhhhhhx...
...xxxhhhhhhx...

(black =̂ structure info about central AA; green =̂ know secondary structure; red=̂ sliding window)

A C D . . . G . . . R S T . . . Y Label
2 0 1 0 0 0 1 0 1 0 0 “No”
2 0 1 0 1 0 0 0 1 0 0 “Yes”
1 0 1 0 2 0 0 0 1 0 0 “Yes”
...

This is a standard binary classification problem.

87

Alphafold 2 High-level overview
The Nature article diagram that outlines the different pieces of the
architecture.

Diagram of AlphaFold 2 as published in the official Nature paper in July 2021. The added red lines divided the image into thirds which

represent the three main parts.

88

Alphafold 2 High-level overview
The preprocessing module

• Input amino acid sequence is used to query several protein sequence
databases⇝ jackHMMER ⇝ MSA.
• MSA enables the determination of the parts of the sequence that are more

likely to mutate, and allows us to detect correlations between them.
• AlphaFold 2 also tries to identify proteins that may have a similar structure to

the input (⇝templates), and constructs an initial representation of the structure,
which it calls the pair representation: a model of which AAs are likely to be
in contact with each other.

The transformer module

• AlphaFold 2 takes the MSA and the templates, and passes them through a
transformer. Objective: Refine the representations for MSA and pair inter-
actions, iteratively exchange information between them.
• A better model of the MSA will improve the network’s characterization of the

geometry⇝ helps refining the MSA.
• Process is organised in blocks that are repeated.

89

Alphafold 2 High-level overview
The structure module

• Takes the refined MSA representation and pair representation, and lever-
ages them to construct a 3D-model of the structure.
• Does not use any energy-based optimisation algorithm: generates a static,

final structure, in a single step.
• End result is a long list of coordinates representing the position of each atom

of the protein.
• The model works iteratively. After generating a final structure, it will take all

the information (i.e. MSA representation, pair representation and predicted
structure) and pass it back to the beginning of the Evoformer blocks. This
allows the model to refine its predictions.

90

Preprocessing: MSA
In an MSA, the sequence of the protein whose structure we intend to predict is
compared across a large database. The underlying idea is that, if two amino
acids are in close contact, mutations in one of them will be closely followed by
mutations of the other, in order to preserve the structure.

Schematic of how co-evolution methods extract information about protein structure from a multiple sequence alignment (MSA). Image

modified from doi: 10.5281/zenodo.1405369, which in turn was modified from doi: 10.1371/journal.pone.0028766.

91

Preprocessing: template sequences
• Proteins mutate and evolve, but their structures tend to remain similar.
• Example: structure of 4 myoglobin proteins from different organisms.
• They all look similar, but the sequences are very different: Bottom right to

top left: only 25% common amino acids.

Protein structures of human myoglobin (top left), african elephant myoglobin (top right, 80% sequence identity), blackfin tuna
myoglobin (bottom right, 45% sequence identity) and pigeon myoglobin (bottom left, 25% sequence identity).

92

The Evoformer
• Evoformer extracts information from the MSA and the templates.
• Idea: information flows back and forth throughout the network.
• At every cycle: current structural hypothesis used to improve the assessment

of the MSA ⇝ new structural hypothesis.
• Both representations, sequence and structure, exchange information until the

network reaches a solid inference.

Intuition:

• Suppose that you look at the MSA and notice a correlation between a pair of
amino acids, A and B.
• Your hypothesisis: A and B are close ⇝ translate this assumption into the

structure model.
• You observe: since A and B are close, there is a good chance that C and D

should be close.
• New hypothesis, based on the structure, which can be confirmed by search-

ing for correlations between C and D in the MSA.
• By repeating this, you can build a good understanding of the structure.

93

The Evoformer

Conceptualization of the Evoformer information. In the left diagram, the MSA transformer identifies a correlation between two columns of
the MSA, each corresponding to a residue. This information is passed to the pair representation, where subsequently the pair

representation identifies another possible interaction. In the right diagram, the information is passed back to the MSA. The MSA
transformer receives an input from the pair representation, and observes that another pair of columns exhibits a significant correlation.

94

The structure module
• Recap: two “representations”: MSA (captures sequence variation); and

“pairs of residues” (captures which residues are likely to interact).
• Q: how do we get a structure from these? ⇝ structure module.
• Protein modeled as a residue gas: Every amino acid is modelled as a tri-

angle, representing the 3 atoms of the backbone. Triangles float around in
space, and are moved by the network to form the structure.

The “residue gas” approach. Image taken from the OpenFold 2 webpage, by Georgy Derevyanko.

• Transformations are parametrised as “affine matrices”, which are a mathe-
matical way to represent translations and rotations in a single 4× 4 matrix:

Image taken from BrainVoyager.

95

The structure module
• At the beginning of the structure module, all of the residues are placed at the

origin of coordinates.
• At every step of the iterative process, AlphaFold 2 produces a set of affine

matrices that displace and rotate the residues in space.
• This representation does not reflect any physical or geometrical assumptions,

and as a result the network has a tendency to generate structural violations.
• New flavour of attention devised specifically for working with 3D-structures:

Invariant Point Attention (IPA).
• Main property: invariance to translations and rotations. The model knows

that rotations and translations of the data lead to the same answer!
• Side chains: Positions parametrised by list of torsion angles.

96

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

