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3.1 Introduction
• Text retrieval originated in the 1950s and 1960s through pioneering research by Gerard Salton, Karen Spärck Jones, 

and others. It became popular due to its wide range of applications, simplicity, and user-friendly interface. As 
discussed earlier, text retrieval is less affected by the semantic gap compared to other media types (although this 
will be further discussed in upcoming chapters). Users input text queries against unstructured documents, and the 
systems can easily match the query with the document, as they share the same representation. Additionally, textual 
metadata enables any media type to be searchable using the same approach.

• This allowed the relatively basic computer systems back then to offer efficient and effective search for expert users. 
As early computers had limitations in terms of storage and compute, models progressed from simple Boolean 
matching to more complex vector space and probabilistic models as technology improved. The first generation 
primarily focused on "Retriever-only" models.

– Boolean Retrieval Systems hold a significant advantage as they can determine document relevance while 
scanning the data, without the need for post-processing to sort and rank documents. Additional filters, such as 
publication date or author, can be easily integrated into the Boolean model. This builds a robust foundation still 
observed in today's systems like when searching for files on a local drive

– The Boolean Model uses set theory and Boolean algebra. Documents are represented as a set of terms, without 
considering the number of occurrences. The query is formulated as a Boolean expression using operators like 
AND and OR to combine term match atomic queries. If a document satisfies the Boolean expression (and other 
filter conditions on its metadata), it is included in the result set; otherwise, it is excluded

– Boolean models do not use scoring or ranking, so they can return results as soon as they find the first matching 
document while scanning the data (consider the example of to searching through a local hard drive). In addition, 
they can utilize a simple index structure called inverted file which makes the search process very efficient by 
considering only a small fraction of the data. This method is still used in modern algorithms today.

3.1 Introduction

Retriever

query

• doc 1
• doc 2
• doc 3
• …

index
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• As collections grew larger, the Boolean model needed an extension for better result organization and exploration. 
When there are hundreds of hits, users want a more efficient way to browse through search results. A post-
processing step was introduced, enabling query-independent filtering and sorting, such as sorting by publication 
date or filtering for a specific language. Unlike the retriever step, users can add or remove filters and change sorting 
while exploring the results and without re-submitting the search. In other words, this post-processing does not 
impact the set of relevant documents and is often implemented in the interface directly:

• The above method works well for scenarios where exploration is mostly focused on metadata, as in shop or library 
searches. However, a key drawback is that sorting does not consider how well an object fits the query. Early 
extensions of the Boolean model (Extended Boolean Model) addressed this limitation by studying the impact of the 
query terms' presence in documents and their relevance assessment. For example, consider the query "cat AND 
dog" and the three documents:

1) "A cat walked down the street."
2) "The dog chased the cat."
3) "The cat played with the dog when another cat and dog approached them."

Documents 2) and 3) meet the condition "cat AND dog“, but document 1) is dismissed by the Boolean logic although 
it appears partially relevant to the query. Furthermore, document 3) contains the query terms more frequently and 
seems to be a better fit for the query, but the Boolean expression classifies documents 2) and 3) the same. The 
Extended Boolean Model, changes the foundation model in two ways:
– It allows for partial matches to the query (like Document 1) but assigns them lower relevance scores
– It considers how often query terms appear in documents when calculating relevance scores 
Using these relevance scores, we can sort the document collection and present results even if not all conditions are 
met. In other words, instead of using "hard" conditions, we apply penalties for not meeting the condition.

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. …

index

Filter & Sort

meta-datacriteria

3.1 Introduction



Page 3-4Multimedia Retrieval – 2023 3.1 Introduction

• In the 1970s, classical Vector Space and Probabilistic Retrieval models emerged. Both methods established a 
relevance model for document-query matching. In the vector space model, documents and queries are represented 
as high-dimensional vectors, and heuristic methods compare vectors to obtain a notion for relevance. Probabilistic 
retrieval models assume that documents are generated randomly from a probabilistic model, and relevance is 
determined by the probability of a document being relevant to the query. Newer models like BM25 combine vector 
space and probabilistic retrieval techniques. 

Extended Boolean Model, Vector Space Retrieval, and Probabilistic Retrieval follow a similar approach: a retriever 
gathers a larger set of candidate documents based on query terms, and a ranking model assesses the relevance to 
produce a sorted result list. Further filter conditions can be applied to explore the result collection, such as language 
filtering or year of publication.

• In this chapter, we delve into classical text retrieval models in detail:
– We begin by exploring document descriptions and performing simple linguistic operations to reduce words to 

terms, forming a vocabulary for search
– Next, we study classical models like the Standard and Extended Boolean Model, Vector Space Retrieval Model, 

Probabilistic Model, and the modern BM25 model used in popular software packages
– We then examine indexing methods, notably inverted file, and a simple implementation using a relational database 

to accelerate the search process
– Finally, we conclude the chapter by discussing Apache Lucene, a popular software packages that offer state-of-

the-art text retrieval for various platforms

• In the chapters to follow this one, we will explore: 1) natural language processing and advanced techniques for 
generating vectors from text representations, 2) web retrieval as a unique search challenge, and 3) modern AI-
supported classification and search methods.

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. …

index

(Filter &) Ranker 

rank model
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Offline Phase

docID = doc10
dog →    word 10, word 25
cat →     word 13
home → word 2, word 27
...

index

feature
extraction

new
document

insert

a

b

c

d

3.2 Fundamentals
• Many search systems, like searching through files on a 

local drive, scan through all the data for each query. 
However, this approach is not efficient for large text 
collections. Instead, the search is divided into two 
parts: an offline indexing phase (depicted on the left) 
and an online querying phase (see next page).

• The offline phase extracts meaningful features from 
text documents and stores them, along with metadata, 
in an index for future query use. These features 
provide a concise representation of the document's 
content and are typically represented by high-
dimensional vectors.

• During the offline mode, the following steps take place:
a) add a new document (or find one by scanning/ 

crawling)
b) each addition triggers feature extraction and 

updates search indexes
c) extract features that best describe the content, 

analyze context, and include higher-level features
d) pass the features to an index that accelerates 

searches for queries

• The main challenge lies in extracting concise 
representations from the documents. In this chapter, 
we will use simple methods to create vector 
representations. In the chapters to follow this one, we 
will explore more advanced techniques.

3.2 Fundamentals
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Online

query
transformation

inverted file:
dog →   doc3,doc4,doc10
cat →    doc10
home → doc1,doc7,doc10 
....

index

„Dogs at home“

Q= {dog, 
dogs, 
hound, 
home}retrieval

relevance ranking
sim(Q,doc1)   = .2
sim(Q,doc4)   = .4
sim(Q,doc10) = .6

result
doc10
doc4
doc1

3

2

1

4

• In the online mode, users can search for documents 
using the indexed data from the offline phase. The 
query is analyzed similarly to the documents with 
additional processing to correct spelling mistakes or 
include synonyms for a broader search. Retrieval 
involves comparing features. If two documents have 
similar features, they are considered similar in content. 
Thus, a document is considered a good match to a 
query if its features are close to those of the query. 

• In the online mode, the following steps take place:
1) user enters a query (or speech/handwriting 

recognition)
2) we extract features from the query, similar to the 

process for documents, and transform the query as 
needed (e.g., correcting spelling mistakes)

3) we use the query features to search the index for 
documents with similar features

4) we rank the documents based on their retrieval 
status value (RSV) and return the best-matching 
documents

• The primary challenge is relevance ranking. The goal is 
to accurately assess a document's relevance based 
solely on its feature representation, and given the 
features of the query. In subsequent chapters, we will 
explore more sophisticated methods, including 
generative AI. However, in this chapter, we will use 
simple yet efficient and effective methods that are 
suitable for many use cases.

3.2 Fundamentals

d
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• In the rest of this chapter, we explore the fundamental steps to extract features from source documents ("offline 
phase"), as mentioned earlier. The overall process is detailed in the picture below. We will discuss indexing in a later 
section, focusing here on four fundamental actions during feature extraction: 1) extract, 2) split, 3) tokenize, and 4) 
summarize. The outcome includes a vocabulary containing all terms found in the documents, which is also used for 
query analysis. Additionally, we obtain for each document chunk out of the splitting step a feature representation 
that we can store in an index along with metadata from the source document and split ranges (start and end 
coordinates in the source document).

HTML

Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

don, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

tokenize

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

vocabulary

extract

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

sum
m

arize
(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

Index

terms

metadata features

split

range

3.2 Fundamentals
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3.2.1 Action 1: Extract (with the example of HTML)
• Text documents are available in different formats such as HTML, PDF, EPUB, 

metadata, or plain text. The first step involves extracting meta information 
and the sequence of characters that form the text stream without control 
sequences and formatting information present in the source document. This 
may include structural analysis of the document, encoding adjustments, and 
identifying relevant information for feature extraction. In some cases, we 
may have to apply text extraction from images.

• Consider a simple example in HTML with the following snippet representing 
a web page's structure. The initial task is to identify the useful bits of  
information within it. The header typically holds rich meta information, while 
the body contains the main text parts. Although HTML follows a well-
defined standard, extracting information (known as scraping) requires 
analyzing the data structure used for the pages. In contrast, a web search 
engine considers everything present on the page.

• At this point, we must decide for a character encoding that we will use for 
the terms and the index, and convert the source text. UTF-8/16/32 are 
widely used but can limit the ability to support different languages. 

HTML

extract

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

<html>
  <head>
    <title> MMIR – 2023 </title>
    <meta name="keywords" 
   content="multimedia, retrieval, course"/>
  </head>

  <body>
    ...
    ...
  </body>
</html>

Header: Contains meta-
information about the 
document. We can utilize 
this information to add 
relevant metadata for the 
document (and its chunks).

Body: Contains the main 
content enriched with 
markups. The document's 
flow is not always obvious 
and may appear differently 
on screen than in the file.
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• Let’s use the example of HTML to illustrate some aspects for metadata generation:  
– URI of page: both metadata and content (may serve concise key words for retrieval)

– Title of document: both metadata and content (may serve concise key words for retrieval)

– Meta information in header section:  (enriched information provided by author)

– As we discussed in the metadata section, we must be cautious about its reliability. It might include false 
information or describe aspects differently from what we observed in other documents. Nevertheless, in many 
cases, the brief nature of metadata allows us to assign high weights to the text parts. 

• Web pages contain links. How do we handle them effectively? Links describe relationships between documents and 
can enhance the current document's description. More importantly, they also describe the referenced document. 
Since web page authors often use concise anchor texts, the keywords in anchor texts serve as an excellent source of 
additional terms for the referenced document. Usually, the link text is associated with both the embedding and 
linked documents. However, we typically give much higher weight to keywords for the referenced document. It is 
essential to consider the approach's effectiveness, especially when dealing with click baits (promising more than the 
referenced documents reveal) or navigational hints like "click here" or "back to the main page". These keywords add 
no additional content for the referenced document.

• The body includes all text blocks and uses tags to control rendering. The page's flow may not exactly match the 
order in the HTML file, but it's usually a good enough approximation. Certain tags offer valuable additional 
information on the following text pieces. For example, we can assign higher weights to term occurrences in 
headlines, bold text, or text with emphasized rendering on the page.

• HTML includes escape sequences for special characters that need to be translated into the target encoding format.

https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-hs23/lecture-multimedia-retrieval/

<title>Multimedia Retrieval - Homepage</title>

<meta name="keywords" content="MMIR, information, retrieval">
<meta name="description" content="This will change your life…">

&nbsp;   ->  space         &uuml;   ->   ü

3.2.1 Action 1: Extract (with the example of HTML)



Page 3-10Multimedia Retrieval – 2023

• The illustration below shows how anchor texts (and their surroundings) provide relevant terms for describing target 
pages (and images). We emphasized the need for caution with human metadata. However, anchor texts come from 
diverse sources, simplifying the identification of useful terms across all mentions and filtering out "outliers" with 
obviously incorrect information. In a subsequent chapter, we will delve into using the link network to assess a page's 
importance and (objective) relevance through PageRank.

Unlock your creative 
potential with 

Multimedia Retrieval

Outstanding Grades in 
Multimedia Retrieval

Chapter 4 with great 
illustrations

15731 Lecture: Multimedia 
Retrieval Roger Weber Fri 

15:15 – 18:00

multimedia course at Uni 
Basel is an absolute marvel

Text Retrieval and 
Search Engines

3.2.1 Action 1: Extract (with the example of HTML)
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3.2.2 Action 2: Split
• Most traditional retrieval methods are optimized for smaller documents. This 

is because they assign a single term vector to represent the entire document. 
For instance, a 3-page document and a 1000-page novel are both described 
using a single vector.
– In cases where the document is small, returning the entire document to 

users is acceptable as they can easily find the relevant location within it. 
However, with larger documents like novels, it becomes essential to 
provide additional information on the specific passage's location. Splitting 
the documents into smaller pieces allows for a more precise retrieval at 
the expense of having more data entries in the collection.

– Another reason is that many traditional retrieval models do not include 
support for proximity metrics in their relevance assessment. For example, 
a query like "cats AND dogs" could retrieve a novel containing the term 
"cats" only on the first page and "dogs" only on the last page. Splitting 
documents into smaller chunks enforces proximity between query terms. 
For instance, if we split the novel by chapter, the novel and its chapters 
are no longer relevant for the query as none of the chapters contain both 
"cats" and "dogs".

• There is no one-size-fits all solution for splitting documents. In general, it is a 
trade-off between more and smaller but semantically coherent parts of the 
documents, and additional costs for storage and retrieval:
– For instance, splitting a novel by sentences may create too many entries 

that negatively impacts performance given a library with thousands of 
books. Sentences may also be too narrow for finding meaningful matches 
for more complex queries

– On the other side, a search engine for citations in religious texts may split 
documents at the sentence or verse level to create thousands of smaller 
parts that can be individually retrieved with searches 

Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

don, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

split
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• Method 1: Splitting the text into fixed-sized chunks
– The document is divided into chunks with a constant 

number of tokens, such as words or characters. This 
approach is straightforward and has even sizes for all 
document chunks simplifying normalization

– At the chunk boundaries, we may encounter half-
sentences and splits of passages that belong 
together such as a paragraph in a document

– In the example on the right, the chunks are split after 
every 50 tokens. The number of tokens used for 
splitting is a hyperparameter and requires training to 
achieve optimal results in the given search context

• Method 2: Splitting the text with NLP techniques
– Using NLP methods, the text is first divided into 

sentences. Then, several sentences are combined 
until a minimum number of tokens is reached

– At chunk boundaries, we no longer observe half-
sentences (unless sentence segmentation was 
incorrect), but we might still split passages that 
belong together, such as a paragraph in a document

– In the example on the right, we first split the text 
into sentences and then combine them until each 
chunk contains at least 50 tokens. As mentioned 
before, the number of tokens used for splitting is a 
hyperparameter that requires training to achieve 
optimal results in the given search context.

– Chunks sizes can now vary in length and variations 
depend on the length of sentences.

➢ In the year 1878 I took my degree of Doctor of Medicine of the University of London, and 
proceeded to Netley to go through the course prescribed for surgeons in the army. Having 
completed my studies there, I was duly attached to the Fifth Northumberland Fusiliers as 

➢ Assistant Surgeon. The regiment was stationed in India at the time, and before I could join it, the 
second Afghan war had broken out. On landing at Bombay, I learned that my corps had 
advanced through the passes, and was already deep in the 

➢ enemy’s country. I followed, however, with many other officers who were in the same situation 
as myself, and succeeded in reaching Candahar in safety, where I found my regiment, and at 
once entered upon my new duties. The campaign brought honours and promotion 

➢ to many, but for me it had nothing but misfortune and disaster. I was removed from my brigade 
and attached to the Berkshires, with whom I served at the fatal battle of Maiwand. There I was 
struck on the shoulder by a Jezail bullet, which 

➢ shattered the bone and grazed the subclavian artery. I should have fallen into the hands of the 
murderous Ghazis had it not been for the devotion and courage shown by Murray, my orderly, 
who threw me across a pack-horse, and succeeded in bringing me safely to 

➢ the British lines. Worn with pain, and weak from the prolonged hardships which I had 
undergone, I was removed, with a great train of wounded sufferers, to the base hospital at 
Peshawar. Here I rallied, and had already improved so far as to 

➢ …

➢ In the year 1878 I took my degree of Doctor of Medicine of the University of London, and proceeded 
to Netley to go through the course prescribed for surgeons in the army. Having completed my studies 
there, I was duly attached to the Fifth Northumberland Fusiliers as Assistant Surgeon. 

➢ The regiment was stationed in India at the time, and before I could join it, the second Afghan war had 
broken out. On landing at Bombay, I learned that my corps had advanced through the passes, and 
was already deep in the enemy’s country. 

➢ I followed, however, with many other officers who were in the same situation as myself, and 
succeeded in reaching Candahar in safety, where I found my regiment, and at once entered upon my 
new duties. The campaign brought honours and promotion to many, but for me it had nothing but 
misfortune and disaster. 

➢ I was removed from my brigade and attached to the Berkshires, with whom I served at the fatal battle 
of Maiwand. There I was struck on the shoulder by a Jezail bullet, which shattered the bone and 
grazed the subclavian artery. I should have fallen into the hands of the murderous Ghazis had it not 
been for the devotion and courage shown by Murray, my orderly, who threw me across a pack-horse, 
and succeeded in bringing me safely to the British lines.

➢ Worn with pain, and weak from the prolonged hardships which I had undergone, I was removed, with 
a great train of wounded sufferers, to the base hospital at Peshawar. Here I rallied, and had already 
improved so far as to be able to walk about the wards, and even to bask a little upon the verandah, 
when I was struck down by enteric fever, that curse of our Indian possessions. 

➢ For months my life was despaired of, and when at last I came to myself and became convalescent, I 
was so weak and emaciated that a medical board determined that not a day should be lost in sending 
me back to England. I was dispatched, accordingly, in the troopship “Orontes,” and landed a month 
later on Portsmouth jetty, with my health irretrievably ruined, but with permission from a paternal 
government to spend the next nine months in attempting to improve it.

➢ …
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➢ In the year 1878 I took my degree of Doctor of Medicine of the University of London, and 
proceeded to Netley to go through the course prescribed for surgeons in the army. Having 
completed my studies there, I was duly attached to the Fifth Northumberland Fusiliers as Assistant 
Surgeon. The regiment was stationed in India at the time, and before I could join it, the second 
Afghan war had broken out. On landing at Bombay, I learned that my corps had advanced through 
the passes, and was already deep in the enemy’s country. I followed, however, with many other 
officers who were in the same situation as myself, and succeeded in reaching Candahar in safety, 
where I found my regiment, and at once entered upon my new duties.

➢ The campaign brought honours and promotion to many, but for me it had nothing but misfortune 
and disaster. I was removed from my brigade and attached to the Berkshires, with whom I served 
at the fatal battle of Maiwand. There I was struck on the shoulder by a Jezail bullet, which 
shattered the bone and grazed the subclavian artery. I should have fallen into the hands of the 
murderous Ghazis had it not been for the devotion and courage shown by Murray, my orderly, 
who threw me across a pack-horse, and succeeded in bringing me safely to the British lines.

➢ Worn with pain, and weak from the prolonged hardships which I had undergone, I was removed, 
with a great train of wounded sufferers, to the base hospital at Peshawar. Here I rallied, and had 
already improved so far as to be able to walk about the wards, and even to bask a little upon the 
verandah, when I was struck down by enteric fever, that curse of our Indian possessions. For 
months my life was despaired of, and when at last I came to myself and became convalescent, I 
was so weak and emaciated that a medical board determined that not a day should be lost in 
sending me back to England. I was dispatched, accordingly, in the troopship “Orontes,” and landed 
a month later on Portsmouth jetty, with my health irretrievably ruined, but with permission from a 
paternal government to spend the next nine months in attempting to improve it.

➢ …

• Method 3: Metadata or structural information
– If the document contains metadata or structural 

markers for paragraphs, sections, chapters, or pages, 
we can use these markers as chunk boundaries. With 
plain text, we can also look for paragraphs often 
marked with a newline character or an empty line

– Chunks now are contextually coherent like a full 
paragraph in a document. But we have considerable 
differences in the number of tokens per chunk that 
require normalization during the ranking process (see 
BM25 later for an example)

– In the example on the right, we split at the end of a 
paragraph. Especially in novels with spoken 
sentences, it sometimes is not so obvious where a 
paragraph ends

• Method 4: Semantic splitting
– The text is initially divided into smaller parts, such as 

sentences. By using machine learning techniques, 
sentences with similar topics and concepts are 
grouped or clustered together

– Chunks are contextually coherent and may 
encompass multiple passages and paragraphs from 
the source document. But it may also split 
paragraphs or sections if topics change

– As mentioned before, we encounter chunks with 
significantly different numbers of tokens

– In the example on the right, we merged sentences 
that semantically belong together

➢ In the year 1878 I took my degree of Doctor of Medicine of the University of London, and proceeded 
to Netley to go through the course prescribed for surgeons in the army. Having completed my studies 
there, I was duly attached to the Fifth Northumberland Fusiliers as Assistant Surgeon. 

➢ The regiment was stationed in India at the time, and before I could join it, the second Afghan war had 
broken out. On landing at Bombay, I learned that my corps had advanced through the passes, and 
was already deep in the enemy’s country. I followed, however, with many other officers who were in 
the same situation as myself, and succeeded in reaching Candahar in safety, where I found my 
regiment, and at once entered upon my new duties. The campaign brought honours and promotion 
to many, but for me it had nothing but misfortune and disaster. I was removed from my brigade and 
attached to the Berkshires, with whom I served at the fatal battle of Maiwand. There I was struck on 
the shoulder by a Jezail bullet, which shattered the bone and grazed the subclavian artery. I should 
have fallen into the hands of the murderous Ghazis had it not been for the devotion and courage 
shown by Murray, my orderly, who threw me across a pack-horse, and succeeded in bringing me 
safely to the British lines. Worn with pain, and weak from the prolonged hardships which I had 
undergone, I was removed, with a great train of wounded sufferers, to the base hospital at Peshawar. 

➢ Here I rallied, and had already improved so far as to be able to walk about the wards, and even to 
bask a little upon the verandah, when I was struck down by enteric fever, that curse of our Indian 
possessions. For months my life was despaired of, and when at last I came to myself and became 
convalescent, I was so weak and emaciated that a medical board determined that not a day should be 
lost in sending me back to England. I was dispatched, accordingly, in the troopship “Orontes,” …

➢ …
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3.2.3 Action 3: Tokenize
• A token is formed by a sequence of characters. Typically, we use complete 

words to create tokens, but there are other options which we will explore 
later in this course. Here's a brief overview:
– Characters and fragments of words can be used to form tokens. For 

example, breaking the character stream into tokens of 3 characters would 
turn "street" into "str" and "eet". This method is frequently employed by 
large language models to maintain a small and constant-sized vocabulary 
while still being able to encode previously unseen words

– Words are the primary approach used in classical text retrieval. However, 
we require additional definitions for special characters, numbers, and 
abbreviations. In certain languages, word boundaries may not always be 
evident (e.g., Japanese and Chinese). The most significant challenge arises 
from variations in word forms. For instance, "cat" and "cats" are 
semantically related, but they are different tokens. Stemming is a linguistic 
method to merge such tokens, enabling better control over vocabulary 
size and term matching

– N-grams and phrases are composite tokens where multiple words that 
consistently appear together form a single token. Examples include "San 
Francisco," "Salt Lake City," "Prime Minister," or "Thai food." While you 
can manually add such phrases to the vocabulary, we will explore 
automated methods to detect meaningful phrases or n-grams in the 
collection in the next chapter of this course

• In this chapter, we use words as the foundation for studying classical text 
retrieval methods. In the following chapters, we will delve deeper into 
tokenization and explore various linguistic transformations, along with newer 
approaches such as embeddings commonly used in generative AI 
applications.

3.2.3 Action 3: Tokenize

Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

don, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

In the year 1878 I took my degree of 
Doctor of Medicine of the University of 
London, and proceeded to Netley to go 
through the course prescribed for 
surgeons in the army. Having completed 
my studies there, I was duly attached to 
the Fifth Northumberland Fusiliers as 
Assistant Surgeon. The regiment was 
stationed in India at the time, and before 
I could join it, the second Afghan war 
had broken out. On landing at Bombay, I 
learned that my corps had advanced 
through the passes, and was already 
deep in the enemy's country. I …

tokenize

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …
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• Lemmatization and linguistic transformation are essential for matching query terms with document terms, even if 
they have different inflections or spellings (e.g., "colour" vs. "color"). Depending on the scenario, one or several of 
the following methods can be used:
– A common step is stemming. In most languages, words appear in various inflected forms based on time, case, or 

gender. Examples:

English: go, goes, went, going, house, houses, master, master’s
German: gehen, gehst, ging, gegangen, Haus, Häuser, Meister, Meisters 

As evident from the examples, the inflected forms differ significantly but essentially convey the same meaning. 
The concept of stemming is to reduce tokens to a common stem and utilize this stem instead. In some languages, 
like German, stemming is difficult due to its numerous irregular forms and the use of strong inflections ("gehen" → 
"ging"). In English, Porter defined a very simple algorithm to compute near-stems as explained on the next pages

– Additionally, some languages permit compound words which can result in words of arbitrary length:

German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und 
Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz
(cattle marking and beef labeling supervision duties delegation law)

Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde
(atomic nuclear energy reactor generator condenser turbine cogwheel stage)

In many cases, we aim to break down such compounds to improve the likelihood of matching against query terms. 
Otherwise, we might never find that German cattle law with a query like "Rind Kennzeichnung." However, 
breaking a compound may also alter the true meaning of tokens:

German: Gartenhaus  → Garten, Haus   (ok, not too far away from the true meaning)
German: Wolkenkratzer → Wolke, Kratzer    (no, this is completely wrong)

3.2.3 Action 3: Tokenize
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• For English, the Porter Algorithm finds a near-stem of words. This stem is not linguistically correct but it often 
reduces words with the same linguistic stem to the same near-stem. The algorithm is highly efficient, and various 
extensions have been proposed over the years. In this context, we focus on Porter's original version from 1980:
– Porter defines v as a „vocal“ if

– it is an A, E, I, O, U
– it is a Y and the preceding character is not a „vocal“ (e.g. RY, BY)

– All other characters are consonants (c)
– Let C be a sequence of consonants, and let V be a sequence of vocals
– Each word follows the following pattern:

[C](VC)m[V]                 m is the measure of the word

– further:

– *o: stem ends with cvc; second consonant must not be W, X or Y (-WIL, -HOP)
– *d: stem with double consonant (-TT, -SS)
– *v*: stem contains a vocal

– The rules on the next pages establish mappings for words using the forms mentioned above. The variable m is 
utilized to prevent over-stemming of short words. Due to limited space, only a few rules are presented here. For a 
complete set of rules, please refer to one of the many implementations of the Porter algorithm or consult the 
original paper: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

– There are 5 main steps with several sub-steps within each. Each (sub-)step includes a list of ordered rules to 
match the endings of terms. Only the first rule that matches is applied, and the algorithm proceeds to the next 
(sub-)step. Most sub-steps have only a few rules (less than 10) and not more than 20 rules. The JavaScript 
implementation comprises around 200 lines of code.

• In subsequent chapters of this course, we will explore more advanced methods
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Step 1

SSES -> SS caresses -> caress

IES -> I ponies -> poni

SS -> SS caress -> caress

S -> cats -> cat

(m>0) EED ->EE feed -> feed

(*v*) ED -> plastered -> plaster

(*v*) ING -> motoring -> motor

... +5 more rules if 2nd/3rd rule match

(*v*) Y ->I pony -> poni

Step 2

(m>0) ATIONAL -> ATE relational -> relate

(m>0) TIONAL -> TION conditional -> condition

(m>0) ENCI -> ENCE valenci -> valence

(m>0) IZER -> IZE digitizer -> digitize

... +16 more rules

Rule Examples

a)

b)

c)
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Step 3

(m>0) ICATE -> IC triplicate -> triplic

(m>0) ATIVE -> formative -> form

(m>0) ALIZE -> AL formalize -> formal

... +4 more rules

Step 4

(m>1) and (*S or *T)ION ->  adoption -> adopt

(m>1) OU -> homologou -> homolog

(m>1) ISM -> platonism -> platon

... +16 more rules

Step 5

(m>1) E -> rate -> rate

(m=1) and (not *O)E -> cease -> ceas

(m>1 and *D and *L) -> single letter controll -> control

a)

b)

3.2.3 Action 3: Tokenize

Rule Examples
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3.2.4 Action 4: Summarize
• During summarization, we create concise representations for documents, 

usually in the form of a high-dimensional feature vector where components 
represent terms and their occurrences in the documents. To achieve this, we 
maintain a vocabulary and assign each term a dimension in the feature space.

• To control vocabulary size, we discussed linguistic transformations in the 
previous action. During summarization, we also evaluate the importance of 
terms and their ability to describe the content of documents in the 
collection. The inverse document frequency (IDF) is a widely used method to 
measure the significance of terms. Additionally, we look at stop word 
elimination as a simpler method of discrimination.

• Once terms are extracted, classical retrieval methods generally use one of 
two methods to build the feature vector. Let 𝐷𝑖 be a document, 𝑀 be the 
size of the vocabulary. Then, 𝑑𝑖 ∈ ℝ𝑀 is its feature representation, and 𝑑𝑖,𝑗 
represents the term 𝑡𝑗 in the vocabulary. Additionally, we use 𝑡𝑓(𝐷𝑖 , 𝑡𝑗) to 
denote the number of occurrences of term 𝑡𝑗 in document 𝐷𝑖.
– The set-of-words model is a basic representation that only considers 

whether a term is present or not. It disregards the order of terms, their 
number of occurrences, and proximity between terms. The feature vector 
is binary where dimension 𝑗 indicates the presence of term 𝑡𝑗 

– The bag-of-words model is a more common representation and differs 
from the set-of-words by preserving term frequencies:

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(IN) (THE) (YEAR) (1878) (I) (TOOK) (MY) 
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) 
(THE) (UNIVERSITY) (OF) (LONDON) (‘,’) (AND) 
(PROCEEDED) (TO) (NETLEY) (TO) (GO) 
(THROUGH) (THE) (COURSE) (PRESCRIBED) 
(FOR) (SURGEONS) (IN) (THE) (ARMY) (‘.’) 
(HAVING) (COMPLETED) (MY) (STUDIES) 
(THERE) (‘,’) (I) (WAS) (DULY) (ATTACHED) (TO) 
(THE) (FIFTH) (NORTHUMBERLAND) 
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (‘.’) 
(THE) (REGIMENT) (WAS) (STATIONED) (IN) 
(INDIA) (AT) (THE) (TIME) (‘,’) (AND) (BEFORE) (I) 
(COULD) (JOIN) (IT) (‘,’) (THE) (SECOND) 
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (‘.’) …

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
…

sum
m

arize

vocabulary

terms

𝑑𝑖,𝑗= ቐ
1 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 > 0

0 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 = 0
 or 𝑑𝑖 = 𝑡𝑗  | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 > 0  

𝑑𝑖,𝑗 = 𝑡𝑓 𝐷𝑖 , 𝑡𝑗
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• Classical retrieval models treat terms as independent regardless of how close they are 
syntactically or semantically. For example, "cat" and "cats" are considered different terms. This 
implies that a query for "cats" will not match documents containing only "cat". To make them 
match, we need to reduce these forms to the same term as shown with the stemming algorithm 
during tokenization. The same principle applies to spelling mistakes or variations, either in the 
document or in the query: "colour" does not match with "color".

• Controlling the vocabulary size is not primarily a storage or performance concern as we will see 
with the indexing methods for classical retrieval. Usually, a vocabulary can include millions of 
terms. However, most documents consist of only a few hundred or thousand terms, depending 
on how we split them. Consequently, the feature vectors are densely populated with non-zero 
values. Using the inverted file method, we store only the non-zero values and during retrieval, 
we only consider documents that contain a query term.

• However, we notice many terms that are grammatically necessary but do not contribute 
significantly to the content description. For example, the article "the" in English is one of the 
most frequent terms in English texts but does not provide relevant information to describe the 
content. Since almost all English texts contain this article, a search with "the" would retrieve all 
documents making it unable to differentiate between relevant and non-relevant ones.

• Apart from "the," there are other common stop words, as shown in the table on the right with 
the 50 most frequent terms in a collection 𝐷 of around 20,000 documents. The second column 
shows the document frequency 𝑑𝑓(𝑡𝑗) which is the number of documents containing the term 
𝑡𝑗 shown as a percentage of all documents. The last column shows the term frequency of 𝑡𝑗 
across all documents in the collection 𝐷, presented as a percentage of the total number of 
terms in 𝐷 (source: https://faculty.georgetown.edu/wilsong/IR/WD3.html)
– The top-50 terms already account for one-third of all terms in the collection, yet they do not 

significantly contribute to the document description (wasting storage space)
– All terms appear in more than 60% of the documents, making them unable to distinguish 

between relevant and non-relevant documents, as they match with most documents

• Stop word lists for most languages are readily available, for example: 
https://www.kaggle.com/datasets/heeraldedhia/stop-words-in-28-languages 

𝒕𝒋 𝒅𝒇(𝒕𝒋) 𝒕𝒇(𝑫, 𝒕𝒋)

the 100% 6.03%

a 99% 2.57%

of 99% 2.55%

and 99% 2.40%

to 99% 2.58%

in 99% 2.00%

for 98% 0.97%

that 96% 1.15%

on 96% 0.75%

is 95% 0.93%

with 95% 0.70%

at 93% 0.55%

by 92% 0.49%

it 92% 0.69%

as 91% 0.57%

but 91% 0.49%

from 90% 0.44%

be 88% 0.46%

an 88% 0.38%

have 88% 0.45%

was 85% 0.65%

not 84% 0.38%

this 83% 0.35%

are 83% 0.45%

has 83% 0.40%

who 81% 0.37%

they 78% 0.37%

he 78% 0.70%

one 77% 0.26%

said 77% 0.70%

more 75% 0.26%

about 75% 0.27%

or 75% 0.31%

when 74% 0.24%

their 71% 0.27%

his 70% 0.49%

had 70% 0.29%

been 70% 0.21%

all 69% 0.20%

which 69% 0.20%

will 68% 0.27%

out 68% 0.20%

up 68% 0.20%

if 67% 0.21%

than 66% 0.18%

were 66% 0.22%

would 65% 0.23%

can 65% 0.20%

new 64% 0.23%

there 64% 0.18%

3.2.4 Action 4: Summarize

https://faculty.georgetown.edu/wilsong/IR/WD3.html
https://www.kaggle.com/datasets/heeraldedhia/stop-words-in-28-languages
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• Instead of manually maintaining stop word lists, a more pragmatic 
approach is based on Zipf’s law. Let 𝑁 be the total number of term 
occurrences (tokens) in the collection and 𝑀 be the number of distinct 
terms in the vocabulary. We already used the term frequency 𝑡𝑓(𝑡)  to 
denote the number of occurrences of term 𝑡. Now, let us order all terms 
by decreasing term frequencies and assign 𝑟𝑎𝑛𝑘(𝑡) to term 𝑡 based on 
that order. The central theorem of Zip’s law is that the probability  𝑝(𝑟)  
of randomly selecting the term 𝑡 with 𝑟𝑎𝑛𝑘(𝑡) = 𝑟 from the collection is 
𝑐/𝑟 with a constant 𝑐 that only depends on 𝑀 as shown on the right side.

• The sum of all 𝑝(𝑟) equals 1 and plugging-in the 𝑝(𝑟) = 𝑐/𝑟 for all terms 
results in a closed formula to estimate 𝑐 based on the number of terms 
𝑀. For example, in a collection with 𝑀 = 5,000 different terms, 𝑐 = 0.11, 
while in a collection with 𝑀 = 100,000, 𝑐 = 0.08.

• The bottom right figure displays the Zipf distribution (blue line). As 
explained earlier, the most frequent words (above the upper cut-off line) 
hold minimal significance since they appear in nearly every text. The 
least frequent words (below the lower cut-off) are discriminative but 
unlikely to appear in queries. The range of meaningful words falls 
between the lower and upper cut-off points.

• Initially, the idea was to establish cut-off thresholds and exclude words 
beyond those limits. This would save storage space and enhance search 
speed. Nowadays, the common practice is to retain all terms, including 
stop words, but consider the terms' discriminating power (see the red 
line in the figure) to determine their weight during relevance assessment.

• Consider the search for "it" which is a stop word. If we were to eliminate 
this term, we would lose the ability to search for IT books or the book 
"IT" by Stephen King. A query like "the cat" would still search for both 
terms in documents but would assign significantly higher weight to 
occurrences of "cat" to determine relevance. rank
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=
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,    term 𝑡 with 𝑟𝑎𝑛𝑘 𝑡 = 𝑟
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• In their 1975 paper, Salton, Wong, and Yang took a different approach 
by exploring methods to quantify the discriminatory power of terms. 
Let's consider a collection with documents 𝐷𝑖 and the similarities 
between them given by 0 ≤ 𝑠𝑖𝑚 𝐷𝑖 , 𝐷𝑗 ≤ 1. We examine the collection 
twice, once with the term 𝑡 in documents and once with it removed, to 
analyze the impact of the term's presence on similarities. Removing a 
valuable term from the collection causes documents to become more 
similar to each other. This is because the valuable term helped to 
distinguish documents, resulting in lower similarities between them.
– Let t𝑓(𝐷𝑖 , 𝑡𝑗) represent the term frequency of term 𝑡𝑗 in document 𝐷𝑖

– We determine the centroid document 𝐶 by aggregating all 𝑀 terms 
with their average frequency 𝑡𝑓(𝐶, 𝑡𝑗) across the 𝑁 documents

– Then, we define the density of the collection as the sum of all 
similarities between documents and their centroid 𝐶:

– Finally, we compute the density 𝑄𝑡 for the collection without the term 
𝑡, and define the discrimination power of term 𝑡 as: 𝑑𝑝 𝑡 = 𝑄𝑡 − 𝑄

o 𝑑𝑝(𝑡) is large: if we remove the term 𝑡 from the collection, 
similarities to the centroid increase. In other words, the term 𝑡 
differentiates the collection and is hence a significant term

o 𝑑𝑝(𝑡) is negative: if term is present, documents are more similar to 
the centroid. This can happen, for instance, if a word occurs very 
frequently in all documents and thus dominates the similarity score

– Sorting terms by their decreasing 𝑑𝑝(𝑡)-value assigns a discrimination 
rank to each term 𝑡. The figure on the right illustrates the average 
ranks (𝑦-axis) for terms occurring in 1, 2, 3, ..., up to 138 documents.

Observation: Terms that appear in very few or 
numerous documents receive a high 
discrimination rank. However, terms occurring 
in 9-12 documents have the smallest 
discrimination ranks. These terms add 
significantly to the description of documents 
in the collection.

source: Salton, Wong, Yang (1975)

𝑄 = ෍

𝑖=1

𝑁

𝑠𝑖𝑚 𝐷𝑖 , 𝐶 𝑡𝑓 𝐶, 𝑡𝑗 =
1

𝑁
∙ ෍

𝑖=1

𝑁

𝑡𝑓(𝐷𝑖 , 𝑡𝑗) for ∀𝑗

All terms that occur 
in x=13 out of the 
450 documents. 

y-value is average 
discrimination rank 
over these terms
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• Karen Spärck Jones (1972) introduced a statistical interpretation for term discrimination called inverse document 
frequency (idf) which has evolved into the standard method for term weighting in relevance assessment. The 
document frequency 𝑑𝑓(𝑡)  indicates how many documents contain the term 𝑡 at least once. Let 𝑁 be the 
collection's document count. The inverse document frequency 𝑖𝑑𝑓(𝑡)  is expressed as:

Note that there exist many variants of the 𝑖𝑑𝑓-formula, but all share the same structure as shown above.

• We can utilize 𝑖𝑑𝑓 to assign weights to components in both query and document feature vectors. As a simplification, 
let us assume that a term only occurs once in a query. Furthermore, we can estimate the probability that a term 𝑡 is 
part of the query to be proportional to 𝑑𝑓(𝑡)/𝑁 (we need to normalize by the sum over all terms to obtain 
probability values). Finally, the components of the weighted document vector for 𝐷𝑖 are given by 𝑖𝑑𝑓(𝑡) ∙ 𝑡𝑓(𝐷𝑖 , 𝑡)

• Comparing vectors in vector space retrieval relies on the inner vector product. We multiply query and document 
components and aggregate these values. Consequently, the term's discrimination power approximately equals 
𝑖𝑑𝑓 𝑡 2 ∙ 𝑡𝑓(𝐷𝑖 , 𝑡) ∙ 𝑝(𝑡) over all queries and documents. This value predicts a term's contribution to the relevance 
assessment (here for the inner vector product), or in other words, how useful the term is to describe the content and 
to distinguish between relevant and non-relevant documents. 

𝑖𝑑𝑓 𝑡 = log
𝑁 + 1

𝑑𝑓 𝑡 + 1
= log 𝑁 + 1 − log 𝑑𝑓 𝑡 + 1  

• The lower right graph depicts 𝑖𝑑𝑓-weights (blue) and 
discrimination power (red) based on document frequency 𝑑𝑓 
with 𝑁 = 1,000 documents:
– Terms with low document frequencies (left side) have high 

𝑖𝑑𝑓-weights but are scarcely present in queries, leading to 
low discrimination power

– On the right side, terms with high document frequency 
have both low weights and discrimination power

– Terms around 𝑑𝑓 = 100 = 0.1 ∙ 𝑁 exhibit the highest 
discrimination power
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3.3 Text Retrieval Models

3.3 Text Retrieval Models

• In the upcoming sections, we explore various retrieval models, examining their pros and cons. While we focus on the 
key methods, it's important to note that there are numerous extensions in literature. Throughout this chapter, we'll 
employ the following notations:

Notation Value Range Description

𝔻 𝐷1, … , 𝐷𝑁 Collection of 𝑁 documents

𝐷𝑖 Representation of a document with 1 ≤ 𝑖 ≤ 𝑁

𝕋 𝑡1, … , 𝑡𝑀 Collection of 𝑀 terms

𝑡𝑗 Representation of a term with 1 ≤ 𝑗 ≤ 𝑀

𝒅𝑖 {0,1}𝑀, ℕ𝑀, or ℝ𝑀 Feature description of document 𝐷𝑖 with the 𝑗-the dimension describing document with 
regard to term 𝑡𝑗

𝐀 {0,1}𝑀×𝑁, ℕ𝑀×𝑁, or ℝ𝑀×𝑁 Term-document matrix with 𝑎𝑗,𝑖 = 𝑡𝑓(𝐷𝑖 , 𝑡𝑗), that is rows denote terms and columns 
denote documents. For instance, the 𝑖-th column is 𝑎:,𝑖 = 𝒅𝑖 .

𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ℕ Term frequency of term 𝑡𝑗 in document 𝐷𝑖 , i.e., number of occurrences of term 𝑡𝑗 in 
document 𝐷𝑖

𝑑𝑓 𝑡𝑗 ℕ Document frequency of term 𝑡𝑗 in the collection 𝔻, i.e., number of documents in 𝔻 that 
contain term 𝑡𝑗 at least once

𝑖𝑑𝑓(𝑡𝑗) ℝ Inverse document frequency of term 𝑡𝑗 given by 
𝑖𝑑𝑓 𝑡𝑗 = log 𝑁 + 1 − log 𝑑𝑓 𝑡𝑗 + 1

𝑄 Representation of a query

𝒒 {0,1}𝑀, ℕ𝑀, or ℝ𝑀 Feature description of query 𝑄 with the 𝑗-the dimension describing query with regard to 
term 𝑡𝑗

𝑠𝑖𝑚 𝑄, 𝐷𝑖 [0,1] Similarity between query 𝑄 and document 𝐷𝑖 . 0 means dissimilar, 1 means identical
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3.3.1 Standard Boolean Model

3.3.1 Standard Boolean Model

• The original Boolean models treated documents and queries as sets of words, aiming to find documents containing 
all query terms. Later, Boolean expression enhanced queries and allowed for more complex search scenarios. A key 
advantage was the ability to decide for each document whether it is relevant and in the result, independently of the 
rest of the collection. As such, the Standard Boolean Model functions as a filtering predicate selecting relevant 
items rather than assessing their relevance. Initially, Boolean retrieval focused on data retrieval, lacking the capacity 
to rank documents by importance. We labeled these as "Retrieval-only" engines.

• Boolean expressions consist of two atomic predicates and two methods for merging them into expressions. The 
atomic predicates are: 1) presence of a term ('must be present') and 2) absence of a term ('must not be present'). 
These atomic predicates are then combined using the AND and OR operators to create the query expression.

• Following the rules for Boolean expressions, we can transform the query expression into a disjunction normal form:

• Query evaluation can be approached in two ways: 1) individually assess the predicate for every document, and 2) 
employ set operations to derive the result set from the entire collection:
1) For each document being examined, calculate the values for all 𝜏𝑙,𝑘 based on the presence or absence of query 

terms in the document, considering whether the term 'must be present' or 'must not be present'. If the 
evaluation of the disjunctive normal form results in a true value, the document is marked as relevant

• 𝑄 = 𝑡  Term 𝑡 must be present

• 𝑄 = ¬𝑡  Term 𝑡 must not be present

• 𝑄 = 𝑄1 ∨ 𝑄2 Sub-query 𝑞1 or sub-query 𝑞2 fullfilled

• 𝑄 = 𝑄1 ∧ 𝑄2 Both sub-query 𝑞1 and 𝑞2 fullfilled

𝑄 = 𝜏1,1  ∧ ⋯ ∧  𝜏1,𝐾1
 ∨ ⋯ ∨  𝜏𝐿,1  ∧ ⋯ ∧ 𝜏𝐿,𝐾𝐿

= ሧ

𝑙=1

𝐿

ሥ

𝑘=1

𝐾𝑙

𝜏𝑙,𝑘

with   𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) or 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)       ( 𝑗(𝑙, 𝑘) is the mapping to the index of the term used in the query)
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2) To enhance query evaluation speed, we only need to focus on documents that either contain the query term 
('must be present') or don't contain it ('must not be present'). Consequently, for each atomic predicate, we can 
create sets 𝕊𝑙,𝑘 that include precisely the documents that satisfy the atomic predicate:

Following the same structure of the disjunctive normal-form of the query, we use set intersections and unions 
to compute the final set of relevant documents:

Later in this chapter, we will introduce the inverted file method, we applies this evaluation scheme to provide 
fast response times.

• Advantages: Simple model with clear query semantics. Easy to implement and user-friendly. Fast evaluation with 
sets enables quick searches, even for large data sets. Boolean expressions offer precise control for including or 
excluding documents, influencing result size. This model can explain why a document was considered relevant. Easy 
to extend with other filtering criteria over metadata of documents (e.g., language = ‘English’)

• Disadvantages: Limited control over result size—users may get too few or too many results. Larger result sets lack 
ranking, requiring manual browsing. If the set of relevant documents is small, the method does not show ‘partial 
matches’, i.e., documents that fulfill some of the atomic predicates but not all. Although the query language is simple, 
users may find it hard to express a complex information need as a combination of ANDs and ORs. However, to 
improve the definition of ‘what is relevant’, users require more complex queries. All terms have the same weight, 
hence, stop words contribute equally to the result as the more significant terms. The Boolean model resembles data 
retrieval more than information retrieval. We will consider superior models with ranking that offer similar simplicity 
and performance. 

ℚ = ራ

𝑙=1

𝐿

ሩ

𝑘=1

𝐾𝑙

𝕊𝑙,𝑘 = ራ

𝑙=1

𝐿

ሩ

𝑘=1

𝐾𝑙

ቐ
𝐷𝑖  | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 1 if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) 

𝐷𝑖  | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 0 if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)

𝕊𝑙,𝑘 = ቐ
𝐷𝑖  | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 1 if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) 

𝐷𝑖  | 𝑡𝑓 𝐷𝑖 , 𝑡𝑗(𝑙,𝑘) = 0 if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)
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3.3.2 Extended Boolean Model

3.3.2 Extended Boolean Model

• In 1983, Salton et. al. extended the Boolean model to overcome the drawbacks discussed previously:
– introduce scores for ranking, considering weights for terms and term occurrences for atomic predicates
– support partial matches, i.e., positive scores for documents that do not fulfill all atomic predicates

• The Extended Boolean Model adopts a bag-of-words approach, assigning normalized vectors (𝒅𝑖) to documents 
using term occurrences and inverse document frequency (𝑖𝑑𝑓). Normalization ensures values within the vector 
components range between 0 and 1:

• However, the query remains a Boolean expression as in the standard model:

• Rather than 'true' and 'false', atomic predicates yield a similarity score between 0 and 1, determined by the vector 
component and the 'must be present' or 'must not be present' predicate:

𝑑𝑖,𝑗 = min 1,
𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗

𝛼
 ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀 with 𝛼 = max 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗  (or some other value)

𝑄 = 𝜏1,1  ∧ ⋯ ∧  𝜏1,𝐾1
 ∨ ⋯ ∨  𝜏𝐿,1  ∧ ⋯ ∧ 𝜏𝐿,𝐾𝐿

= ሧ

𝑙=1

𝐿

ሥ

𝑘=1

𝐾𝑙

𝜏𝑙,𝑘

with 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) or 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)            𝑗(𝑙, 𝑘) is the mapping to the index of the term used in the query

𝑠𝑖𝑚(𝜏𝑙,𝑘 , 𝐷𝑖) = ൝
𝑑𝑖,𝑗(𝑙,𝑘) if 𝜏𝑙,𝑘 = 𝑡𝑗(𝑙,𝑘) 

1 − 𝑑𝑖,𝑗(𝑙,𝑘) if 𝜏𝑙,𝑘 = ¬𝑡𝑗(𝑙,𝑘)
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• Using the similarity scores for atomic predicates, we can establish how scores are merged for the AND and OR 
operators in Boolean expressions. Several common methods exist, a selection of which is provided below:
– Fuzzy Algebraic: only works for two operands

– Fuzzy Set: generalization to 𝐾 sub-queries is straight forward

– Soft Boolean Operator: generalization to 𝐾 sub-queries is straight forward

– P-Norm-Model: distances (p-norm) in the query (sub-)vector space 

• Advantages: simple model with clear query semantics as with standard Boolean model. User-friendly and easy to 
implement. While query evaluation is heuristic, it offers solid performance. With the inverted file method, similarity 
values can be efficiently computed. Unlike the standard Boolean model, it provides ranked lists and partial matches, 
allowing control over result size. Terms are treated differently based on term occurrence and discrimination power.

• Disadvantages: Heuristic similarity scores lack clear theoretical explanation. Users might struggle to express 
complex information needs using the simple query language. Retrieval quality is decent, but other methods with 
similar computational complexity yield better outcomes.

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 ∙ 𝑠𝑖𝑚 𝑄2, 𝐷𝑖

𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 + 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 − 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 ∙ 𝑠𝑖𝑚 𝑄2, 𝐷𝑖

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = min{𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 }
𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = max{𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 }

𝑠𝑖𝑚 𝑄1 ∧ 𝑄2, 𝐷𝑖 = 1 − 𝛼 ∙ min 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 + 𝛼 ∙ max 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖  0 ≤ 𝛼 ≤ 0.5
𝑠𝑖𝑚 𝑄1 ∨ 𝑄2, 𝐷𝑖 = 1 − 𝛽 ∙ min 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖 + 𝛽 ∙ max 𝑠𝑖𝑚 𝑄1, 𝐷𝑖 , 𝑠𝑖𝑚 𝑄2, 𝐷𝑖  0.5 ≤ 𝛽 ≤ 1

𝑠𝑖𝑚 ሥ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 = 1 −
𝑝 σ𝑘 1 − 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

𝑝

𝐾
 with 1 ≤ 𝑝 < ∞

𝑠𝑖𝑚 ሧ

𝑘=1

𝐾

𝑄𝑘 , 𝐷𝑖 =
𝑝 σ𝑘 𝑠𝑖𝑚 𝑄𝑘, 𝐷𝑖

𝑝

𝐾
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3.3.3 Vector Space Retrieval

3.3.3 Vector Space Retrieval

• The initial version of the vector space retrieval model was introduced in the SMART retrieval system by Salton et al. 
It remains the most widely used classical retrieval model, and we will explore advanced extensions and 
implementations in this chapter for state-of-the-art retrieval performance.

• Unlike Boolean methods, the vector space retrieval model treats documents and queries as vectors in a high-
dimensional feature space. It employs vector-based similarity metrics for ranking. A document 𝐷𝑖 is represented as a 
vector 𝒅𝑖 , utilizing idf-weighted term frequencies. Unlike the extended Boolean models, we refrain from normalizing 
the term frequencies.

• All document representations can be merged into the term-document matrix 𝐀. Each column in 𝐀 corresponds to a 
document, and each row represents a term in the vocabulary. Hence, matrix element 𝑎𝑗,𝑖 = 𝑑𝑖,𝑗, following the 
convention of addressing matrix elements by rows and then columns.

• While we illustrate the method in this chapter using the term-document matrix and outline matrix-vector operations 
for score computation, practical implementations do not store or utilize matrix calculations due to the matrix's 
sparsity, where many elements are 0 as documents usually have only a few terms. We will explore more efficient 
evaluation techniques in the subsequent parts of this chapter.

 

𝑑𝑖,𝑗 = 𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗  ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

𝒅𝑖 =

𝑑𝑖,1

⋮
𝑑𝑖,𝑀

 𝐀 =

𝑑1,1 ⋯ 𝑑𝑖,1 ⋯ 𝑑𝑁,1

⋮ ⋯ ⋮ ⋯ ⋮
𝑑1,𝑗 ⋯ 𝑑𝑖,𝑗 ⋯ 𝑑𝑁,𝑗

⋮ ⋯ ⋮ ⋯ ⋮
𝑑1,𝑀 ⋯ 𝑑𝑖,𝑀 ⋯ 𝑑𝑁,𝑀

term 𝑡𝑗

document 𝐷𝑖
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• Queries are depicted as sparse vectors, denoted as 𝒒. Unlike Boolean expressions, a query is treated as a mini-
document or search prompt, following identical processing steps and vocabulary use as documents. This results in 
term frequencies in queries, yielding a component 𝑞𝑗 through the following method:

• Various methods exist to compare document vectors with query vectors. In this context, we will discuss the most 
prominent ones:
– The inner vector product uses the dot-product between the query and document vector. When applied to the 

entire collection, we multiply the term-document matrix by the query vector and then rank documents based on 
decreasing similarity values. It is important to note that similarity here is not confined to a range between 0 and 1, 
and literature often refers to it as retrieval status value (RSV):

The formula shows that only query terms impact the similarity score, with terms absent in the query yielding a 
value of 0 for 𝑞𝑗 ∙ 𝑑𝑖,𝑗 , irrespective of their frequency in documents. In contrast, documents with larger 𝑑𝑖,𝑗 values 
for query terms, that is more term occurrences, receive higher ranks. Notably, significant terms with higher 𝑖𝑑𝑓 
values have more influence, and this influence is amplified due to 𝑖𝑑𝑓 weighting in both queries and documents. 
Finally, we observer the ‘partial-match’ capability of the model. If a document shares at least one term with the 
query, then the score is positive.

– The cosine measure calculates the angle between document and query vectors. It implies that documents need to 
contain query terms for high scores. Absence of query terms widens the angle between the vectors, leading to 
lower scores.

𝑞𝑗 = 𝑡𝑓 𝑄, 𝑡𝑗 ∙ 𝑖𝑑𝑓 𝑡𝑗  ∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

𝑠𝑖𝑚 𝑄, 𝐷𝑖 = 𝒒 ∙ 𝒅𝑖 = ෍

𝑗=1

𝑀

𝑞𝑗 ∙ 𝑑𝑖,𝑗 𝒔𝒊𝒎 𝑄, 𝔻 =
𝑠𝑖𝑚 𝑄, 𝐷1

⋮
𝑠𝑖𝑚 𝑄, 𝐷𝑁

= 𝐀⊤𝒒

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝒒 ∙ 𝒅𝑖

𝒒 ∙ 𝒅𝑖
=

σ𝑗=1
𝑀 𝑞𝑗 ∙ 𝑑𝑖,𝑗

σ𝑗=1
𝑀 𝑞𝑗

2 ∙ σ𝑗=1
𝑀 𝑑𝑖,𝑗

2

3.3.3 Vector Space Retrieval
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Similar to the inner vector product, scores for all documents can be calculated through matrix-vector 
multiplications. For this, we normalize the query vector by its size and introduce a diagonal matrix 𝐋 with inverse 
document lengths to dynamically normalize document vectors. 

Alternatively, we could normalize document and query vectors during the extraction step and save normalized 
versions. This makes the inner vector product and the cosine measure equivalent since vectors have a length of 1. 
Additionally, similar to the inner vector product, partial matching capability is achieved, and terms absent from the 
query do not affect the search order. However, the cosine measure is less affected by term occurrences 
compared to the inner vector product due to normalization.

• For a simplified visualization of vector space retrieval, documents are projected into the smaller query vector space 
spanned by the query terms, while other dimensions have no effect on search order:
– Using the inner vector product, a hyperplane through the origin is established with the query vector as its normal. 

Documents farther from this plane are considered more relevant
– On the other hand, the cosine measure creates hyper-cones with the query vector as their axis. Higher cosine 

values correspond to smaller angles of a hyper-cone embedding the document
– Documents lacking query terms are placed at the origin, yielding a value of 0 with both measures. This allows us 

to disregard such documents and focus on those containing at least one query term. This leads to efficient 
retrieval methods explored later using inverted files.

– An issue arises when query terms are similar (e.g., 'house' and 'villa'), as they might not affect results unless pre-
processing merges them. This limitation is common in classical retrieval techniques, often addressed by 
automatically expanding queries with related terms.

𝒔𝒊𝒎 𝑄, 𝔻 =
𝑠𝑖𝑚 𝑄, 𝐷1

⋮
𝑠𝑖𝑚 𝑄, 𝐷𝑁

= 𝐋𝐀⊤𝒒′ with 𝐋 ∈ ℝ𝑁×𝑁 =

1

𝒅1
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝒅𝑁

 and 𝒒′ =
𝒒

𝒒
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• Example: Let's examine a simple collection of three documents to understand the method:

– We extract terms, find document frequencies and inverse document frequencies. The document and query are 
represented as vectors (𝑁 = 3, 𝑀 = 11) as follows:

𝐷1 Shipment of gold damaged in a fire

𝐷2 Delivery of silver arrived in a silver truck

𝐷3 Shipment of gold arrived in a truck

𝑄 gold silver truck

𝒋 Term 𝑡𝑗 𝒅𝒇 𝒕𝒋 𝒊𝒅𝒇 𝒕𝒋 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒒

1 a 3 0
2 arrived 2 .176 .176 .176
3 damaged 1 .477 .477
4 delivery 1 .477 .477
5 fire 1 .477 .477
6 gold 2 .176 .176 .176 .176
7 in 3 0
8 of 3 0
9 silver 1 .477 .954 .477

10 shipment 2 .176 .176 .176
11 truck 2 .176 .176 .176 .176

𝐀
To simplify, we use: 𝑖𝑑𝑓 𝑡𝑗 = log 𝑁 − log 𝑑𝑓 𝑡𝑗  

𝐬𝐢𝐦 𝐐, 𝔻 =  
.031 
.486 
.062 

with inner 
vector product

𝐷2 > 𝐷3 > 𝐷1
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• Advantages: Extremely simple and intuitive query model. Term weights have a good impact on the scores and 
differentiate between query terms, e.g., reducing the impact of stop words in the query. Easy to implement and 
highly efficient in calculation. Outperforms Boolean models and can rival top retrieval methods. Naturally supports 
partial match queries, and documents do not have to include all query terms for high similarity values.

• Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic background for the 
model). The similarity measures are not robust and can be biased by authors (spamming of terms). If documents are 
of different lengths, scores can vary significantly due to the higher term occurrences in larger documents. Main 
assumption of retrieval model is independence of terms which may not hold true in typical scenarios (see synonyms 
and homonyms). 
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3.3.4 Probabilistic Retrieval

3.3.4 Probabilistic Retrieval

• The primary criticism of the existing models lies in their heuristic nature. While they perform well, their correctness 
lacks a solid foundation. Probabilistic retrieval provides a formal approach based on probabilities. 𝑃(𝑅|𝐷𝑖) is the 
probability that a document 𝐷𝑖 is relevant for a query 𝑄, and 𝑃 𝑁𝑅 𝐷𝑖) = 1 − 𝑃 𝑅 𝐷𝑖  is the probability that it's not 
relevant. The similarity value between query 𝑄 and document 𝐷𝑖 is then defined as:

• The Binary Independence Model (BIR) is a straightforward approach grounded in several key assumptions for 
calculating the mentioned conditional probabilities. These assumptions are as follows:

1. Term frequency does not matter (utilizing a set-of-words document model)
2. Term independence (consistent with previous models)
3. Terms absent from the query do not influence ranking (if a term is absent from the query, it’s 

assumed to be equally distributed among relevant and non-relevant documents)

• Given these assumptions, our next step is to derive a closed formula for the similarity scores. To begin, we apply 
Bayes’ theorem to the conditional probabilities above:

These new probabilities can be interpreted as follows: 𝑃(𝑅) and 𝑃(𝑁𝑅) represent the probabilities that a randomly 
selected document is relevant and not relevant, respectively. 𝑃(𝐷𝑖|𝑅) and 𝑃(𝐷𝑖|𝑁𝑅) are the probabilities that 
document 𝐷𝑖 belongs to the set of relevant and non-relevant documents, respectively.

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃(𝑅|𝐷𝑖)

1 − 𝑃(𝑅|𝐷𝑖)

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃 𝐷𝑖 𝑅 ∙ 𝑃(𝑅)

𝑃 𝐷𝑖 𝑁𝑅 ∙ 𝑃(𝑁𝑅)
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• Now, leveraging the assumption of binary document vectors and term independence:

• Let's use a compact notation for the conditional probabilities in the formula above. Define:

𝑟𝑗 is the probability of a relevant document having the term 𝑡𝑗, and 𝑛𝑗 is the probability of a non-relevant document 
having the term 𝑡𝑗. Using this notation, we can express the similarity value in simpler terms:

It is important to observe that there is no need to calculate 𝑃 𝑅  and 𝑃 𝑁𝑅  as they are solely determined by the 
query and do not affect the document ranking as they linearly scale the similarity values. Therefore, the simplified 
lower formula produces the same document ranking as the original upper formula.

𝑃 𝐷𝑖 𝑅  =  𝑃 𝑑𝑖 𝑅  =  ෑ

𝑗=1

𝑀

𝑃 𝑑𝑖,𝑗 𝑅  =  ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑃 𝑑𝑖,𝑗 = 1 𝑅 ∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

𝑃 𝑑𝑖,𝑗 = 0 𝑅

𝑃 𝐷𝑖 𝑁𝑅 = 𝑃 𝑑𝑖 𝑁𝑅  = ෑ

𝑗=1

𝑀

𝑃 𝑑𝑖,𝑗 𝑁𝑅  = ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑃 𝑑𝑖,𝑗 = 1 𝑁𝑅 ∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

𝑃 𝑑𝑖,𝑗 = 0 𝑁𝑅

Assumption 1: 
Documents are  
binary vectors 

Assumption 2: Terms 
are independent 

Assumption 1: Documents 
are binary vectors

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝑃(𝑅)

𝑃(𝑁𝑅)
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗

𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗

1 − 𝑛𝑗

𝑠𝑖𝑚 𝑄, 𝐷𝑖  ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗

𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗

1 − 𝑛𝑗

𝑟𝑗 = 𝑃 𝑑𝑖,𝑗 = 1 𝑅   𝑛𝑗 = 𝑃(𝑑𝑖,𝑗 = 1|𝑁𝑅)
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• We conclude by applying the third assumption: if term 𝑡𝑗 is absent in the query, we assume 𝑟𝑗 = 𝑛𝑗, i.e., non-query 
terms occur with equal probability in relevant and non-relevant documents. As a result, when 𝑞𝑗 = 0, the ratios 𝑟𝑗/𝑛𝑗 
and (1 − 𝑟𝑗)/(1 − 𝑛𝑗) become 1, and can be omitted from the calculations:

We remove the condition 𝑑𝑖,𝑗 = 1 from the second product and need to adjust in the first product:

Next, we remove the second product, which solely depends on the query, and linearly scales the similarity values:

Finally, we arrive at a simple similarity function as a sum of 𝑐𝑗-values. It is important to note that we only need to 
calculate 𝑐𝑗 for query terms, which as with other models so far greatly boost query evaluation with inverted files:

𝑠𝑖𝑚 𝑄, 𝐷𝑖  ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1

𝑟𝑗

𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0

1 − 𝑟𝑗

1 − 𝑛𝑗
= ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗

𝑛𝑗
∙ ෑ

∀𝑗: 𝑑𝑖,𝑗=0,𝑞𝑗=1

1 − 𝑟𝑗

1 − 𝑛𝑗

𝑠𝑖𝑚 𝑄, 𝐷𝑖  ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)
∙ ෑ

∀𝑗: 𝑞𝑗=1

1 − 𝑟𝑗

1 − 𝑛𝑗

𝑠𝑖𝑚 𝑄, 𝐷𝑖  ~ ෑ

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)

𝑠𝑖𝑚 𝑄, 𝐷𝑖  ~ ෍

∀𝑗: 𝑑𝑖,𝑗=1,𝑞𝑗=1

𝑐𝑗  with 𝑐𝑗 = log
𝑟𝑗 ∙ (1 − 𝑛𝑗)

𝑛𝑗 ∙ (1 − 𝑟𝑗)

Assumption 3: non-query 
terms do not impact result
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• To calculate the 𝑐𝑗-values, the BIR model starts with initial estimates for a first result list, and then refines these 
estimates based on user feedback to enhance the results. With ongoing user input on relevant and non-relevant 
documents in the outcomes, we can iteratively adjust the estimates and offer better outcomes.
– We introduced 𝑟𝑗 and 𝑛𝑗 as the probabilities that a relevant and non-relevant document contains the term 𝑡𝑗, 

respectively. With the user's relevance assessment, we now possess subsets of relevant and non-relevant 
documents, which allow us to estimate these probabilities by counting the occurrences of term 𝑡𝑗 in these subsets

– Initial Estimates: In the absence of feedback, we assume that query terms are more likely to appear in relevant 
documents, and in non-relevant documents they follow their document frequency. The following estimates are 
used initially to compute the 𝑐𝑗-values (𝑛𝑗 includes smoothing)

– Estimates with Feedback: in each iteration, we ask the user to rate the 𝐾 retrieved documents and annotate them 
with relevant (R) and non-relevant (NR). Let 𝐿 be the number of documents that the user marked as relevant. 
Further let 𝑘𝑗 be the number of retrieved documents that contain the term 𝑡𝑗 (that is the document frequency of 𝑡𝑗 
over the set of retrieved documents), and let 𝑙𝑗 be the number of retrieved and relevant documents that contain 
the term 𝑡𝑗 (that is the document frequency of 𝑡𝑗 over the set of retrieved and relevant documents). With that, we 
can estimate new values for 𝑟𝑗 and 𝑛𝑗 by counting:

We employ the values 0.5 and 1 in the formula above to avoid numerical problems (0-divisions). When no 
feedback is given, with 𝐿 = 𝑙𝑗 = 0, we can set 𝐾 = 𝑁 and 𝑘𝑗 = 𝑑𝑓(𝑡𝑗) to justify the initial estimates.

– The more user feedback we gather, the more accurate the estimates for 𝑟𝑗 and 𝑛𝑗 become. However, users might 
be reluctant to provide feedback.

𝑟𝑗 = 0.5,  𝑛𝑗 =
𝑑𝑓 𝑡𝑗 + 0.5

𝑁 + 1
 ∀𝑗: 𝑞𝑗 = 1

𝑟𝑗 =
𝑙𝑗 + 0.5

𝐿 + 1
,  𝑛𝑗 =

𝑘𝑗 − 𝑙𝑗 + 0.5

𝐾 − 𝐿 + 1
 ∀𝑗: 𝑞𝑗 = 1
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• Advantages: The BIR model establishes similarity values on a probabilistic basis through basic assumptions. 
Document ranking depends on the likelihood of being relevant for the query. Only query terms are necessary for 
similarity calculations, and the inverted file method offers efficient evaluation. The model performs well, especially 
after some feedback iterations. It also accommodates partial match queries, where not all query terms need to 
appear in relevant documents.

• Disadvantages: The basic assumptions of the BIR model may not always be valid. As mentioned in the vector space 
model, term independence is not universally applicable. More complex probabilistic models address term 
dependence, but they can bring extra computational complexity. Additionally, the document ranking in BIR doesn't 
consider term frequencies or the discrimination power of terms. Finally, not all users are willing to assist the system 
with feedback to improve the search results.
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3.3.5 Okapi Best Match 25 (BM25)
• The Okapi BM25 ranking function was developed at London’s City University and is rooted in Karen Spärck Jones' 

probabilistic framework from the 1970s and 1980s. It is notably applied in Lucene, the engine behind Solr, 
Elasticsearch, and OpenSearch—three widely used systems for observability, security analytics, and full-text search. 
BM25 builds on the vector space model as discussed before enhancing it with a probabilistic approach to enhance 
relevance evaluation.

• Some limitations in the previously discussed models stem from heuristic approaches to identify relevant documents. 
Researchers developed better frameworks for relevance assessment, driven by key observations:
1. Query Term Significance: the presence or absence of query terms is crucial for relevance assessment
2. Partial Matches: not all relevant documents contain every query term
3. Document Length: longer documents have more terms, but shorter relevant ones should score well too
4. Term Specificity: rare words often carry more meaning than common ones 
5. Term Saturation: while term frequency matters, overly frequent terms should not dominate
6. Fine Tuning: flexibility to adjust ranking based on search context
7. Efficiency: efficient retrieval and relevance assessment are essential
8. User Feedback: if available, integration of user feedback for improved search quality
9. Term Proximity: closeness of query terms in a document may indicate higher semantic relevance
10. Term Dependence: recognizing term dependencies, like matching query 'animals’ to 'cats' or 'dogs’ in documents

• BM25 addresses these observations or provides ways to consider them. We will cover Efficiency in the upcoming 
section on indexing structures and explore Term Proximity and Term Dependence in the next chapter, where we 
delve into natural language processing methods.

3.3.5 Okapi Best Match 25 (BM25)
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– Initially disregarding document length, we can 
saturate term frequencies as follows:

– Typically, 𝑘 ∈ 1, 2  with Lucene using 𝑘 = 1.2

– As depicted in the figure on the right, the 
updated values ෢𝑡𝑓𝑘 saturate relatively swiftly to 
the value 2.2 with 𝑘=1.2, whereas unsaturated 
𝑡𝑓 and 𝑡𝑓 values increase without limit

– In essence, 𝑘 serves as a hyperparameter that 
enables adjustment of the impact of term 
occurrences on the scoring

– Note: Lucene uses 𝑡𝑓/(𝑡𝑓 + 𝑘) omitting the
scaling factor (𝑘 + 1) in the numerator

3.3.5 Okapi Best Match 25 (BM25)

• Term frequencies play a crucial role in determining document relevance. Typically, we assume that a document's 
relevance is linked to the frequency of query term occurrences within it. This notion lead to the creation of the 𝑡𝑓 ∙
𝑖𝑑𝑓 vector component description. Nonetheless:
– A document with the search term 'cat' occurring a hundred times is certainly relevant, but it should not be 

considered twice as relevant as a document with 50 occurrences of 'cat'. In essence, the linear factor 𝑡𝑓 
exaggerates the relevance. It also makes the method vulnerable to spamming attacks

– Shorter documents have fewer occurrences of terms compared to much longer documents. However, they can be 
equally or even more relevant. Yet, the 𝑡𝑓 ∙ 𝑖𝑑𝑓 scheme tends to favor longer documents with higher term 
frequencies. Very long documents covering a broad range of topics may appear relevant due to their numerous 
occurrences but users may find it difficult to easily extract the relevant pieces

• A simple adjustment like using 𝑡𝑓 instead of 𝑡𝑓 does not provide significant improvement. We require a function 
that levels off after a certain occurrence threshold. With 𝑡𝑓 we could still influence scoring with excessive 
spamming of potential query terms.

෢𝑡𝑓𝑘 =
𝑡𝑓 ∙ (𝑘 + 1)

𝑡𝑓 + 𝑘
(k+1) scales values but 

does not impact ranking 
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• Now, let's examine document length. Lengthier documents include more terms and should saturate at a slower rate 
than shorter ones that might not have as many terms. The cosine measure tackled this by normalizing vectors by 
their length, and then utilizing the inner vector product to determine the angle between the vectors, which remains 
unaffected by document length. However, BM25 takes a different approach. It employs a summation across all 
query terms, similar to the inner vector product, while modifying the core formula to account for document length:

with 𝑏 = 0.75 (adjustable), 𝐷  the length of document 𝐷, and 𝑎𝑑𝑙 the average length of documents in the collection

– If 𝐷  is smaller than 𝑎𝑑𝑙 (short document), then 1 − 𝑏 + 𝑏
𝐷

𝑎𝑑𝑙
< 1 and values ෢𝑡𝑓𝑘(𝐷) saturate faster

– If 𝐷  is large (long document), then 1 − 𝑏 + 𝑏
𝐷

𝑎𝑑𝑙
> 1 and values ෢𝑡𝑓𝑘(𝐷) saturate slower

– 𝑏 ∈ [0,1] is a new hyperparameter that steers 
the impact of document length. Higher values 
prefer shorter documents

– In the plot to the right, we compare ෢𝑡𝑓𝑘 
(graph in the middle) with ෢𝑡𝑓𝑘(𝐷) of a
short document (graph at the top) and
with ෢𝑡𝑓𝑘(𝐷) of a long document (graph 
at the bottom) 

– The difference between shorter and longer
documents is significant at lower 
frequencies but soon diminishes as 
values saturate to 2.2 for 𝑘 = 1.2

– 𝑎𝑑𝑙 does not have to be the accurate average 
length of documents. Rather, we can consider it 
as another hyperparameter to define what 
‘long’ / ‘short’ means

3.3.5 Okapi Best Match 25 (BM25)

෢𝑡𝑓𝑘(𝐷) =
𝑡𝑓 ∙ (𝑘 + 1)

𝑡𝑓 + 𝑘 ∙ 1 − 𝑏 + 𝑏
𝐷

𝑎𝑑𝑙

𝑎𝑑𝑙 is the average 
document length 
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• We previously discussed 𝑖𝑑𝑓-weights without providing a rationale for using that specific formula. BM25 
approaches term weighting probabilistically. Previously, we derived a term weighting function using the BIR-model:

– We introduced 𝑟𝑗 and 𝑛𝑗 as the probabilities of the term 𝑡𝑗 occurring in relevant and non-relevant documents 
based on user-provided relevance feedback. The calculation of 𝑟𝑗 takes into account the number of relevant 
documents (𝑙𝑗) out of the 𝐿 retrieved ones that contain the query term, while 𝑛𝑗 considers the number of non-
relevant documents (𝑘𝑗 − 𝑙𝑗) out of the 𝐾 − 𝐿 retrieved ones that contain the query term. 

– The BIR model summed up 𝑐𝑗 values for the binary document representation. However, 𝑐𝑗 values can also serve as 
weights for terms in the vector space model. We achieve this by incorporating 𝑟𝑗 and 𝑛𝑗 into the 𝑐𝑗 formula:

– When user feedback is absent, 𝐿 and 𝑙𝑗 are 0, and we assume that all documents are non-relevant (until proven 
otherwise) and assign 𝐾 = 𝑁 (number of documents) and 𝑘𝑗 = 𝑑𝑓(𝑡𝑗) (documents containing the term). 
Substituting these values into the 𝑐𝑗 formula results in:

– These 𝑐𝑗 values are then used by the BM25 model to refine the initial 𝑖𝑑𝑓-values we discussed earlier. Note that 
for terms 𝑡𝑗 that appear in over 50% of the documents, the logarithm yields a negative value.

𝑐𝑗 = log
𝑟𝑗∙(1−𝑛𝑗)

𝑛𝑗∙(1−𝑟𝑗)
 𝑟𝑗 =

𝑙𝑗+0.5

𝐿+1
 𝑛𝑗 =

𝑘𝑗−𝑙𝑗+0.5

𝐾−𝐿+1
 ∀𝑗: 𝑞𝑗 = 1 

𝑐𝑗 = log
𝑟𝑗∙(1−𝑛𝑗)

𝑛𝑗∙(1−𝑟𝑗)
= log

𝑙𝑗+0.5

𝐿+1
∙ 1−

𝑘𝑗−𝑙𝑗+0.5

𝐾−𝐿+1

1−
𝑙𝑗+0.5

𝐿+1
∙
𝑘𝑗−𝑙𝑗+0.5

𝐾−𝐿+1

= log

𝑙𝑗+0.5

𝐿+1
∙
𝐾−𝐿+1−𝑘𝑗+𝑙𝑗−0.5

𝐾−𝐿+1
𝐿+1−𝑙𝑗−0.5

𝐿+1
∙
𝑘𝑗−𝑙𝑗+0.5

𝐾−𝐿+1

= log
𝑙𝑗+0.5

𝐿−𝑙𝑗+0.5
∙

𝐾−𝐿−𝑘𝑗+𝑙𝑗+0.5

𝑘𝑗−𝑙𝑗+0.5
 

𝑐𝑗 = log
0+0.5

0−0+0.5
∙

𝑁−0−𝑑𝑓(𝑡𝑗)+0+0.5

𝑑𝑓(𝑡𝑗)−0+0.5
= log

𝑁−𝑑𝑓 𝑡𝑗 +0.5

𝑑𝑓 𝑡𝑗 +0.5
 

𝑖𝑑𝑓𝐵𝑀25 𝑡𝑗 = log
𝑁 − 𝑑𝑓 𝑡𝑗 + 0.5

𝑑𝑓 𝑡𝑗 + 0.5

3.3.5 Okapi Best Match 25 (BM25)
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– Let us compare the original 𝑖𝑑𝑓-function 
(IDF+1) with this new one. The graph on the 
right displays them against the document 
frequency in a collection of 1000 documents.

– Additionally, we included the 𝑖𝑑𝑓-function used 
by Lucene, which incorporates a '+1' term in 
the logarithm to avoid negative 𝑖𝑑𝑓-values: 

This new 𝑖𝑑𝑓-function, however, yields almost 
the same values as the original IDF+1 method

– Alternatively, we can avoid negative 𝑖𝑑𝑓-values 
by assigning a small positive 𝑖𝑑𝑓 value to very 
frequent terms (mostly stop words)

3.3.5 Okapi Best Match 25 (BM25)

• Finally, BM25 calculates a score for a query 𝑄 and a document 𝐷𝑖 by summing up the adjusted 𝑡𝑓-𝑖𝑑𝑓 values across 
all query terms 𝑞𝑗:

– Unlike the vector space retrieval model, the 𝑖𝑑𝑓-values are applied only once and query term frequency is not 
considered. Later in this chapter, we will examine Lucene's scoring function, which expands the above formula 
with extra components, including query term frequencies and additional term and document weighting. 

– In this fundamental formulation, BM25 encompasses three hyperparameters (𝑘, 𝑏, 𝑎𝑑𝑙) that allow fine-tuning the 
scoring function to match the requirements of the search context.

𝑠𝑖𝑚𝐵𝑀25 𝑄, 𝐷𝑖 = ෍

𝑗=1

𝑀

log
𝑁 − 𝑑𝑓 𝑡𝑗 + 0.5

𝑑𝑓 𝑡𝑗 + 0.5
∙

𝑡𝑓 𝐷𝑖 , 𝑡𝑗 ∙ (𝑘 + 1)

𝑡𝑓 𝐷𝑖 , 𝑡𝑗 + 𝑘 ∙ 1 − 𝑏 + 𝑏
𝐷𝑖

𝑎𝑑𝑙

Blue graph (IDF+1) and 
orange graph (IDF lucene)

are almost equal 

𝑖𝑑𝑓𝑙𝑢𝑐𝑒𝑛𝑒 𝑡𝑗 = log 1 +
𝑁−𝑑𝑓(𝑡𝑗)+0.5

𝑑𝑓 𝑡𝑗 +0.5
 

 = log
𝑁+1

𝑑𝑓 𝑡𝑗 +0.5
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Observation How BM25 addresses it Remarks

Query Term 
Significance

The vector space retrieval model scores relevance based solely on query 
terms. More query terms in a document result in higher scores

Because of assumptions about term independence, query terms might 
not align with semantically relevant terms in the document

Partial 
Matches

The vector space retrieval model supports partial matches. It ranks 
partial matches based on the importance of the matched terms, 
determined by term weights

As above

Document 
Length

Term saturation varies based on document length; longer documents 
need a higher number of term occurrences compared to shorter ones

Long documents still face the challenge of ignoring query term positions. 
Whether query terms appear together in a paragraph is not considered. 
An effective solution is to divide documents into smaller sections, 
addressing this concern

Term 
Specificity

Resolved through the enhanced IDF-based weighting of the relevance 
scoring function

Specificity varies with context. For instance, consider the query 'car 
jaguar' where both terms are relatively common. However, in the 
context of cars, 'jaguar' is much less common than in a broader context

Term 
Saturation

Implemented using a saturation function on term frequencies which 
tackles problems related to keyword spamming and prevents excessively 
frequent terms, like stop words, from dominating the scoring

It is crucial to balance term specificity and term saturation to achieve the 
best possible outcomes in a search context

Fine Tuning Offers various hyperparameters for tuning the ranking according to 
specific search scenarios; default settings are effective in many cases

Refer to discussions on training machine learning methods while 
validating hyperparameters

Efficiency The scoring function relies solely on query terms. Given that queries 
often have less than 5 terms, inverted files ensure high performance

When employing embeddings and vector search, we exchange efficiency 
for improved semantic relevance evaluation

User 
Feedback

IDF weights of terms can be fine-tuned using relevance feedback, as 
demonstrated in the BIR model. Even if the implementation lacks direct 
support for relevance feedback, we can still modify term weights to 
adjust scoring based on the feedback

A simple yet effective approach to integrate feedback is through 
automatic query expansion. Using relevance feedback, additional terms 
are included that appear frequently in relevant documents but are less 
common in non-relevant ones

Term 
Proximity

BM25's relevance scoring lacks direct support for term proximity since it 
lacks access to term locations within documents

An important scenario involves bi-grams and tri-grams like 'New York' or 
'Salt Lake City.' We can enhance our pre-processing to detect common 
n-grams, which we will study into in the next chapter

Term 
Dependence

BM25's relevance scoring lacks direct support for term dependence 
since it treats terms as independent of each other

Common problems involve spelling errors or synonymous forms that 
convey the same meaning. We will study more advanced approaches in 
the next chapter

3.3.5 Okapi Best Match 25 (BM25)
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3.4 Indexing Structures
• In all traditional retrieval models discussed so far, we noticed that the scoring functions rely only on the query terms. 

While this does not capture semantic similarity like 'cat' vs. 'animal', it's a practical trade-off for faster query 
processing, as we explain in this section.

• Let us assume that we have 𝑁 documents, a vocabulary of 𝑀 terms, documents with an average 𝐾 distinct terms, 
and queries with an average of 5 distinct terms. Documents are modeled as sparse, 𝑀-dimensional vectors, using 
bag-of-words or set-of-words methods. A basic storage approach would need 𝑁 ∙ 𝑀 entries. In the set-of-words 
model, an entry uses 1 bit, while a bag-of-words model takes 4, 8, 16, or 32 bits for term frequencies or 𝑡𝑓 ∙ 𝑖𝑑𝑓 
values. For instance, BM25 employs term saturation. Instead of storing full-precision term frequencies (16/32 bits), 
compression via 4 or 8-bit quantization is possible. This works because high frequencies around 100 yield similar 
෢𝑡𝑓𝑘-values, minimizing the impact of quantization errors on the search order. 

• Retrieval using this simple storage approach scales linearly with collection and vocabulary size as we scan through all 
the data. Since that vectors are sparse with only 𝐾/𝑀 non-zero components, we mostly read 0-values that have no 
impact on relevance assessments. An improvement is to store a sparse representation, keeping an average of 𝐾 
terms per document. This totals 𝑁 ∙ 𝐾 entries, each holding a term ID for set-of-words, and term ID with term 
frequencies/𝑡𝑓 ∙ 𝑖𝑑𝑓 for bag-of-words. Term identifier size varies, consuming 16 to 64 bits based on vocabulary size 
choice and precision for term frequencies/𝑡𝑓 ∙ 𝑖𝑑𝑓.

• Although storage consumption is much lower, we still have to search through all data to identify the best matches. 
During this process, most data that we read is not considered by the scoring functions as out of the K average terms 
stored per documents only the query terms can influence relevance assessment. 

• Let's revisit the term-document matrix in vector space retrieval. The concept of the inverted files method, also 
called inverted index, is to store rows with data about which documents hold the term linked to those rows, rather 
than storing columns with the terms used by a document. Using sparse row encoding retains 𝑁 ∙ 𝐾 entries, but 
replacing term IDs with document IDs. However, the major enhancement is during search: since only query terms 
impact scoring, we only read rows corresponding to query terms to produce the answer. If we have 𝑁 ∙ 𝐾/𝑀 
documents per term on average and 𝐿 query terms, we read 𝑁 ∙ 𝐾 ∙ 𝐿/𝑀 entries, improving search by 𝐿/𝑀. For 
instance, with 𝐿 = 5 query terms and a vocabulary size of 𝑀 = 1,000,000, we cut search time by 5/1,000,000 
(assuming average query term distribution)

3.4 Indexing Structures
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3.4.1 Inverted Files for Boolean Retrieval Models
• Keeping this fundamental concept in mind, let's start with the Boolean retrieval model. The inverted index consists 

of the vocabulary (𝑀 terms), and for each term, a list of postings contains all documents that include the term. For 
the set-of-words model, term frequencies are not necessary, and the Boolean model does not require document 
frequencies or 𝑖𝑑𝑓-values. The inverted index further contains a document table with additional metadata:

– As we add new documents to the table, we continue including the document ID in the postings of terms found in 
the document. If documents are added sequentially, the postings are arranged based on the order of document 
insertion, which, in our simple example, corresponds to increasing document IDs. For certain implementations, 
preserving this order is crucial for faster retrieval.

ID Name URL Date … more data 

1 Paris http://xyz.com/Paris.html 2005-01-04 …

2 Geneva http://xyz.com/Geneva.html 2005-03-08 …

3 Milano http://xyz.com/Milano.html 2005-04-23 …

4 New York http://xyz.com/NewYork.html 2005-05-30 …

… …

N Tokyo http://xyz.com/Tokio.html 2023-05-19 …

ID Term Postings [Doc-ID]

1 dog [1, 3, 4, 6, 9, 10, 13, 21, 22, 23, 29, 30, 39]

2 cat [4, 5, 12, 13, 14, 15, 20, 22, 30, 34, 37]

3 horse [6, 10, 11, 14]

4 rabbit [12, 15, 35]

…

N bird [2, 3, 8, 15, 26, 35, 36]

3.4.1 Inverted Files for Boolean Retrieval Models
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• The basic implementation stores postings as sets of 
document IDs within a vocabulary using terms as keys. 
For instance, index['cat'] contains the set of IDs of 
documents that contain the term ‘cat’ at least once.
– For query evaluation, we adhere to three rules:
o expr1 AND expr2: translates to an intersection of 

the sets from sub-expressions expr1 and expr2
o expr1 OR expr2: translates to a union of the sets 

from sub-expressions expr1 and expr2
o expr1 AND NOT(expr2): translates to a sub-

traction of the set of expr2 from the set of expr1
Generalization to AND/OR over multiple sub-
expressions are straightforward

– However, we cannot evaluate OR-queries when one 
sub-expression is of the form NOT(expr). While it's 
technically possible to construct NOT(expr) by using 
all documents except those returned by expr, this 
approach becomes inefficient for large collections

– In AND-queries, NOT(expr)-parts need to be re-
ordered to the end to apply set subtraction. 
Additionally, at least one element of the AND-query 
must not be in the form NOT(expr)

– Indeed, while these limitations may be viewed as 
constraints in our implementation, they have minimal 
impact on practical scenarios. Queries like "cat OR 
NOT(dog)" do not align with typical search intentions 
as they essentially select all documents except those 
with dog but not cat, i.e., it can be rephrased as 
"NOT(dog AND NOT cat)".

cat = index['cat’] 
⮡ [4, 5, 12, 13, 14, 15, 20, 22, 30, 34]

dog = index['dog’]
⮡ [1, 3, 4, 6, 9, 10, 13, 21, 22, 23, 29, 30]

horse = index['horse’]
⮡ [6, 10, 11, 14]

bird = index['bird’]
⮡ [2, 3, 8, 15, 26, 35, 36]

# cat AND dog
cat & dog
⮡ [4, 13, 22, 30]

# horse OR bird
horse | bird
⮡ [2, 3, 6, 8, 10, 11, 14, 15, 26, 35, 36]

# cat AND NOT(dog)
cat - dog
⮡ [5, 12, 14, 15, 20, 34]

# (cat AND dog) OR (horse AND cat AND NOT(bird))
(cat & dog) | (horse & cat - bird)
⮡ [4, 13, 14, 22, 30]

# (cat OR dog) AND (horse OR bird)
(cat | dog) & (horse | bird)
⮡ [3, 6, 10, 14, 15]

# (cat OR dog) AND NOT(horse OR bird)
(cat | dog) - (horse | bird)
⮡ [1, 4, 5, 9, 12, 13, 20, 21, 22, 23, 29, 30, 34]
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• The set-based evaluation from before does not scale well with the number of documents. In cases with millions of 
billions of postings for a term, we want to fetch data from an external storage device (which is also a good idea for 
persistence). But instead of reading all postings into main memory, we read them as streams sorted by the document 
IDs. Take the postings of cat and dog as an example: 

– To evaluate a query like "cat AND dog" we retrieve the initial entry for each term—1 for cat and 3 for dog. If they 
match, the corresponding document fulfills the condition. If not, we proceed by reading the next entry for the 
term with the smallest document ID. In our example, we proceed to the next cat posting, which is 4. Since it does 
not match, we then advance to the postings of the term 'dog,' which currently has the smallest value. The 
subsequent dog posting is also 4, matching the cat posting. Thus, we locate our first document and return it.
For the next result, we continue fetching subsequent postings for both terms and repeat the process. Eventually, 
we identify 10 as the second answer. Then, we fetch the next posting for both terms. However, as cat's postings 
are exhausted, we conclude the evaluation and halt iteration (even though dog still has postings, the exhaustion of 
cat postings indicates that any remaining document cannot match). The diagram below illustrates this approach:

– The OR-operator is implemented similarly; however, the iteration returns each time the smallest entry of sub-
expressions. In the provided example, the OR-operator would start by returning 1, then advance cat and return 3, 
progress dog and return 4, move both cat and dog and return 8, advance cat and return 10, move again both cat 
and dog, and finally return 12. The evaluation concludes once all postings are consumed.

term postings
cat [1, 4, 8, 10]

dog [3, 4, 10, 12]

step cat (next) dog (next) action
1 1 3 no match, progress cat
2 4 3 no match, progress dog
3 4 4 match, return 4 as result, and progress both cat and dog
4 8 10 no match, progress cat
5 10 10 match, return 10 as result, and progress both cat and dog

6 - 12 stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

3.4.1 Inverted Files for Boolean Retrieval Models
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– The evaluation of "cat AND NOT(dog)" evaluation follows the same pattern as the AND flow, but the outcomes 
differ (matching occurs when cat posting is not equal to dog posting):

– Generalizing to multiple operands is simple. However, the same limitations as in set-based implementations apply, 
and here it becomes clearer why supporting queries like "cat OR NOT(dog)" is not ideal. In our implementation, 
for the NOT(dog) operand, we would need to list all documents except those in dog's postings. Since document 
frequencies of terms can be low, enumerating NOT(dog) could involve millions or billions of document IDs, 
substantially slowing retrieval. On the other side, queries like "cat OR NOT(dog)" are not intuitive.

– We can use the same method for any mix of AND and OR operators nested within one another, as each 
evaluation method mentioned above produces sorted document IDs. Similar to single term searches, we can 
handle NOT operators when they are within an AND expression that contains at least one sub-expression 
without a NOT at the highest level (a nested NOT further down in the sub-expression is not an issue).

• We omit here a detailed discussion for the Extended Boolean Retrieval model. The approach is similar with the 
models to follow, that is, we first fetch all candidate documents (union of postings over all query terms) and then 
evaluate foe each document the overall score using one of the score combining functions.

• You can find a more detailed implementation here: 
https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/Boolean_InvertedIndex.ipynb

step cat (next) dog (next) action
1 1 3 match, return 1 as result, and progress cat
2 4 3 match but cat is not smallest, so we progress dog
3 4 4 no match as both have the same value, so we progress both cat and dog
4 8 10 no match, return 8 as result, and progress cat
5 10 10 no match as both have the same value, so we progress both cat and dog

6 - 12 stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

3.4.1 Inverted Files for Boolean Retrieval Models

https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/Boolean_InvertedIndex.ipynb
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3.4.2 Inverted Files for the BIR model 
• The Binary Independence Retrieval (BIR) model, Vector Space retrieval, Extended Boolean retrieval, and BM25 

models exhibit several similarities when evaluated using inverted indexes. Conceptually, they adopt a retriever-
ranker approach as previously explained:

By utilizing inverted files, the retriever component retrieves the union of postings for the query terms. This yields a 
candidate list for the filter & ranker, which then employs the model's designated scoring function for each candidate 
document to generate the ranked list.

• Implementations frequently combine retriever/filter/ranker components for enhanced performance. We initially 
study the fundamental versions: document-at-a-time and term-at-a-time using the BIR model, owing to its 
uncomplicated scoring function (sum of 𝑐𝑖). Subsequently, we expand this to the vector space and BM25 models. 
The Extended Boolean model is omitted due to its diminished relevance in today’s search contexts.
– The document-at-a-time method retrieves documents consecutively through streaming like for the Boolean OR-

operand approach. At each step, we obtain the document with the smallest doc ID from the sorted postings of 
each query term, and pass it along with its query terms to the scoring function. The ranker maintains a list of the 
best k documents encountered and maintains this list upon processing all candidates. The "top-k" mechanism 
minimizes storage needs, but still enables users to browse through several pages.

– The term-at-a-time method goes through query terms one after the other. For each term, it updates the 
document list and uses the scoring function to adjust their scores based on that term's presence. At the end, 
documents are arranged by their overall score, forming the ranked list. Unlike document-at-a-time, this method 
cannot maintain a top-k list to reduce storage. However, it might suffer from long candidate lists if common terms 
with long postings are in the query. An optimization is to skip frequent terms during evaluation that are unlikely to 
change the ranking in a significant way.

3.4.2 Inverted Files for the BIR model 

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. …

index

(Filter &) Ranker 

rank model
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• The Python code on the right shows a simplified 
version for the document-at-a-time retrieval technique 
for the BIR model. The search_DAAT function takes a 
query string, a desired number of results (k), and 
feedback data collected on documents.
– We start by turning the query string into a set of 

words using a provided analyzer
– Using feedback, we compute 𝑐𝑗-weights and trim 

terms. For instance, we might keep only the top-n 
weights from a larger set of query terms

– The primary loop resembles the Or-implementation 
of the Boolean model. We sort the postings of each 
query term by document IDs. We iterate through the 
postings (index[term]) in a stream based manner 
(iters), selecting the smallest ID across the next 
elements (nexts) in the stream as a new candidate 
document id

– If we have user feedback, we can skip 'non-relevant' 
documents. Otherwise, if the document is relevant 
or there's no feedback, we calculate the score by 
summing 𝑐𝑗-values (term_weights[j][1]), pairing it 
with the document's smallest ID, and adding it to the 
topk object. This object uses a heap to maintain 
(doc_id, score) tuples, ordered by score for 
efficient access to top-k results (no need for explicit 
sorting needed)

– In the main loop's final step, we fetch the 
subsequent postings for each term where the 
smallest ID was at the stream's front (nexts)

def search_DAAT(query, k, feedback):
 query_vector = analyzer.set_of_words(query)

 # filter terms and obtain c_j-weights 
 term_weights = query_weights(query_vector, feedback)
  
 # get iterators for each term and fetch first posting
 iters = [iter(index[term]) for (term, _) in term_weights]
 nexts = [next(iter, None) for iter in iters]

 # keep track of all retrieved documents
 topk = TopKList(k)

 while not all(e is None for e in nexts):
  # get smallest value from nexts, ignoring None 
  smallest = min(nexts, key = lambda x: x or math.inf)

  # use feedback, omit if assessed and not relevant
  if not feedback.is_assessed(smallest) or \
     feedback.is_relevant(smallest):
   # get score and add it to topk
   score = 0
   for j in range(len(nexts)):
    if nexts[j] == smallest:
       score += term_weights[j][1]
   topk.add(smallest, score)

  # fetch next items if entry equals smallest
  for i, e in enumerate(nexts):
   if e is smallest:
    nexts[i] = next(iters[i], None)
  
 # finished, return topk for result iteration
 return topk
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• Now, let's explore the term-at-a-time approach for the 
BIR model on the right side. The search_TAAT 
function takes a query string, a desired number of 
results (k), and feedback data collected on documents.
– We start by turning the query string into a set of 

words using a provided analyzer.
– Using feedback, we compute 𝑐𝑗-weights and trim 

terms. For instance, we might keep only the top-n 
weights from a larger set of query terms

– The main loop runs through each query term (sorted 
by their weights in query_weights) and all postings 
(index[term]). It keeps track of a score for each 
seen document (dictionary scores)

– If we have user feedback, we can skip 'non-relevant' 
documents. Otherwise, if the document is relevant 
or there's no feedback, we add the 𝑐𝑗-value of the 
current term (weight) to the scores dictionary. The 
update line also establishes new entries for 
previously unseen documents

– Once the main loop concludes, the scores 
dictionary contains a value for each document that 
has at least one query term. Instead of directly 
sorting scores, we take a similar approach as with 
DAAT. We utilize the TopKList and include all 
document IDs and their corresponding scores

• You can find a more detailed implementation for both 
variants here: 
https://github.com/roger-weber/mmir-
unibasel/blob/main/chapter03/BIR_InvertedIndex.ipynb 

def search_TAAT(query, k, feedback):
 query_vector = analyzer.set_of_words(query)

 # filter terms and obtain c_j-weights 
 term_weights = query_weights(query_vector, feedback)
 scores = defaultdict(int)

 # iterate over terms and fetch postings
 for (term, weight) in term_weights:
  for doc_id in index[term]:
   # use feedback, omit if assessed and not relevant
   if feedback.is_assessed(doc_id) and \
      not feedback.is_relevant(doc_id):
    continue
   # add weight to score of document
   scores[doc_id] += weight

  # avoid full sort and use the heap in TopKList
  topk = TopKList(k)
  for doc_id, score in scores.items():
      topk.add(doc_id, score)
  
  # finished, return topk for result iteration
  return topk

https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/BIR_InvertedIndex.ipynb
https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/BIR_InvertedIndex.ipynb
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• Discussion: DAAT vs. TAAT
– Both methods have similar complexity in terms of the number of read postings. They both focus on documents 

that have at least one query term and a non-zero score
– Both approaches can efficiently filter out previously marked non-relevant documents to prevent their 

reappearance in future results
– The TAAT implementation is shorter and more concise but has a drawback—the scores dictionary. If query term 

postings are lengthy, this dictionary can become sizable
– On the other hand, the DAAT approach computes scores in a single step for documents and adds them to a heap 

within the TopKList object. This heap not only provides efficient access in sorted order but can also be pruned 
occasionally if it becomes too large

• Including Predicates in Evaluation: We can expand both methods to search for documents with predicates like "star 
wars" and "year < 2000". The assessment of these queries depends on how we can evaluate the condition:

1. Document attributes (metadata) in the predicate are stored in an index with an efficient evaluation plan. For 
instance, with the condition "year < 2000," we can use index lookup to find document IDs meeting the 
predicate. This index might be a B-tree or an inverted list
– The optimal approach for text retrieval and predicate assessment is to first obtain all document IDs satisfying 

the predicate and then feed this selection (as an inverted list) to the search function
– Inside the search function, we remove all candidates not included in the predicate selection. In the code, this 

adjustment aligns with where we check for non-relevant documents in the feedback
– Apart from predicate evaluation, there is no additional complexity in the search algorithm

2. If there is no index support for the condition, or the evaluation requires a full scan through all document data:
– Since calculating the subset of documents satisfying the predicate is not efficient, we must assess the 

predicate individually when we return (in Python yield) results using the TopKList object
– The heap within TopKList produces a stream sorted by decreasing score. Before delivering the object to the 

caller, we inspect the document's predicate (accessing metadata randomly). If the predicate is not met, we 
skip the document and move to the next one from the heap

– In the best case (a less selective predicate), we evaluate the predicate for all documents returned as results, 
and a few omitted by the predicate. In the worst case (a highly selective predicate), we have to assess the 
predicate for all documents in the heap (still better than evaluating it over all documents)

3.4.2 Inverted Files for the BIR model 
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3.4.3 Inverted Files for the Vector Space model
• In terms of the algorithms, both the BIR model and the Vector Space model are conceptually the same. The DAAT 

and TAAT implementations work similarly with these modifications:
– Postings now comprise tuples with document IDs and term frequencies, sorted by document ID
– Queries change into a bag-of-words model, including terms and their frequencies for the query
– We need access to a vocabulary containing document frequencies. As an optimization, we can save required idf-

weights alongside postings in the inverted files (to avoid random vocabulary accesses)
– A similarity function that calculates scores based on the query vector and a document vector subset including 

query terms and their frequencies. 
– For cosine similarity, we additionally require the document vector's length (= 𝒅 )
– For BM25, we also need the document length (number of term occurrences |𝐷|), an average document length 

(𝑎𝑑𝑙), and parameters 𝑘 and 𝑏 for the calculation

• The inner vector product can compute all scores using the data in the inverted files (index in the implementation), 
but both the cosine measure and the BM25 similarity function need an extra lookup for document-related data 
(document length, norm of document vector). This can notably raise retrieval costs, demanding extra optimizations 
for consistent performance. To prevent such lookups, we can normalize document vectors at index build time. 

If the normalization parameters (𝑖𝑑𝑓, 𝑘, 𝑏, 𝐷 , 𝑎𝑑𝑙) changes then we need to rebuild the index. Setting 𝑞𝑗 = 𝑖𝑑𝑓(𝑡𝑗) 
for the BM25, all three measures reduce to a dot-product between normalized document and query vector

• We omit here the code but you can find a detailed implementation here:
https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/VectorSpace_InvertedIndex.ipynb

3.4.3 Inverted Files for the Vector Space model

𝑠𝑖𝑚𝑐𝑜𝑠𝑖𝑛𝑒 𝑄, 𝐷 = σ𝑗=1
𝑀 ෡𝑑𝑗  ∙ ෝ𝑞𝑗              with    ෡𝑑𝑗 =

idf tj ∙𝑡𝑓 𝐷,𝑡𝑗

𝒅
                    and    ො𝑞𝑗 =

idf tj ∙𝑡𝑓 𝑄,𝑡𝑗

𝒒
    

𝑠𝑖𝑚𝐵𝑀25 𝑄, 𝐷 = σ𝑗=1
𝑀 𝑖𝑑𝑓 𝑡𝑗 ∙ ෡𝑑𝑗 =     with    ෡𝑑𝑗 =

𝑡𝑓 𝐷,𝑡𝑗 ∙ 𝑘+1

𝑡𝑓 𝐷,𝑡𝑗 +𝑘∙ 1−𝑏+𝑏
𝐷

𝑎𝑑𝑙

  and    idf(tj) = log
𝑁−𝑑𝑓 𝑡𝑗 +0.5

𝑑𝑓 𝑡𝑗 +0.5

https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/VectorSpace_InvertedIndex.ipynb
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3.4.4 Inverted Files Implementation with SQL
• We can build traditional text retrieval using a database 

with inverted lists, created through database index 
structures. The code on the right outlines the steps for 
carrying out Boolean and vector space retrieval.

1. We generate tables for documents, vocabulary, and 
postings, along with a temporary table for the query 
of a search. The last setup creates an index over the 
posting table and terms. This builds a B-tree 
structure with document IDs and term frequencies in 
leaf nodes for swift retrieval in subsequent searches

2. Before re-building the collection, we delete all data 
from all tables

3. Next, we go through each document in the collection. 
For each document, we add an entry to the document 
table, form a bag-of-words representation of the 
document, and insert tuples (term, docId, tf) into 
the posting table.

4. We count the number of documents for the calculation 
of idf-weights. In the code on the right, we employ the 
standard formula, although we could choose any 
variant that fits the search scenario (for Boolean 
searches, idf and tf values are not used). Lastly, we 
count the document frequency and calculate idf-
weights for each term by grouping the posting table 
by terms and inserting the outcomes into the 
vocabulary table.

3.4.4 Inverted Files Implementation with SQL

-- 1. create schema for inverted index
--  document table can have additional attributes
--  auto incremented doc IDs depends on database product
CREATE TABLE document(id SERIAL PRIMARY KEY, 
    title TEXT, year INTEGER)
CREATE TABLE vocabulary(term TEXT, df INTEGER, idf REAL)
CREATE TABLE posting(term TEXT, docId INTEGER, tf INTEGER)
CREATE TEMPORARY TABLE query(term TEXT, tf INTEGER)
CREATE INDEX inverted_list ON posting(term)

-- 2. rebuild index from documents
--  delete all existing data
DELETE FROM posting
DELETE FROM vocabulary
DELETE FROM document

-- 3. for all documents in collection (outside of database)
--  fetch id after next insert (database dependent)
INSERT INTO document(title, year) VALUES (:title, :year)

--  create a bag-of-word representation and insert
INSERT INTO posting(term, docId, tf) VALUES(:term, :id, :tf)

-- 4. build vocabulary (table vocabulary)
--  fetch number of documents --> ndocs
SELECT count(*) AS count FROM document

--  insert terms from posting table into vocabulary table
INSERT INTO vocabulary(term, df, idf) 
   SELECT term, 
      count(*), 
      ln(1.0 * (:ndocs + 1) / (count(*) + 1)) 
    FROM posting 
  GROUP BY term
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5. For Boolean AND-searches with 2 terms, we join the 
posting table with itself and pick postings for search 
terms (:term1, :term2) sharing the same docId. Since 
we created an index over posting(term), the 
database will execute two B-tree lookups to retrieve 
lists of (docId, tf) from leaf nodes and matching 
them with the WHERE-clause. Finally, we join the results 
with the document table to provide document details. 
A Boolean OR-search does not require a self-join of 
the posting table, yet the query still involves 2 B-tree 
lookups, matching the WHERE-clause, and merging with 
the document table to return results. While OR-queries 
might seem simpler (fewer joins), their evaluation 
complexity is the same.

6. To handle any number of query terms, we utilize a 
temporary query table and populate it with query 
terms (using tf=1 following the set-of-words model). 
For AND-queries, we link the posting and query 
table. The database executes a B-tree lookup for each 
query term, grouping them by docId. When a docId-
group contains as many entries as there are query 
terms, it satisfies the AND-condition. We then 
combine these results with the document table to 
create the response. For OR-queries, we apply the 
same process, but we omit the HAVING-clause since we 
return all documents having at least one matching 
query term. Query evaluation complexity grows 
linearly with the number of query terms.

-- 5. boolean query with 2 terms
--  :term1 AND :term2
SELECT d.* 
 FROM document d, posting a, posting b 
WHERE a.term = :term1 AND
   b.term = :term2 AND
   a.docId = b.docId AND
   a.docId = d.id

--  :term1 OR :term2
SELECT d.* 
 FROM document d, posting a 
WHERE a.term IN (:term1, :term2) AND
   a.docId = d.id

-- 6. boolean query with arbitrary number of terms
--  add query terms to temporary table
DELETE FROM query
INSERT INTO query(term, tf) VALUES(:term1, 1)
INSERT INTO query(term, tf) VALUES(:term2, 1)
…

--  AND(:term1, :term2, ...)
 SELECT d.* 
  FROM document d, posting p, query q 
 WHERE p.term = q.term AND
    p.docId = d.id
GROUP BY p.docId
 HAVING COUNT(p.term) = (SELECT COUNT(*) FROM query)

--  OR(:term1, :term2, ...)
 SELECT d.* 
  FROM document d, posting p, query q 
 WHERE p.term = q.term AND
    p.docId = d.id
GROUP BY p.docId

3.4.4 Inverted Files Implementation with SQL



Page 3-57Multimedia Retrieval – 2023

7. Using the temporary query table, we can implement 
various vector space models. In the code on the right, 
we provide an example using the dot-product measure. 
Similar to before, we insert the query terms into the 
query table and then join the query table with the 
posting table. This triggers B-tree lookups for the 
posting table for each query term, and we group the 
postings by docId. Since vector space models function 
like an OR-Boolean query for candidate selection, a 
HAVING-clause is not required. However, we need to 
join the results with both the document and 
vocabulary tables to calculate the scores. The final 
ORDER BY clause arranges the documents by 
decreasing scores.

8. Consider how we integrated predicates in the Python 
retrieval implementation. We either start by fetching 
the set of docIds fulfilling the predicate and include 
that selection in the retrieval process, or we must 
create a result stream from the retrieval system and 
then individually filter documents through database-
based predicate evaluation. The latter approach, 
particularly, is inefficient (while the former might not 
be supported by the retrieval system). If we unify 
predicate evaluation and text retrieval within the 
database, as demonstrated on the right for vector 
space retrieval and the "year > 1990" predicate, we get 
faster and simpler evaluation plans.

• You can find a more detailed implementation here: 
https://github.com/roger-weber/mmir-
unibasel/blob/main/chapter03/SQL_InvertedIndex.ipynb 

-- 7. vector space model with dot product
--  add query terms to temporary table
DELETE FROM query
INSERT INTO query(term, tf) VALUES(:term1,:tf1)
INSERT INTO query(term, tf) VALUES(:term2,:tf2)
…

--  calculate dot product and order by score
 SELECT SUM(p.tf * v.idf * q.tf * v.idf) AS score, d.*
  FROM document d, posting p, query q, vocabulary v
  WHERE p.term = q.term AND
    p.term = v.term AND
    p.docId = d.id
GROUP BY p.docId
ORDER BY 1 DESC

-- 8. adding predicates (example with vector space model)
--  add predicates on attributes in document table
 SELECT SUM(p.tf * v.idf * q.tf * v.idf) AS score, d.*
  FROM document d, posting p, query q, vocabulary v
 WHERE p.term = q.term AND
    p.term = v.term AND
    p.docId = d.id AND
    d.year > 1990
GROUP BY p.docId
ORDER BY 1 DESC

3.4.4 Inverted Files Implementation with SQL

https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/SQL_InvertedIndex.ipynb
https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/SQL_InvertedIndex.ipynb
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3.5 Lucene - Open Source Text Search

3.5 Lucene - Open Source Text Search

• Lucene, initiated by Doug Cutting in 1997, is an open-source Java-based information retrieval software. Its goal was 
to offer modern text analytics, indexing, and search functions. In 2000, Lucene’s initial stable version (v1) was 
launched, and within a year, it became an Apache Software Foundation project. From its inception, Lucene has 
served as a prominent basis for operational search applications and has received consistent updates over time.
– Releases: 2000 (v1), 2006 (v2), 2009 (v3), 2012 (v4), 2015 (v5), 2016 (v6), 2017 (v7), 2019 (v8), 2021 (v9)
– Major releases may coincide, but Lucene typically discontinues development and support for older releases. 

Nevertheless, you can choose to use older versions, but it comes with risks. Lucene employs major releases to 
update APIs, enhance interaction with engine components, and improve integration of third-party extensions. As 
a results, you may frequently find examples on the web that no longer compile with the latest version.

– This chapter works with Lucene v9.7.0 and examples may not work with older/newer versions. 

• Lucene is incorporated into a variety of products across different domains. Here are some notable products and 
applications that use Lucene:
– Elasticsearch, a popular search and analytics engine built on Lucene, is renowned for full-text search, log analysis, 

and other search-based applications. The ELK stack (Elasticsearch, Logstash, Kibana) is widely employed for log 
analytics and SIEM (security information and event management). In 2021, Elastic's licensing change led to the 
emergence of OpenSearch as an Apache 2.0 open-source fork.

– Apache Solr, also based on Lucene, is a widely-used search platform with features such as faceted search, 
distributed search, and advanced text analysis. It is employed by Cloudera, DataStax, Bloomberg, eBay, Netflix, 
and Amazon CloudSearch to drive enterprise search engines.

– Apache OpenNLP, used for natural language processing tasks, uses Lucene for document indexing and search.
– Many products by Atlassian, including Jira, Confluence, and Bitbucket, use Lucene for their search functionality.
– The Hadoop ecosystem (Apache Pig, Apache Hive) can use Lucene for full-text search and indexing.
– Wikipedia's search functionality is powered by Lucene. It allows users to search for articles and find relevant 

content. First, Wikipedia used Lucene directly, after 2014 via Elasticsearch.
– Apache Cassandra, a distributed NoSQL database, has integration with Lucene for full-text search capabilities.
– An (incomplete) list can be found here: https://cwiki.apache.org/confluence/display/lucene/PoweredBy 

https://cwiki.apache.org/confluence/display/lucene/PoweredBy
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• Lucene is split into a number of packages: lucene-core is the main package and provides the fundamental analysis, 
indexing, and search capabilities. It is extended by (see Apache Lucene home page for a complete list):
– lucene-analysis-common: Analyzers for indexing content in different languages and domains
– lucene-queryparser: Query parsers and parsing framework
– lucene-analysis-opennlp: OpenNLP Library Integration
– lucene-analysis-phonetic: Analyzer for indexing phonetic signatures (for sounds-alike search)
– lucene-benchmark: Lucene benchmarking module
– lucene-classification: Classification module for Lucene
– lucene-facet: Faceted indexing and search capabilities
– lucene-queries: Filters and Queries that add to core Lucene
– lucene-suggest: Auto-suggest and Spellchecking support

• Each package offers additional features and must be included alongside lucene-core. Depending on your build 
tool, specify the group (org.apache.lucene), name (lucene-core), and version (9.7.0) to retrieve the libraries 
from a Maven repository (for example: https://mvnrepository.com/artifact/org.apache.lucene)

– Example in Gradle (build.gradle): 

dependencies {
  implementation group: 'org.apache.lucene', name: 'lucene-core’,  version: '9.7.0'
  implementation group: 'org.apache.lucene', name: 'lucene-analysis-common’, version: '9.7.0'
  implementation group: 'org.apache.lucene', name: 'lucene-queryparser’, version: '9.7.0'

}

– Example in Maven (pom.xml)

<dependency>
   <groupId>org.apache.lucene</groupId> <artifactId>lucene-core</artifactId> <version>9.7.0</version>
</dependency>
<dependency>
 <groupId>org.apache.lucene</groupId> <artifactId>lucene-analyzers-common</artifactId> <version>9.7.0</version>
</dependency>
<dependency>
 <groupId>org.apache.lucene</groupId> <artifactId>lucene-queryparser</artifactId> <version>9.7.0</version>
</dependency>

 

https://lucene.apache.org/core/9_7_0/core/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/queryparser/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/analysis/opennlp/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/analysis/phonetic/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/benchmark/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/classification/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/facet/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/queries/index.html
https://lucene.apache.org/core/9_7_0/analysis/common/index.html
https://lucene.apache.org/core/9_7_0/suggest/index.html
https://mvnrepository.com/artifact/org.apache.lucene
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• The core model of Lucene considers a document as a set of fields whereby not each document must have each field. 
Fields can be of different types, can be tokenized, and can be stored in Lucene’s data structure. 
– The Field base class accepts a name, a value, and a FieldType that specifies tokenization, indexing, and storage 

settings. When a field is tokenized, its value can be used for full-text search. Index options determine what 
information is stored in the inverted index, including document IDs, term frequencies, and positions in the value. If 
a field is stored, search results provide interfaces to access its value. If it is not stored, the application must 
retrieve the value from its own database. Importantly, tokenization and indexing are independent of storage. Even 
if a field is tokenized but not stored, full-text searches can still be performed on it. This is actually the norm for 
longer fields such as the document body field with the bulk of text data.

– Different Field subclasses define field types for common scenarios:
o TextField: Indexes and tokenizes a field (optional store) with document IDs, term frequencies, and positions
o StringField, IntField, and FloatField: Used for document metadata. These fields are not tokenized but 

indexed and support exact or range queries. Storage can be enabled or disabled
o StoredField: Only stores the value without indexing or tokenization (not searchable). Useful for internal 

document IDs or links to document locations

• When documents have differently named tokenized fields, the terms in these fields are treated independently. For 
example, if the "title" field has the term "house" and the "summary" field also has the term "house“, these two 
occurrences are distinct and searches for "house" need to specify the applicable fields. Internally, Lucene prefixes 
the terms in the "title" and "summary" fields such that the "house" occurrences are actually seen as "title:house" and 
"summary:house”. This is a powerful concept to treat fields differently during retrieval, and to use distinct 
normalization methods for each field. As an example, we can weigh title matches higher than full text matches.

• Lucene creates an inverted index, including a dictionary and postings, while storing document fields based on field 
type specifications. It offers various storage formats, notably a compound file-based index structure. Lucene, 
however, divides the index into smaller immutable segments, created each time an IndexWriter is opened for 
document addition. This approach reduces concurrency issues and safeguards against segment corruption. To merge 
smaller segments into larger ones, you can configure a MergePolicy. Due to segment immutability, delete and 
update operations require an additional file to mark documents as deleted. In an update, Lucene first marks the 
current document as deleted before adding a new one. Documents are never deleted in segments, just marked as 
deleted. When a merge occurs, deleted documents are removed.
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To study Lucene's analyzer, we use a JShell 
session on the right side (more details here: 
https://github.com/roger-weber/mmir-
unibasel/blob/main/chapter03/lucene.ipynb)
– The print_tokens function opens a 

token stream for a field named "text" with 
the given analyzer and text as arguments. 
TokenStream uses a visitor pattern to 
enumerate data aspects. We utilize 
CharTermAttribute to print tokens.

1. The StandardAnalyzer eliminates 
punctuation (excluding possessive-'), 
converts tokens to lowercase, and optionally 
filters out stop words (if given).

2. The EnglishAnalyzer, on top, removes 
possessive forms and uses a Porter stemmer 
after excluding the top-33 English words.

3. We can modify the analyzers by providing a 
custom stop word list. For instance, with an 
EnglishAnalyzer, we can remove all 
instances of 'i' and 'do’.

4. Lastly, we can create custom analyzers. In 
this example, we remove English possessive 
forms, filter out terms with fewer than 4 
characters, and employ a dictionary-based 
stemmer while retaining term casing. 

Once selected, we have to use the same 
analyzer for all documents and queries or we 
need to rebuild the index

void print_tokens(Analyzer analyzer, String text) throws IOException {
 TokenStream ts = analyzer.tokenStream("text", new StringReader(text));
 CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);

 for(ts.reset(); ts.incrementToken();) 
  System.out.print(termAtt.toString() + " ");
 ts.end();
 System.out.println();
}

var text = "I think text's values' color goes here; WHAT happens with …";
var stopWords = new CharArraySet(Arrays.asList("i", "do"), false);

// 1. Standard analyzer
print_tokens(new StandardAnalyzer(), text);
⮡  i think text's values color goes here what happens with it do we see …

// 2. English analyzer (from lucene-analysis-common)
print_tokens(new EnglishAnalyzer(), text);
⮡  i think text valu color goe here what happen do we see again i went …

// 3. English analyzer with stopwords ‘i’ and ‘do’
print_tokens(new EnglishAnalyzer(stopWords), text);
⮡  think text valu color goe here what happen with it we see it again …

// 4. Custom analyzer filtering out short words
class MyAnalyzer extends Analyzer {
 protected TokenStreamComponents createComponents(String fieldName) {
  Tokenizer source = new StandardTokenizer();
  TokenStream result = new EnglishPossessiveFilter(source);
  result = new FilteringTokenFilter(result) {
   private CharTermAttribute ta = addAttribute(CharTermAttribute.class);
   protected boolean accept() throws IOException {
    return ta.length() > 3;
   }
  };
  return new TokenStreamComponents(source, new KStemFilter(result));
  }

}

print_tokens(new MyAnalyzer(), text);
⮡  think text value color go here WHAT happen with again went there …

https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/lucene.ipynb
https://github.com/roger-weber/mmir-unibasel/blob/main/chapter03/lucene.ipynb
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The code on the right demonstrates hot to 
build an index with Lucene:

1. First, we define an analyzer as per previous 
page. Next, we decide how to store the 
index (Directory). Lucene offers various 
options, with the file system directory being 
the most common choice. Finally, we create 
an IndexWriter object with the chosen 
analyzer and directory (Lucene offers 
additional configuration options). This 
IndexWriter allows us to add and modify 
documents in the index.

2. As previously discussed, documents are 
constructed as sets of fields. For each field, 
we can utilize higher-level classes like 
TextField or IntField and define 
whether to tokenize, index, and store the 
fields. In the example on the right, we 
tokenize both the title and body, index all 
fields, and store title and year. Thus, we 
cannot access body–values in result objects.

3. When loading data into an index, we create 
an IndexWriter and add documents with it. 
Each new IndexWriter generates a new 
segment. If we specify a merge policy 
(enabled by default), IndexWriters will also 
merge segments as needed. In the example 
on the right, data is loaded in batches of 100 
documents, and each batch results in the 
creation of a new segment.

// 1. define analyzer, directory, and index writer
Analyzer getAnalyzer() {
 return new EnglishAnalyzer();
}

Directory getDirectory() throws IOException {
 return FSDirectory.open(Paths.get(“./index"));
}

IndexWriter getIndexWriter() throws IOException {
 Directory directory = getDirectory();
 IndexWriterConfig config = new IndexWriterConfig(getAnalyzer());
 return new IndexWriter(directory, config);
}

// 2. build a document from key-value data
Document createDocument(Map<String, String> data) {
 Document doc = new Document();
 doc.add(new TextField("title", data.get("title"), Store.YES));
 doc.add(new IntField("year", Integer.parseInt(data.get("year")), Store.YES));
 doc.add(new TextField("body", data.get("body"), Store.NO));
 return doc;
}

// 3. load data in batches
void loadBatch(List<Map<String, String>> docs) throws IOException {
 IndexWriter writer = null;

 writer = getIndexWriter(false);
 for(Map<String, String> doc : docs)
  writer.addDocument(createDocument(doc));
 writer.close();     // ensure that we close the index (better use finally)
}

void loadData(int batchSize) throws IOException {
 List<Map<String, String>> collection = readCollection();

 for(int i = 0; i < collection.size(); i += batchSize)
  loadBatch(collection.subList(i, Math.min(i + batchSize, collection.size())));
}

// load collection in batches; each batch creates a new segment
loadData(100);
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Searching with Lucene is shown on the right:

1. For query execution, we require an 
IndexSearcher for the chosen Directory 
type. Additionally, we employ a query parser 
to enable users to submit full-text queries. 
The MultiFieldQueryParser generates 
queries from text against all tokenized fields.  
Lucene would typically require term queries 
against a single field but this helper class 
makes it simple to search against title and 
body field at the same time. The query 
parser needs the exact same analyzer as we 
used for indexing documents.

2. Queries yield a TopDocs object that enables 
sub-query merging (segments, shards) and 
contains the scoreDocs attribute, providing 
access to the best-matching documents and 
their scores. To print the title and year 
(the body field was not stored), we can 
retrieve the document by its ID (doc.doc) 
and access the fields using the get-method.

3. Lastly, we offer a straightforward helper 
method that takes a query and conducts a 
search using the IndexSearcher object 
created in step 1. To keep the code simple, 
we always retrieve the top 10 matches for 
each submitted query. In a practical 
implementation, we could provide an extra 
parameter to specify the number of results.

// 1. define analyzer, directory, index searcher, and a query parser
IndexSearcher getIndexSearcher() throws IOException {
 return new IndexSearcher(DirectoryReader.open(getDirectory()));
}

QueryParser getQueryParser() throws IOException {
 return new MultiFieldQueryParser(new String[]{"title", “body"}, getAnalyzer());
}

// 2. print results with values stored in index
void printResults(TopDocs results) throws IOException {
 int rank = 1;
 System.out.printf("%3s %5s %6s %6s  %s\n", 
     "#", "id", "Score", "Year", "Title");
 for(ScoreDoc doc: results.scoreDocs) {
  Document document = getIndexSearcher().doc(doc.doc);
  System.out.printf("%3d %5d %6.2f %6s  %s\n", 
     rank++, doc.doc, doc.score, 
     document.get("year"), document.get("title"));
 } 
}

// 3. executing a query and printing the top-10 matches
void searchQuery(Query query) throws IOException {
 printResults(query.toString(), getIndexSearcher().search(query, 10));
}
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Finally, we can build queries, evaluate them, and show 
their results:

1. The examples on the right use the class 
MultiFieldQueryParser. This parser offers an 
intuitive syntax for queries:
– Keyword lists execute BM25 searches against both 

the title and body fields (unless a different 
similarity measure is defined).

– title:star^2 narrows the search to the title 
field with a weight of 2. This grants greater control 
over term occurrence and importance.

– title:{a TO b} specifies a range search for 
terms between a and b, essentially performing a 
search with all terms that start with a.

– fuzy~0.6 conducts a search for terms closely 
related (0.6 defines the closeness) to “fuzy“. This is 
useful for finding misspelled terms or valid variants.

– z?rich enables wildcard matches against 
keywords and searches for all matching terms.

2. The second example demonstrates how to construct 
custom queries. Using the BooleanQuery.Builder 
helper, we can add new query components, including 
nested queries, such as field predicates (e.g., year == 
2020), term searches, and various other types like 
those used in the examples above. For each query 
component, we can specify its impact: as a predicate 
that does not affect scoring (Occur.FILTER) or one 
that should, must, or must not occur and influences 
scoring (Occur.MUST, .SHOULD, .MUST_NOT).

// 1. using multi–field query parser
searchQuery(getQueryParser().parse("star wars"))
searchQuery(getQueryParser().parse("title:star title:wars"))
searchQuery(getQueryParser().parse("title:star^2 title:wars"))
searchQuery(getQueryParser().parse("title:{a TO b}"))
searchQuery(getQueryParser().parse(“fuzy~0.6"))
searchQuery(getQueryParser().parse(“z?rich"))

// 2. using Boolean query builder
searchQuery(new BooleanQuery.Builder()
  .add(IntField.newExactQuery("year", 2020), Occur.FILTER)
  .add(new TermQuery(new Term("title","stars")), Occur.SHOULD)
  .add(new TermQuery(new Term("title","wars")), Occur.SHOULD)
  .build()
)
// .add(IntField.newExactQuery("year", 2020), Occur.MUST)
// .add(IntField.newExactQuery("year", 2020), Occur.SHOULD)
// .add(IntField.newRangeQuery("year", 2010, 2020), Occur.FILTER)
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A notable feature of Lucene is the 
IndexSearch.explain() function, which 
provides a comprehensive explanation of how 
a document's score was computed. Consider 
the example query on the right and the score 
calculations applied to the top result:
– Filter predicates (qYear1) must be satisfied 

but have no impact on scoring.
– SHOULD predicates (qYear2) contribute a 

score of 1.0 to the overall result when met.
– MUST term queries (and similarly MUST_NOT) 

have to be met and affect the score. The 
details reveal the use of the BM25 formula 
with certain adjustments:

o n represents the document frequency, 
calculated individually for each field.

o boost is an additional factor for the query 
part (as seen in qBody with boost = 1.5).

o k1 and b are parameters for term 
frequency normalization in line with the 
BM25 formula. Document length (dl) and 
average document length (adl) pertain to 
a single field, not the entire document.

– The final score is the sum of all query parts.

qYear1 = IntField.newRangeQuery(“year", 1950, 2000);
qYear2 = IntField.newRangeQuery("year", 1990, 2000);
qTitle = new TermQuery(new Term("title", "shawshank"));
qBody = new TermQuery(new Term(“body", “decency"));

query = new BooleanQuery.Builder()
 .add(qYear1, Occur.FILTER).add(qYear2,Occur.SHOULD)
 .add(qTitle, Occur.MUST)
 .add(new BoostQuery(qBody, 1.5f),Occur.SHOULD)
 .build();

results = searcher.search(query, 10);

// explain results
System.out.println(searcher.explain(query, results.scoreDocs[0].doc));
⮡  

7.4037647 = sum of:

  0.0 = match on required clause, product of:
    0.0 = # clause
    1.0 = year:[1950 TO 2000]

  1.0 = year:[1990 TO 2000]

  3.0980327 = weight(title:shawshank in 0) [BM25Similarity], result of:
    3.0980327 = score(freq=1.0), computed as boost * idf * tf from:

      6.5022902 = idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:
        1 = n, number of documents containing term
        999 = N, total number of documents with field

      0.47645253 = tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:
        1.0 = freq, occurrences of term within document
        1.2 = k1, term saturation parameter
        0.75 = b, length normalization parameter
        2.0 = dl, length of field
        2.2532532 = avgdl, average length of field

  3.3057323 = weight(actors:decency in 0) [BM25Similarity], result of:
    3.3057323 = score(freq=1.0), computed as boost * idf * tf from:

      1.5 = boost

      4.7686887 = idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:
        8 = n, number of documents containing term
        1000 = N, total number of documents with field

      0.46214414 = tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:
        1.0 = freq, occurrences of term within document
        1.2 = k1, term saturation parameter
        0.75 = b, length normalization parameter
        8.0 = dl, length of field
        8.335 = avgdl, average length of field

𝑠𝑐𝑜𝑟𝑒 = 𝑏𝑜𝑜𝑠𝑡 ∙ 𝑖𝑑𝑓 ∙
𝑡𝑓 ∙ (𝑘1 + 1)

𝑡𝑓 + 𝑘1 ∙ 1 − 𝑏 + 𝑏
𝑑𝑙

𝑎𝑑𝑙

𝑖𝑑𝑓 = log 1 +
𝑁−𝑛+0.5

𝑛+0.5
 



Page 3-66Multimedia Retrieval – 2023

3.5.5 Apache Solr, Elasticsearch, and OpenSearch 
• Lucene scales effectively up to its maximum limit of 2.1 billion documents. Its segment-based architecture allows 

parallelization for individual searches. However, when the index expands beyond approximately 20-40GB, search 
times are constrained by the maximum I/O and/or memory throughput. Moreover, if we need to run hundreds of 
concurrent queries, the core structure of Lucene is not suitable for handling such loads.

• To address theses limitations, three popular options exist which are built on top of Lucene and provide powerful 
tools for distributing and scaling search operations:
– Apache Solr is a highly flexible and extensible search platform, expanding upon Lucene's capabilities. It offers 

features like distributed searching, load balancing, and real-time indexing. Solr is user-friendly and capable of 
managing large-scale search tasks. Its centralized configuration simplifies management and scaling across server 
clusters. Solr also supports faceted search, allowing results to be grouped by facets such as category, country, or 
other user-defined dimensions. It is a popular choice as a search engine on major websites and is integrated into 
popular big data platforms.

– Elasticsearch is renowned for its real-time distributed search and analytics capabilities. It is designed for 
horizontal scalability, focusing on distributed use cases. Elasticsearch is commonly employed in log analytics and 
security analytics scenarios. Alongside Logstash and Kibana, it forms the widely used ELK stack for observability 
applications. Elasticsearch builds upon Lucene's core features to enable field and text search. Although used 
extensively with logs, it features a contemporary full-text document search.

– OpenSearch, initiated in 2021, is an Apache 2.0 fork of Elasticsearch. This move came in response to Elastic's 
decision to alter the licensing terms of Elasticsearch. The new dual licensing model affected not only cloud 
vendors but also smaller vendors and upset the open-source community. Led by Amazon, the OpenSearch 
community now offers an alternative solution that remains fully compatible with Elasticsearch.

• Solr, Elasticsearch, and OpenSearch utilize sharding as a fundamental scaling technique. Sharding divides the index 
into smaller, autonomous components known as shards, with each shard capable of residing on a separate cluster 
node. Moreover, each shard can be replicated multiple times within the cluster to enhance availability and 
scalability. Sharding accelerates individual queries, and shard replication boosts the capacity for concurrent queries. 
Importantly, sharding eliminates the 2.1 billion document constraint of Lucene.

3.5.5 OpenSearch 
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• Let’s study the different levels to scale out searches:
1. At the segment level, Lucene can divide the index into multiple segments. You can specify a merge policy to 

control the number and size of these segments. To simplify, let's consider a merge policy that keeps 15 
segments of equal size, and let's assume a server with 16 vCPUs. A coordinator thread (1 vCPU) handles query 
parsing and assigns the 15 segments to searcher threads running on the remaining 15 vCPUs. Each search 
thread conducts the search within its assigned segment, returns the result to the coordinator thread, which 
consolidates the results and sends the answer back to the client.

Applying Amdahl's law and assuming 99% of the time is spent on segment searching, we can achieve a 13-fold 
speedup compared to a single thread. Nevertheless, search times increase proportionally with the index size 
(until Lucene's limitations are reached), and we can only execute one query at a time or decrease the number of 
parallel threads. However, using larger machines (e.g., 128 vCPUs) is excessive and leads to a monolithic search 
server which lacks high availability.

reducemap

search thread 
segment #1

coordinator
thread

search thread 
segment #2

search thread 
segment #15

…
coordinator

threadclient client
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2. To enhance scalability, Solr, Elasticsearch, and OpenSearch employ sharding to distribute collections across 
multiple smaller worker nodes. Each shard contains a unique subset of the documents, managed by separate 
Lucene indexes. Each index maintains its own segments and term statistics which can result in varying scores 
for identical documents stored in different shards. As search is inherently not an exact operation, some 
inconsistency in scores is acceptable as long as the deviations are not substantial across shard assignments.
When a new document is introduced to the collection, a coordinator node determines the shard to which it is 
assigned. This assignment can be based on predefined policies like round-robin, or by utilizing user-defined 
prefixes on the document ID which are hashed to a specific shard number (ensuring that documents with the 
same prefix go to the same shard). Typically, the number of shards remains constant since redistributing and 
reinserting documents is a resource-intensive operation. To increase parallelism, some tools may necessitate 
recreating the search domain and reinserting all documents to achieve an even distribution across the shards.
During search operations, we now employ two levels of map-reduce: one at the shard level and, within each 
shard, at the segment level. Despite each shard having slightly different term statistics, we can efficiently merge 
result lists by considering the overall score of the documents.

With this configuration, we can lower our hardware demands and utilize numerous smaller worker nodes. These 
nodes can be operated within a Kubernetes cluster distributed across physical servers. Rapidly deploying new 
worker nodes and responding promptly to node failures enhances overall availability, as we will discuss next.
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shard #1

reducemap
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3. To improve availability, we replicate shards and distribute these replicas across different availability zones. 
Replicas of the same shard are intentionally placed on nodes located separately—avoiding assignment to nodes 
on the same server, within the same rack, or within the same data center. Apache Solr, Elasticsearch, and 
OpenSearch execute replication at the storage level to guarantee identical results from each replica. Within 
each shard, a leader node is responsible for adding documents to its index and subsequently disseminating 
updates to nodes that maintain replicas of the corresponding shard.

The number of replicas influences overall system availability and the system's resilience against failures. In our 
example with 4 shards and 2 replicas distributed across 2 availability zones, it might look as follows (each leader 
node can take over the role of the coordinator role as well):

Replicas not only boost availability but also enable more simultaneous searches. Each leader node can act as a 
coordinator, routing requests to a replica (or leader) node for each shard. As we increase the number of replicas, 
we can accommodate more concurrent searches. Because only leader nodes index documents and manage 
search coordination, we can scale concurrent searches in direct proportion to the number of replicas, up to the 
capacity of leader/coordinator nodes. To scale in accordance with the number of replicas, additional physical 
servers must be added to the cluster, although these servers can still host relatively small nodes (containers).
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4. The highest level of distribution deploys instances across multiple regions, strategically placed near the target 
user population. For example, to serve users in both Europe and Asia, we can establish a search cluster in each  
region. Document insertions occur in a primary region, and shard updates are replicated to the other region. A 
DNS router equipped with a geoproximity policy routes client requests to the nearest region, with the 
alternative region serving as a backup. However, due to substantial distances and ping latencies of 100-200ms 
between Europe and Asia, we cannot distribute the execution of a single search across two regions to achieve 
further scalability. Nevertheless, we can enhance the number of concurrent searches, the overall availability of 
our search application, and reduce search latency for clients. Without this regional setup, clients in the other 
region would experience increased ping latencies.

(1) client requests DNS service to resolve hostname of search application (e.g., http://search.me/login)
(2) DNS service responds with IP address of the regional entry point closest to the client
(3) client requests service in region with given IP address (if this fails, tries the other region)
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