
Computer Science / 15731-01 / 2023

Multimedia Retrieval

Chapter 4: Advanced Text Retrieval

Dr. Roger Weber, roger.weber@gmail.com

4.1 Introduction
4.2 Chunking Text
4.3 Tokenization Revisted
4.4 Lemmatization and Linguistic Transformation
4.5 Part of Speech
4.6 Latent Semantic Analysis
4.7 Embeddings
4.8 Text Classifiction
4.9 Literature and Links

Page 4-2Multimedia Retrieval – 2023

4.1 Introduction
• In this chapter, we enhance classical models by incorporating advanced techniques like tokenization, embeddings,

natural language processing (NLP), and applying machine learning and generative AI methods.
– We begin by revisiting document splitting techniques, exploring common methods, and examining their

functionality within retrieval models.
– In the previous chapter, we generated tokens from words and applied the Porter stemmer for English. In this

chapter, we explore alternative tokenization methods, including sub-word tokens and phrases (n-grams).
– We also delve into fundamental NLP techniques, such as part-of-speech tagging and chunking, which construct

a tree structure based on language grammar.
– Tokenization transforms documents into high-dimensional vectors, resulting in sparse document-term matrices.

Latent semantic indexing use dimensionality reduction techniques to obtain a more concise document vector.
– Modern AI approaches employ embeddings, notably through neural networks found and more recently with

encoders (part of the transformer model) from large language models.
– Text classification categorizes documents into predefined groups, such as language, potential author, or

sentiment analysis.
– While we start this chapter with the same retriever-ranker architecture as Lucene, we expand upon it by

incorporating generative AI methods to enhance the user experience in the final section.

• Many of these techniques have emerged within the last decade, with transformer models, in particular, gaining
recent widespread attention. As of 2023, OpenAI's ChatGPT is built upon the generative pre-trained transformer
3.5 (GPT-3.5). These models continue to evolve, and competitors are launching improved language models that
surpass GPT's capabilities. Notable examples include LLaMA, BARD, Falcon, Cohere, PaLM, Claude, and Titan.

• As these models evolve, they have already introduced novel information retrieval methods. For example, retrieval
augmented generation (RAG) integrates classical text search with generative AI to enhance user question
answering. Another emerging trend involves training a language model on a specific knowledge base and using it
directly to respond to user queries through a chat interface.

4.1 Introduction

Page 4-3Multimedia Retrieval – 2023

• In this chapter, we will use various Python packages. Equivalent versions are available for Java and JavaScript. The
JavaScript versions are particularly useful for performing browser-based tasks, leveraging attached GPUs.
– tokenizers is an Apache 2.0 open-source library led by Hugging Face. It offers an implementation of widely-

used tokenizers with an emphasis on performance and versatility. It is also utilized in transformers.
Python: pip install tokenizers (PyPi page, documentation, tutorial)

– transformers is an Apache 2.0 open-source library led by Hugging Face. Transformers provides thousands of
pretrained models to perform tasks on different modalities such as text, vision, and audio.
Python: pip install transformers (PyPi page, documentation, tutorial)
JavaScript: npm install @xenova/transformers (npm page, documentation, tutorial)

– langchain started in 2022 as an open source project (MIT License) and quickly gained popularity with
improvements form hundreds of contributors for the most common AI use cases and with integration with
systems from Amazon, Google, and Microsoft.
Python: pip install langchain (PyPi page, documentation, tutorial)
JavaScript: npm install langchain (npm page, documentation, tutorial)

– nltk is a popular library for natural language processing with many integrations for text processing, classification,
tokenization, stemming, tagging, parsing, and semantic reasoning.
Python: pip install nltk (PyPi page, documentation, tutorial)

– spaCy is open source library for natural language processing under MIT license. While NLTK is widely used for
teaching and research, spaCy focuses on production ready use cases. It is backed by deep learning models, and
supports a number of languages (you need manually download these models).
Python: pip install spacy[cuda113] (PyPi page, documentation, tutorial)

– The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text.
Java: org.apache.opennlp (mvn repository, documentation, tutorial)

• Online demos for many functions that we consider in the following sections: https://textanalysisonline.com/

4.1 Introduction

https://pypi.org/project/tokenizers/
https://huggingface.co/docs/tokenizers/index
https://huggingface.co/docs/tokenizers/python/latest/quicktour.html
https://pypi.org/project/transformers/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/quicktour
https://www.npmjs.com/package/@xenova/transformers
https://huggingface.co/docs/transformers.js/index
https://huggingface.co/docs/transformers.js/tutorials/react
https://pypi.org/project/langchain/
https://python.langchain.com/docs/get_started/introduction.html
https://python.langchain.com/docs/additional_resources/tutorials
https://www.npmjs.com/package/langchain
https://js.langchain.com/docs/get_started/introduction/
https://js.langchain.com/docs/get_started/quickstart
https://pypi.org/project/nltk/
https://www.nltk.org/
https://www.nltk.org/howto.html
https://pypi.org/project/spacy/
https://spacy.io/usage/spacy-101
https://spacy.io/usage/linguistic-features
https://mvnrepository.com/artifact/org.apache.opennlp
https://opennlp.apache.org/docs/
https://www.tutorialspoint.com/opennlp/index.htm
https://textanalysisonline.com/

Page 4-4Multimedia Retrieval – 2023

4.2 Chunking Text
• In the previous chapter, we briefly mentioned splitting larger texts but didn't explore how to perform various

splitting strategies and their implications. Let's begin by examining a few use cases and then delve into text splitting
implementation strategies:
– Large documents, like story collections, scientific journals, law books, or novels, often encompass various topics.

In traditional retrieval, we create a single document vector, merging these diverse aspects. However, this can
make it challenging to guide users to specific locations in the document if it appears in search results. By
splitting the document into smaller pieces, we generate multiple independent document vectors, enabling
precise guidance to relevant parts based on the query.

– Text summarization is more effective when done at the paragraph level, iteratively generating increasingly
concise summaries. Large language models often have input token limits, requiring text segmentation before
model application.

– In Sentiment Analysis, sentiments in a document can fluctuate. Instead of deriving a single value for the entire
document, a more precise analysis continuously assesses sentiments throughout the text, allowing for the
calculation of additional document-level statistics.

– For large language models, training foundational models involves smaller text chunks. Large text documents are
divided into smaller, coherent parts suitable for the learning task.

– Retrieval Augmented Generation: To produce relevant answers from text searches using generative AI
methods, we need to provide sufficient context with the question. However, the token limits of prompts restrict
the amount of context that can be provided. To overcome this, we can find small, relevant paragraphs in the
text collection and use them to enrich the prompts with context

– Machine translation tasks work on larger chunks of text rather than individual words or entire documents.
Splitting the text can improve the semantic correctness of the translation, especially when the translation of a
word depends on the broader context. For example, this can help to produce the correct inflected form of a
verb or to choose the right word from a list of possible translations.

– Natural Language Processing: Natural language processing (NLP) tasks use larger text chunks to improve
semantical interpretation, especially when word meanings depend on context.

4.2 Chunking Text

Page 4-5Multimedia Retrieval – 2023

• Method 1: Splitting the text into fixed-sized chunks
– A simple way to chunk text is to split it into words, and then merge words until the resulting chunks reach a

certain size. To remediate the impact of breaking sentences or paragraphs in the middle, we can overlap
subsequent chunks by a defined number of words. This way, even if a paragraph is split, it is likely to be retained
with the next chunk.

– The langchain library has a convenient function for such splits

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(

 separator = " ",
 chunk_size = 1000,
 chunk_overlap = 200,
 add_start_index = True

)
text_splitter.split_text(‘…a very long text…’)

– The CharacterTextSplitter class creates a splitter using the given separator (here a space) that creates
chunk up to 1000 characters with a maximum overlap of 200 characters. The add_start_index adds
information about the start of the chunks when creating sub-documents (see split_documents).

– The plot on the right displays the distribution of chunk
lengths obtained by applying the above splitter to the
sample document ("A Study in Scarlet").
o Most chunks are nearly 1000 characters long, with

variations resulting from word lengths causing splits.
o The left outlier represents the final chunk of the

document, which is generally smaller.
o Because all chunks have similar lengths, there is no

need to be concerned about varying document lengths
or input padding for neural networks.

o A pragmatic approach, but chunks may not align with
the changes of topics in the document

4.2 Chunking Text

Page 4-6Multimedia Retrieval – 2023

• Method 2: Splitting at sentence boundaries
– Similar to the previous approach, we use sentences as the smallest units of text for chunking. This avoids abrupt

sentence breaks but may introduce slight variations in chunk sizes, which are usually negligible.
– Sentence segmentation may seem straightforward, but it is slightly more complex and varies by language. For

English, a reliable rule set includes:
o a ‘?’ and ‘!’ terminate the sentence
o a ‘.’ terminates a sentence unless it is part of a number, initials, or a known abbreviation (e.g., Dr., Mr., U.S.A.);

we also require the next character after a sentence boundary to be of upper case
o punctuations within quotes (spoken words) do not terminate the sentence (e.g., “Hey!”, he said)

– The NLTK library includes the Punkt sentence tokenizer, which employs unsupervised algorithms to construct a
model for abbreviations, collocations, and sentence-starting words. For example, it identifies (for this very
sentence) that the token 'For’, a word typically in lowercase, is a likely start of a new sentence. Punkt is trained on
a text corpus in the target language to learn probabilities for sentence boundaries. NLTK offers a pre-trained
English version of Punkt. There is also a trainer class to learn parameters for other languages. The implementation
is speedy and generally very accurate, with occasional difficulties in handling dialogue structures in narrated texts
with punctuations inside and outside of quotes.

– The spaCy library employs deep learning models for tasks like information extraction and sentence boundary
detection. It offers greater flexibility than Punkt but demands considerably more CPU/GPU resources for
sentence tokenization. Thanks to its pre-trained models in multiple languages and its robust architecture, spaCy is
well-suited for production use cases.

– The langchain library has a convenient functions for sentence based tokenization for both NLTK and spaCy:

from langchain.text_splitter import SpacyTextSplitter, NLTKTextSplitter
text_splitter = SpacyTextSplitter(# or: NLTKTextSplitter

 separator = " ",
 chunk_size = 1000,
 chunk_overlap = 200,
 add_start_index = True

)
text_splitter.split_text(‘…a very long text…’)

4.2 Chunking Text

Page 4-7Multimedia Retrieval – 2023

• Method 3: splitting on structure
– The concept is to divide text based on its structural elements. For instance, in books, we can split at parts,

chapters, sections, and paragraphs. Authors commonly use these structural elements to separate content, making
them strong indicators of topic or aspect changes.

– Detecting these structural elements relies on the document's format. In our discussion, we utilized text from
Project Gutenberg, where paragraphs, chapters, and parts are structured with increasing numbers of newlines
before their start. For instance, 4 consecutive newlines indicate chapters, and 2 consecutive newlines indicate
paragraph breaks. In HTML or Markdown formats, we can split by identifying headers (<h1>, <h2>, …), while
treating the text within <p> and <div> tags as paragraphs.

from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(

 separators = ["\n\n"], # use 4x\n for chapters, and 2x\n for paragraphs
 chunk_size = 100,
 chunk_overlap = 20,
 add_start_index = True

)
text_splitter.split_text(‘…a very long text…’)

– The plot on the right displays the distribution of chunk
lengths obtained by applying the NLTK splitter to the
sample document ("A Study in Scarlet"). The results for
spaCy are very similar:
o Most chunks are between 900 and 1000 characters

long, with variations resulting from sentence lengths
causing splits. Long sentences can result in much higher
variance than the simple word splitting approach.

o The left outlier represents the final chunk of the
document, which is generally smaller.

o The approach is a bit better than word based splitting,
however, we still have a misalignment between chunk
size and semantic changes in the document.

4.2 Chunking Text

Page 4-8Multimedia Retrieval – 2023

– In this example, we maintain the chunk size and
overlap so minimal that langchain cannot merge
consecutive chunks. Consequently, we obtain a list
of distinct parts, chapters, and paragraphs.

– The right-hand figures illustrate chunk size
distributions for chapters and paragraphs, revealing a
significant contrast with word and sentence-based
approaches. Chunks now align with chapter or
paragraph boundaries, offering more precise
descriptions than the fixed-size splits used
previously.

– In contrast to the previous splitting strategies, we
now have chunks of varying sizes. In the case of
chapters, smaller chunks may result from formatting
at the text's start or around parts that can be
disregarded. While these coarse-grained splits offer
semantically coherent text chunks, their sizes can be
challenging to control and may be overly large for
certain scenarios.

– When focusing on paragraphs (lower figure on the
right), we achieve better control of chunk sizes,
typically staying below 2000 characters, although
this may vary by the author. However, we end up
with a substantial number of very small chunks. This
is primarily due to the book's dialog format, where
double new lines separate different speakers. These
smaller chunks are less suitable for tasks like
paragraph indexing as they provide minimal context.

Chapters

Paragraphs

Page 4-9Multimedia Retrieval – 2023

– For enhanced paragraph-based chunking, we can
enlarge the chunk sizes and combine smaller
paragraphs into larger ones, as they are likely
semantically related. The result on the right
demonstrates this approach. Small chunk sizes have
been eliminated, and most chunks are between 800
and 1000 characters, with some being longer due to
the author's preference for lengthy paragraphs. To
address excessively long paragraphs, we can
introduce additional splits by using the
RecursiveCharacterTextSplitter, which
accepts a list of separators to further divide
oversized chunks hierarchically into smaller ones.

– Controlling the overlap of paragraph-based chunks
by specifying a fixed number of characters is
challenging, as entire paragraphs can exceed the
overlap parameter, resulting in no overlap. A more
effective method involves generating paragraph
chunks as previously described, merging smaller
ones. Then, for each paragraph, append the last
sentence from the preceding chunk and the first
sentence from the following chunk. These sentences
often convey the semantics of neighboring
paragraphs, providing improved paragraph
descriptions and context.
o This is an example of a more advanced splitting

strategy that requires deeper insight into the
scenario and the task.

o To select the right strategy and chunk parameters,
a benchmark for the target task is required

Paragraphs (merged)

Paragraphs (merged with overlap)

Page 4-10Multimedia Retrieval – 2023

• Method 4: semantic splitting
– The structural approach is often the simplest way to obtain semantically coherent chunks. However, when reliable

structural context extraction is challenging (e.g., in web pages with varying header formats or scanned
documents), we can extend the sentence-based splitting method:
1) Define a similarity measure between sentences.
2) Set minimum and maximum chunk sizes.
3) Split the text into sentences using NLTK or spaCy (merge very short sentences to meet the minimum size).
4) Merge neighboring chunks if they are similar (while ensuring they don't exceed the maximum size).
A comprehensive algorithm description is omitted here, but we'll touch on a few key details.

– Similarity between sentences:
o An initial approach uses a vector space model to measure sentence similarities. However, a challenge arises

when two sentences lack overlaps in distinctive terms and only share stop words. For example, consider the
first two sentences of this paragraph. Despite being part of the same paragraph and discussing the same topic,
they only share 'sentence(s)' as a common word among several stop words. If two sentences do not share terms
other than stop words, similarity measures such as cosine or dot-product will return 0 values.

o A more effective approach uses embeddings (introduced later in this chapter). Embeddings represent sentences
in a lower-dimensional vector space where dimensions correspond to concepts or topics rather than individual
terms. Specialized sentence transformers, tailored for embedding generation, yield excellent results. In this
chapter, we will also look at alternative techniques, including Latent Semantic Analysis, word2vec, and GloVe.
Unlike term vectors, embeddings can map semantically related yet distinct terms to similar positions in the
vector space. As a result, similarity measures like cosine or dot product provide more meaningful assessments,
even when two sentences lack shared terms.

– Merging chunks based on similarities
o A simple approach is to iterate through all chunks, calculate their similarity to the next chunk, and merge them if

a specific threshold is surpassed. However, this approach has two main issues:
1. Determining an appropriate threshold is challenging and requires extensive training before application.
2. It is difficult to control chunk sizes. Some chunks may remain small because merging is prevented by low

similarities, while others may become excessively long when similar but already lengthy chunks are merged.

4.2 Chunking Text

Page 4-11Multimedia Retrieval – 2023

– Merging chunks based on similarities (continued)
o A superior approach is to initially compute similarities between all adjacent chunks and then merge the top-k

most similar chunks. To avoid excessively long chunks, we prevent the merging of neighboring chunks if their
combined length surpasses the predefined maximum size. We can choose a relatively small value for k, such as
a percentage of the current number of chunks, and iterate this process multiple times to enhance the clustering
of longer sequences of similar sentences in several steps.

• Discussion: Segmenting text into smaller parts is specific to the use case domain and, therefore, necessitates
optimization tailored to the given scenario, similar to hyperparameter optimization in machine learning. Fortunately,
for most use cases, a well-defined overlap between parts reduces the sensitivity to the specific splitting method.
Default text splitting may suffice for many scenarios.
– Chunk size varies based on use case limitations. For instance, in summarization tasks, the maximum chunk size is

constrained by the token limit of the chosen language model. In text retrieval scenarios, especially for passage
search, an optimal chunk size typically falls between 2000 and 4000 characters, to provide useful results and
context for the user.

– In text retrieval scenarios, breaking a text into numerous smaller parts transforms a document into a collection of
sub-documents. For instance, when using Lucene to search novels from Project Gutenberg, this splitting results in
the creation of hundreds of sub-documents for each novel. These sub-documents are individually added to the
Lucene index and share common metadata for identifying the original document. They also include a position
marker in the original text for quick navigation and reference to relevant passages within the full text. This
approach expands the number of entries in the Lucene index by a factor of several hundreds, but the overall index
size does not increase to the same extent (depending on overlap and duplicated metadata).

– A useful guideline is to begin with a straightforward splitting method and refine it, if it does not yield the desired
results due to suboptimal splitting.

4.2 Chunking Text

Page 4-12Multimedia Retrieval – 2023

4.3 Tokenization Revisted
• In the previous chapter, we divided the text into parts and employed a straightforward tokenization method. A

token is separated by non-word characters. Here is a straightforward Python implementation:
def word_tokenize(text: str) -> list[str]:

 text = re.sub(r'[^\w\-]+', ' ', text)

 return [token for token in text.split(' ') if token]

4.3 Tokenization Revisted

word_tokenize

I

buy

my

parents

10

of

U

K

startup

for

1

4

billion

Dr

Watson

s

cat

called

Mrs

Hersley

and

it

was

w

r

o

n

g

more

to

come

In this basic scenario, any string of characters that isn't a Unicode letter, number, underscore, or
hyphen gets substituted with a single space. Afterward, we break the text at spaces to create a
token list. This method usually functions effectively but has certain limitations. Take a look at the
sentence below and the resulting split on the right:
 I buy my parents' 10% of U.K. startup for $1.4 billion. Dr. Watson's cat called Mrs. Hersley and it was w.r.o.n.g., more to come ...

While it is an artificial and nonsensical sentence, it highlights some of the weaknesses:
– The possessive “’s” (also: parents “’”) is omitted, resulting in a single “s” token. This outcome can

be advantageous or disadvantageous, depending on the task. It's beneficial for retrieval since it
enables the merging of “Watson” and “Watson’s” allowing users to find the name without
testing alternative written forms. However, it becomes problematic for sentence analysis as it
breaks the link between “Watson” and “cat”. The typical retrieval approach involves removing
possessive forms and single-letter as well as non-alphabetic terms.

– Numbers function well when they are positive integers, but tokenization struggles with
percentages, currencies, and floating-point numbers, among other cases not covered here. In
the context of retrieval and NLP, numbers are often disregarded or entirely removed. However,
in generative AI, the language model may need to generate an answer with the accurate dollar
amount from this sentence.

– Abbreviations like "U.K.," "Dr.," "Mrs.," and the artificial "w.r.o.n.g." are not accurately identified.
Abbreviations with multiple dots are treated as separate terms, with all tokens lacking the final
dot that signifies an abbreviation. Consequently, searching for "U.K." is not feasible.

– Interpunctuation is absent. This is beneficial for retrieval but restricts sentence analysis for
context and word relationships.

Page 4-13Multimedia Retrieval – 2023

• Modern word-based tokenizers are available in the nltk and spaCy libraries. The outcome
for the same sentence is displayed on the right. They closely match each other, with the
exception of the artificial abbreviation "w.r.o.n.g." which spaCy's neural model finds
challenging. A short comparison to the previous page's basic method:
– “’s” and “’” possessives are treated as terms. In retrieval tasks, they can be filtered out,

while in NLP tasks, they aid sentence structure analysis.
– Floating-point numbers are now recognized correctly, including negative numbers (not

shown). Percentages and currency symbols are split into individual tokens, preserving this
information compared to the previous method.

– Abbreviations are accurately identified and represented as single tokens. Both nltk and
spaCy employ machine learning to detect common abbreviations.

– Interpunctuation is fully retained. In retrieval tasks, it can be filtered out, whereas in NLP
tasks, it helps to analyze sentence structure.

Both packages offer support for language-specific peculiarities, such as French abbreviations.
Refer to their documentation for details on enabling multi-lingual tokenization.

• Tokenization for Retrieval: The tokens displayed on the right are well-suited for NLP and will
use them later for part-of-speech tagging. However, for retrieval tasks, many of these tokens
are unnecessary as they do not provide additional information. To create a token list for
retrieval scenarios, we can undertake the following cleanup actions:
– Remove short tokens, like single-letter ones, as they lack specific content description.
– Exclude non-word tokens, such as numbers and special characters, except for words with

hyphens and abbreviations with dots. This also removes tokens from possessive forms.
– Optionally, convert Unicode characters (e.g., accents) to their closest ASCII equivalents,

e.g., “Zürich” to “Zurich”. This can reduce vocabulary size (from 16/32 bits to 8 bits) and
simplify matching between queries and documents, especially when users lack easy access
to specific Unicode letters (e.g., "słychać" with characters not found on the keyboard).

– Optionally, convert tokens to lowercase or apply case conversion to their standardized
form. This is useful for scenarios like sentence beginnings with capitalized words, title case
usage, or dealing with misspellings.

nltk-word spacy-word

I I

buy buy

my my

parents parents

' '

10 10

% %

of of

U.K. U.K.

startup startup

for for

$ $

1.4 1.4

billion billion

. .

Dr. Dr.

Watson Watson

's 's

cat cat

called called

Mrs. Mrs.

Hersley Hersley

and and

it it

was was

w.r.o.n.g. w.r.o.n.g

, .

more ,

to more

come to

... come

...

4.3 Tokenization Revisted

Page 4-14Multimedia Retrieval – 2023

• There are scenarios where it is not obvious where a word starts and ends:
– Scriptio continua is a writing style without spaces or word separators, often lacking punctuation and sentence

boundaries. Prominent examples include Chinese, Japanese, Thai, as well as classical Greek and Latin. Here is an
example in Chinese:

莎拉波娃现在居住在美国东南部的佛罗里达。
莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
Sharapova now lives in US southeastern Florida

– A modern variation is found in programming, where literals cannot contain spaces. Depending on coding style,
developers employ different methods to create meaningful names, like QueryParser, assertEquals,
word_tokenize, preserve_line, and more. Coding assistants like Amazon CodeWhisperer can break these
literals into meaningful tokens to grasp the developer's intent.

– Transcribing spoken language into written form initially creates a phoneme stream and then determines word
boundaries. However, in speech, words are not separated; instead, they are joined into a continuous stream of
phonemes. For the transcriber who identifies phonemes in the first step, it appears as follows:

 ðɪskɔːsˈtiːʧɪzˌmʌltɪˈmiːdiərɪˈtriːvᵊl.
 ðɪs kɔːs ˈtiːʧɪz ˌmʌltɪˈmiːdiə rɪˈtriːvᵊl.
 This course teaches multimedia retrieval.

• There are two different approaches to break continuous streams into tokens:

1. We can combine a dictionary-based approach with a hidden Markov model (or a neural network). The
dictionary helps determine if a character sequence can form a word the dictionary and provides all options for
the current text position. For instance, consider the English character sequence “h e s i t a t e“. We could extract
the single token “hesitate” or the series of tokens “he“, "sit“, “ate“; or “he’s”, “it“, “ate“. Vocabulary lookup can
introduce ambiguity which we can resolve using a trained hidden Markov model (or a neural network). This
model evaluates alternatives and selects the most likely sequence such as “hesitate” for our example. Language-
specific models can utilize rules like maximum matching (finding the longest sequence in the dictionary) and
language-specific character usage to identify word boundaries. A general challenges, for instance also in
transcription of spoken text, are names of people or brands as well as loan words from other language (e.g.,
English computer terms in German or Thai).

4.3 Tokenization Revisted

Page 4-15Multimedia Retrieval – 2023

2. Another approach involves sub-words that are used directly for retrieval. Using the previous example for
spoken text retrieval, the phoneme stream is divided into overlapping sequences of three phonemes:

 ðɪskɔːsˈtiːʧɪzˌmʌltɪˈmiːdiərɪˈtriːvᵊl. → ðɪs ɪsk skɔ kɔːs ɔːsˈt … ˌmʌl ʌlt ltɪ tɪˈm ɪˈmi ˈmiːd iːdi diə iər …

Stress symbols in the phoneme stream are combined with the following phoneme, enlarging the symbol
vocabulary. To match this with a query, let's consider the user is searching for “multimedia”. This query is
initially translated into a phoneme stream and then segmented into sequences of three phonemes:

 multimedia → ˌmʌltɪˈmiːdiə → ˌmʌl ʌlt ltɪ tɪˈm ɪˈmi ˈmiːd iːdi diə

This creates an 8-token query, and we can employ a standard retrieval method that may consider token
proximity. An intriguing outcome of this method is that we do not need to match all sub-sequences to locate
relevant spoken text passages. For instance, if a non-native speaker mispronounces words or someone has
unclear articulation, the phoneme stream from the spoken text may differ from the one generated by the query.
However, as long as there are sufficient overlaps between the sequences, we can still locate the passage.

We can apply this method also in situations where word boundaries are identifiable:

 This course teaches multimedia retrieval.
 thi his cou our urs rse tea eac ach che hes mul ult lti tim ime med edi dia ret etr tri …

In this scenario, we create sub-sequences only within words, avoiding sub-word tokens spanning across two
words unlike the phoneme example above. An extension of this approach is to differentiate between sub-
sequences at the beginning of a word and those within. This distinction can be made by treating them as
separate tokens and prefixing sub-sequences at the start of words with "#" (or any unused symbol).

 This course teaches multimedia retrieval.
 #Thi his #cou our urs rse #tea eac ach che hes #mul ult lti tim ime med edi dia …

We can transform queries the same way. Let’s use an example to illustrate some of the advantages:

 Q = “teach multtimedia” → #tea eac ach #mul ult ltt tti tim ime med edi dia

Despite having a different flexed form for “teach” and a misspelling (double “tt”), 10 out of 12 sub-sequences
match those from the sentence above. A retrieval model with partial matching and optional token proximity
consideration can locate the relevant passage without requiring stemming or spelling corrections. Modern large
language models use a similar approach as we will discuss later in this section.

4.3 Tokenization Revisted

Page 4-16Multimedia Retrieval – 2023

• N-grams: Rather than making tokens smaller, we can create larger tokens by combining multiple words into a single
token known as n-grams. This approach is particularly valuable in languages where words form phrases with distinct
or more specific meanings. Examples include:

 - mother tongue, red handed, butterfly effect, black box, cold shoulder, silver bullet, piece of cake
 - thai food, prime minister, middle management, crystal clear, chief of staff, speed dial, multimedia retrieval
 - New York City, Salt Lake City, Albert Einstein, Amazon Web Services, Ford Mustang, University of Basel

In all these examples, it makes more sense to use phrases rather than the individual terms. In order to enrich a
vocabulary with phrases, we can create them manually or form them automatically from a text corpus.

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐)

of the 1198 2323 297

in the 669 2323 186

to the 1071 2323 135

to be 1071 246 96

and the 1313 2323 89

upon the 195 2323 88

I have 936 276 81

that I 614 936 76

– A naïve approach first constructs all possible bi-grams in a corpus and then
counts their occurrences. The top-n most frequent bi-grams are added to
the vocabulary. However, a limitation of this method is evident in the upper
table on the right side:
o "of the" is the most frequent bi-gram simply because it comprises two

frequently used stop words in the language.
– A first enhancement excludes stop words when generating bi-grams and

considers only consecutive pairs of non-stop words. Ensure that you do not
merely remove stop words from the stream but eliminate pairs containing a
stop word. Otherwise, you create pairs that originally had a stop word in
between. The lower table on the right illustrates the outcomes:
o The result appears more favorable than previously, with names from the

novel forming new terms in the vocabulary. This streamlines the search
for names since we only need to search for the bi-gram, eliminating the
need to search for individual parts and apply a proximity constraint.

o Nonetheless, a few issues remain. Phrases like “said Holmes”, “could see”,
and “young man” are common pairs, but they do not contribute
significantly to describing the context they appear in. Notably, in the case
of “said Holmes”, we observe that these two terms less frequently occur
together but are more often associated with other words (e.g., “said” is
not exclusively used with “Holmes”).

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐)

Sherlock Holmes 48 94 48

Jefferson Hope 37 42 34

John Ferrier 31 58 26

Brixton Road 15 13 13

said Holmes 207 94 12

Lucy Ferrier 29 58 10

Enoch Drebber 9 62 9

Salt Lake 9 9 9

could see 96 56 9

young man 40 154 9

4.3 Tokenization Revisted

Page 4-17Multimedia Retrieval – 2023

– The Pointwise Mutual Information (PMI) measures word associations by comparing their actual co-occurrence
frequency to what would be expected if they were independent. In our previous example, we noted the bi-gram
“said Holmes” occurred 12 times together. However, “said” appeared 207 times, and “Holmes” 94 times
individually. In essence, “said” and “Holmes” rarely co-occur (12 out of a maximum of 94 times), and “said” pairs
with many other words. Although they occur together more frequently than other bi-grams, this observation
suggests they are not a distinctive enough bi-gram for our vocabulary. We are more interested in word pairs like
the names which predominantly appear as bi-grams (even though first and last names can also occur
independently).
o To formalize this measure, let 𝑡1 represent the first term in the bi-gram and 𝑡2 the second term. We count the

occurrences of the individual terms as 𝑡𝑓(𝑡1) and 𝑡𝑓(𝑡2), and of the bi-gram as 𝑡𝑓(𝑡1, 𝑡2). PMI compares the
likelihood of terms occurring together to the expected probability if they were independent of each other:

o If the corpus comprises 𝑁 terms, the probabilities are determined by the ratio of the term frequency to 𝑁:

o In the last part of the formula above, we eliminated the constant multiplier log2(𝑁) that applies to all bi-grams.
This adjustment determines the significance of bi-grams in the PMI measure. While it is possible to remove the
log2() as well, keeping it in place helps maintain values within more manageable ranges for humans.

o In the context of the last formula, the PMI value is maximized when 𝑡𝑓(𝑡1) = 𝑡𝑓(𝑡2) = 𝑡𝑓(𝑡1, 𝑡2), meaning that
all occurrences of the two terms exist exclusively within the bi-gram. If a term appears outside the bi-gram, the
denominator becomes larger, resulting in a smaller PMI value as a consequence.

o As a result of the previous statement, stop words that appear in bi-grams are naturally given lower weights
because they are highly frequent outside of the bi-gram context. Consequently, there is no longer a necessity to
employ a stop word filter (although it can still be used for efficiency when computing PMI).

𝑝𝑚𝑖 𝑡1, 𝑡2 = log2

𝑝 𝑡1, 𝑡2

𝑝 𝑡1 ∙ 𝑝 𝑡2
= log2 𝑝 𝑡1, 𝑡2 − log2 𝑝 𝑡1 − log2 𝑝 𝑡2

𝑝𝑚𝑖 𝑡1, 𝑡2 = log2

𝑝 𝑡1, 𝑡2

𝑝 𝑡1 ∙ 𝑝 𝑡2
= log2

𝑡𝑓(𝑡1, 𝑡2)
𝑁

𝑡𝑓(𝑡1)
𝑁

∙
𝑡𝑓(𝑡2)

𝑁

= log2

𝑁 ∙ 𝑡𝑓(𝑡1, 𝑡2)

𝑡𝑓(𝑡1) ∙ 𝑡𝑓 𝑡2
 ~ log2

𝑡𝑓(𝑡1, 𝑡2)

𝑡𝑓(𝑡1) ∙ 𝑡𝑓 𝑡2

4.3 Tokenization Revisted

Page 4-18Multimedia Retrieval – 2023

o Now, let’s use the PMI measure to find the most significant
bi-grams in the same example text. The upper table on the
right side displays the outcomes. Notably, all stop words
have been excluded, but at the top, we see bi-grams
consisting of rare terms. For instance, “Army Medical”
appears only once, and the terms within the bi-gram also
occur only once within that bi-gram. This is why it receives
the highest score.

o We already established that the PMI score is the highest if
𝑡𝑓(𝑡1) = 𝑡𝑓(𝑡2) = 𝑡𝑓(𝑡1, 𝑡2). Let’s say such a bi-gram occurs
𝑛 times. The PMI score is then given by:

o In other words, for bi-grams where the terms only occur
together in that bi-gram, the PMI is high when the count 𝑛,
denoting the number of bi-gram occurrences, is low. The
optimal value is achieved when 𝑛 = 1, as demonstrated in
the result table (log2(𝑁) is 15.39 for this example).

o To improve the quality of returned bigrams, we can apply a
minimum frequency filter as applied for the lower table on
the right side. This now eliminates all bi-grams with stop-
words and all bi-grams with infrequent terms.

o The bi-gram result is improved, revealing numerous names
from the novel and capturing meaningful pairs like “never
mind”, “old farmer”, or “two detectives”.

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐) PMI

Army Medical 1 1 1 15.39

Assistant Surgeon 1 1 1 15.39

Avenging Angels 1 1 1 15.39

Beautiful beautiful 1 1 1 15.39

Boarding Establishment 1 1 1 15.39

CITY Died 1 1 1 15.39

Conan Doyle 1 1 1 15.39

Continental Governments 1 1 1 15.39

Copernican Theory 1 1 1 15.39

Cremona fiddles 1 1 1 15.39

Criterion Bar 1 1 1 15.39

Danite Band 1 1 1 15.39

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐) PMI

Private Hotel 5 5 5 13.07

Scotland Yard 8 6 6 12.39

Salt Lake 9 9 9 12.22

Baker Street 6 11 6 11.93

Lake City 9 13 8 11.52

Brixton Road 15 13 13 11.48

Never mind 5 37 5 10.18

Jefferson Hope 37 42 34 9.87

Enoch Drebber 9 62 9 9.43

old farmer 38 9 5 9.29

John Ferrier 31 58 26 9.28

Joseph Stangerson 13 43 7 9.07

young hunter 40 14 6 8.84

Sherlock Holmes 48 94 48 8.83

two detectives 75 9 5 8.31

Lucy Ferrier 29 58 10 7.99

𝑝𝑚𝑖 𝑡1, 𝑡2 = log2

𝑁 ∙ 𝑡𝑓(𝑡1, 𝑡2)

𝑡𝑓(𝑡1) ∙ 𝑡𝑓 𝑡2
 = log2

𝑁 ∙ 𝑛

𝑛 ∙ 𝑛

 = log2 N − log2(n)

4.3 Tokenization Revisted

Page 4-19Multimedia Retrieval – 2023

– Likelihood Ratios (LHR) are another form of hypothesis testing, similar to the chi-squared test but more robust
when dealing with sparse data. Moreover, the resulting number is easier to interpret, indicating how much more
likely one hypothesis is compared to another. In the context of bi-grams, the initial hypothesis assumes
independence between terms 𝑡1 and 𝑡2 in the bi-gram. This hypothesis can be represented as:

The first probability represents the conditional likelihood of 𝑡2 following 𝑡1, while the second one is the
conditional probability of 𝑡2 not following 𝑡1. Let 𝑡𝑓1 = 𝑡𝑓(𝑡1) represent the occurrences of 𝑡1, 𝑡𝑓2 = 𝑡𝑓(𝑡2) for 𝑡2,
and 𝑡𝑓12 = 𝑡𝑓(𝑡1, 𝑡2) for the bi-gram. For hypothesis 𝐻1, we can use the maximum likelihood estimate for 𝑝 =
𝑡𝑓2/𝑁, where 𝑝 is the probability of 𝑡2 following any term, whether it is 𝑡1 or not (independence). Assuming a
binomial distribution, we can calculate the likelihood of observing these counts as follows:

The first binomial distribution calculates the likelihood of observing 𝑡𝑓12 instances of 𝑡2 following 𝑡1 out of 𝑡𝑓1
occurrences, considering the probability 𝑝 that the term 𝑡2 appears at any position. The second hypothesis 𝐻2
assumes that 𝑡2 depends on 𝑡1 and hence the conditional probabilities differ:

As previously, we can employ maximum likelihood estimates for 𝑝1 = 𝑡𝑓12/𝑡𝑓1 and 𝑝2 = (𝑡𝑓2 − 𝑡𝑓12)/(𝑁 − 𝑡𝑓1)
using the observed counts. Assuming a binomial distribution, we can then compute the likelihood of the second
hypothesis, which is similar to the first, considering both scenarios: 𝑡2 following 𝑡1 and 𝑡2 not following 𝑡1.

Lastly, the likelihood ratio log lambda is given as

𝐻1: 𝑃 𝑡2 𝑡1) = 𝑃 𝑡2 ¬𝑡1) = 𝑝

𝐿 𝐻1 = 𝑏 𝑡𝑓12; 𝑡𝑓1, 𝑝 ∙ 𝑏 𝑡𝑓2 − 𝑡𝑓12; 𝑁 − 𝑡𝑓1, 𝑝 with 𝑏(𝑘; 𝑛, 𝑥) =
𝑛
𝑘

𝑥𝑘 1 − 𝑥 𝑛−𝑘

𝐻2: 𝑝1 = 𝑃 𝑡2 𝑡1) p2 = 𝑃 𝑡2 ¬𝑡1) 𝑝1 ≠ 𝑝2

𝐿 𝐻2 = 𝑏 𝑡𝑓12; 𝑡𝑓1, 𝑝1 ∙ 𝑏 𝑡𝑓2 − 𝑡𝑓12; 𝑁 − 𝑡𝑓1, 𝑝2 with 𝑏(𝑘; 𝑛, 𝑥) =
𝑛
𝑘

𝑥𝑘 1 − 𝑥 𝑛−𝑘

log 𝜆 = log
𝐿(𝐻1)

𝐿(𝐻2)
= log

𝐿 𝑡𝑓12;𝑡𝑓1,𝑝 ∙𝐿 𝑡𝑓2−𝑡𝑓12;𝑁−𝑡𝑓1,𝑝

𝐿 𝑡𝑓12;𝑡𝑓1,𝑝1 ∙𝐿 𝑡𝑓2−𝑡𝑓12;𝑁−𝑡𝑓1,𝑝2
 with 𝐿(𝑘; 𝑛, 𝑥) = 𝑥𝑘 1 − 𝑥 𝑛−𝑘

4.3 Tokenization Revisted

Page 4-20Multimedia Retrieval – 2023

o Now, let's apply the LHR measure to identify the most significant
bi-grams in the same example text. For that purpose, we sort the
bi-grams by −2 ∙ 𝑙𝑜𝑔𝜆. The upper table on the right shows the
results, and interestingly, the stop-words have reappeared.
Unlike the naive approach where stop words appeared due to
their high frequency, we now have a different scenario as LHR
compares the hypothesis of independence versus dependence.
Take, for instance, the bi-gram “I am” which is not a significant bi-
gram for the vocabulary. Nevertheless, it is evident that “am” is
strongly dependent on “I” and follows the term “I” in 39 out of 41
instances.

o We can enhance the quality of bi-grams obtained with LHR by
excluding those containing a stop word (refrain from filtering
stop words before forming bi-grams). The final outcome is
displayed in the lower table on the right. Unlike the PMI ranking,
the more frequent names now occupy the top positions. Notably,
“Sherlock Holmes” appears 48 times as a bi-gram and attains the
highest LHR value, while it held only the 14th place in the PMI
ranking, due to the preference of the PMI for lower numbers of
occurrences.

• With all the bi-gram scoring methods that we discussed so far, we
need to establish a threshold. All bi-grams with scores exceeding this
threshold are included in the vocabulary, while the rest are excluded.
There is no need to be accurate in setting the threshold, rather, we
should take additional search and storage overhead into account. If
we missed a bi-gram, we can still find it with proximity measures.

• When creating bi-grams, we can also choose to index both individual
terms and the bi-gram. This allows us, for example, to search for
“Holmes” which would otherwise not match with occurrences of the
bi-gram “Sherlock Holmes”.

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐) LHR

Sherlock Holmes 48 94 48 618.26

of the 1198 2323 297 517.86

Jefferson Hope 37 42 34 491.94

don t 32 88 32 409.61

to be 1071 246 96 395.47

had been 470 147 63 378.63

in the 669 2323 186 359.01

he said 630 207 72 352.64

John Ferrier 31 58 26 330.18

I have 936 276 81 300.87

I am 936 41 39 284.24

upon the 195 2323 88 259.81

bi-gram 𝒕𝒇(𝒕𝟏) 𝒕𝒇(𝒕𝟐) 𝒕𝒇(𝒕𝟏, 𝒕𝟐) LHR

Sherlock Holmes 48 94 48 618.26

Jefferson Hope 37 42 34 491.94

John Ferrier 31 58 26 330.18

Brixton Road 15 13 13 224.92

Salt Lake 9 9 9 170.49

Lake City 9 13 8 129.82

Enoch Drebber 9 62 9 119.12

Scotland Yard 8 6 6 109.52

Baker Street 6 11 6 103.36

Private Hotel 5 5 5 100.59

Lucy Ferrier 29 58 10 96.68

Lauriston Gardens 4 4 4 82.26

Joseph Stangerson 13 43 7 79.97

Never mind 5 37 5 71.28

little girl 80 27 8 68.66

young hunter 40 14 6 65.60

4.3 Tokenization Revisted

Page 4-21Multimedia Retrieval – 2023

• We can expand this concept to tri-grams or even quad-grams. The tables on the
right display the top n-grams in the corpus, and we can expand our vocabulary
accordingly (typically selecting several hundreds to thousands in a large corpus).

• Finally, the code below demonstrates how to compute the n-gram tables
discussed in this section. nltk offers a variety of convenient functions for
handling collocations. For more details, refer to the documentation.

quad-gram 𝒕𝒇 LHR

in the Brixton Road 5 644.39

Halliday s Private Hotel 5 255.54

as he spoke and 5 238.97

sprang to his feet 6 221.47

tri-gram 𝒕𝒇 LHR

said Sherlock Holmes 7 654.14

Sherlock Holmes sprang 3 651.73

asked Sherlock Holmes 3 635.19

said Jefferson Hope 3 504.11

Salt Lake City 8 300.31

bi-gram 𝒕𝒇 LHR

Sherlock Holmes 48 618.26

Jefferson Hope 34 491.94

John Ferrier 26 330.18

Brixton Road 13 224.92

Salt Lake 9 170.49

Lake City 8 129.82

Enoch Drebber 9 119.12

Scotland Yard 6 109.52

Baker Street 6 103.36

Private Hotel 5 100.59

Lucy Ferrier 10 96.68

Lauriston Gardens 4 82.26

Joseph Stangerson 7 79.97

Never mind 5 71.28

little girl 8 68.66

young hunter 6 65.60

from nltk.collocations import (
 BigramCollocationFinder, TrigramCollocationFinder, QuadgramCollocationFinder,

 BigramAssocMeasures, TrigramAssocMeasures, QuadgramAssocMeasures
)
from nltk.corpus import stopwords

choose bi-grams, tri-grams, quad-grams
finder = QuadgramCollocationFinder.from_words(tokens)
finder = TrigramCollocationFinder.from_words(tokens)
finder = BigramCollocationFinder.from_words(tokens)

choose a measure (must match with the finder, here for bi-grams)
measure = BigramAssocMeasures.raw_freq
measure = BigramAssocMeasures.pmi
measure = BigramAssocMeasures.likelihood_ratio

apply frequency filter
finder.apply_freq_filter(3)

#apply stop word filter
ignored_words = stopwords.words('english')
stopword_filter = lambda w: len(w) < 3 or w.lower() in ignored_words
finder.apply_word_filter(stopword_filter)

obtain results (top-k)
k = 20

scores = finder.score_ngrams(measure)[:k]

output term 1, term 2, freq of term 1, freq of term 2, freq of bigram, score
for ((t1,t2),score) in scores:
 print(f'{t1} {t2} {finder.word_fd[t1]} {finder.word_fd[t2]} {finder.ngram_fd[(t1,t2)]} {score}')

4.3 Tokenization Revisted

Page 4-22Multimedia Retrieval – 2023

• Tokenization has regained significance alongside the rise of large language models. Later in this chapter, we will
explore these models and their applications in retrieval scenarios. When dealing with text in machine learning, a
central challenge is how to input text into the model:
– Many machine learning models typically process continuous input values, with exceptions like decision trees and

naive Bayes. In neural networks, a fully connected layer multiplies input values by weights, adds a bias, and applies
an activation function. This process results in an outcome represented by a function 𝑓 applied to the input values.
Therefore, we must find a way to map the generated tokens (assuming words for now) to meaningful input values.

– An initial idea is to assign a unique ID to each token as we add them to the vocabulary. To illustrate this, consider
a simple example: after tokenizing the sentence “the cat and the dog”, we have four tokens:

the → 1 cat → 2 and → 3 dog → 4

These IDs enable us to represent the original sentence as a sequence of numbers, such as [1, 2, 3, 1, 4].
However, we cannot directly input these numbers into a machine learning model: the tokens in the example
sentence have weak semantic relationships among themselves. Yet, assigning them numerical values like 1, 2, 3,
and 4 implies a strong relationship between them. For instance, if “cat” is mapped to 2 and “dog” is mapped to 4,
does this imply that 2 cats make up a dog? Additionally, the mapping of “and” to 3, positioned between “cat” and
“dog” may suggest that “and” is also an animal because of its proximity to “cat” and “dog”.

– To prevent such misinterpretations, the standard practice in data science and machine learning is to convert
discrete values (such as categories or token IDs) into one-hot vectors. These vectors have a dimensionality equal
to the number of tokens (or categories), and each token is represented by a vector containing all zeros except for
one component, determined by the token ID, which is set to 1. The following illustrates this approach in an
example of sentiment analysis, where the model predicts whether a sentence is positive, negative, or neutral:

the

cat

and

the

dog

1

2

3

1

4

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

machine
learning
model

positive

neutral

negative

one-hot vectortoken
ID

token

4.3 Tokenization Revisted

Page 4-23Multimedia Retrieval – 2023

– One-hot vectors work well with a few hundred categories but becomes challenging with millions of entries in
vocabularies. Handling massive input layers for machine learning models becomes necessary. Additionally, once a
model is trained, expanding the vocabulary is problematic. For instance, adding new terms like names or brands
requires retraining the model each time. To address this, models like BERT (Google, 2018) with a 30,000-token
vocabulary, GPT-3 (OpenAI, 2020) with 50,000 tokens, and Google's recent Bard model (2023) with 137,000
tokens maintain reasonably sized vocabularies with approaches like Word Piece by Google and Byte-Pair
Encoding by OpenAI.

– Before we go deeper into these tokenization methods, note that none of the previously mentioned language
models utilize one-hot input vectors due to performance and storage reasons. Instead, they incorporate an extra
layer for embedding and positional encoding before the data proceeds to the transformer blocks of the model.
While we will explore embeddings later in this chapter, it is opportune to discuss here shortly the complete
process from text to transformer layers, as depicted at the bottom of this page:
o Embedding layers transform one-hot vectors into lower-dimensional, dense vectors. The concept is to map

tokens with semantic similarity closer together in this lower-dimensional space. For example, “cat” and “cats”
are semantically related, but one-hot vectors treat them as distinct representations. Embedding layers,
however, assign “cat” and “cats” similar vectors, enabling the model to grasp their relationship more effectively.

o The embedding layer is a basic fully connected network that maps the one-hot vector into a lower-dimensional
representation. This transformation is learned alongside the rest of the model and does not include bias or an
activation function. Given that the input is a one-hot vector, the embedding layer essentially looks up the
corresponding column in the weight matrix, avoiding the need for expensive matrix-vector multiplications.

o The positional encoding is an sinusoidal signal function for the model to understand the order of tokens in the
input sequence as transformers lack the inherent sense of order found in recurrent neural networks (RNN).

■■

■■

■■

■■

■■

block 1

positive

neutral

negative

embedding
layer

■■

■■

■■

■■

■■

■■

■■

■■

■■

■■

positional
encoding

1

2

3

1

4

token
ID

the

cat

and

the

dog

token

multi layerblock … block n

input for
transformer

softmaxtransformer architecture task specific
network

4.3 Tokenization Revisted

embeddings

Page 4-24Multimedia Retrieval – 2023

– Byte Pair Encoding (BPE) tokenization: initially proposed for text compression, it was employed by OpenAI to
reduce the vocabulary sizes. There are many variants but they all share the same idea:
o We begin by normalizing the input sequence. Older models converted Unicode characters to ASCII and to

lowercase. More recent models operate at the byte level, treating Unicode characters as sequences of bytes.
This enables newer models to better handle languages with special characters. While punctuation is often
minimized, it still holds significance in ensuring the model can generate coherent sentences. Let's illustrate BPE
tokenization with a simple example and the normalization step:

This course is about this topic. → this course is about this topic

o The initial vocabulary is established with all the characters of all words in the corpus. With our simple example,
the initial vocabulary is:

a, b, c, e, h, i, o, p, r, s, t, u

o Next, we expand the vocabulary by including the most common bi-gram found within all words of the corpus.
We start by creating a bag-of-words representation and break down each word into character sequences. In
our simple example, most words appear only once, but in practice, they would have varying frequencies:

this 2 t, h, i, s
course 1 c, o, u, r, s, e
is 1 i, s
about 1 a, b, o, u, t
topic 1 t, o, p, i, c

o For each word, we generate all possible bi-grams. For instance, with the word this we form the bi-grams th,
hi, and is. Subsequently, we count the occurrences of these bi-grams, factoring in the frequency of the words:

is (3), th (2), hi (2), ou (2), cu (1), ur (1), rs (1), se (1), ab (1), bo (1), …

o is is the most frequent bi-gram. So we create a new vocabulary item for it:

a, b, c, e, h, i, o, p, r, s, t, u, is

4.3 Tokenization Revisted

Page 4-25Multimedia Retrieval – 2023

o Using this updated vocabulary, we can now modify the word representations by substituting consecutive i and
s with the new vocabulary item is.

this 2 t, h, is
course 1 c, o, u, r, s, e
is 1 is
about 1 a, b, o, u, t
topic 1 t, o, p, i, c

o Now, we can repeat this process by generating again possible bi-grams (where is counts as one item, not two):

th (2), his (2), ou (2), cu (1), ur (1), rs (1), se (1), ab (1), bo (1), ut (1), …

o This time, we encounter a tie, so we can randomly select one of the best pairs. Let's choose th and incorporate
it into the vocabulary. As previously, we update our word representation:

this 2 th, is
course 1 c, o, u, r, s, e
is 1 is
about 1 a, b, o, u, t
topic 1 t, o, p, i, c

o The process continues until we have arrived at a specified vocabulary size. For the example, we stop at 20:

vocabulary: a b c cou cour cours course e h i is o ou p r s t th this u

o Using this vocabulary, we can now encode our original sentence as follows:

this course is a b ou t this t o p i c

o Even if some words are no longer in the vocabulary, we can still represent them as a sequence of smaller
tokens. In a large corpus, this allows the model to handle all words, including misspelled ones, and accept
previously unseen words. Newer models use byte-level encoding, avoiding the need to reserve the entire
Unicode alphabet in the vocabulary. Instead, they start with 256 initial entries and the BPE algorithm will
automatically compose 2 bytes to represent common Unicode characters in the corpus.

4.3 Tokenization Revisted

Page 4-26Multimedia Retrieval – 2023

– The transformers library offers efficient tools for
training custom tokenizers. The code on the right
demonstrates how to utilize the library to train
custom BPE tokenizers (steps 1-4) and how to reuse
an existing BPE tokenizer (step 5 with GPT-2).
1. Language model training necessitates special

tokens that convey unique conditions to the
model. The "unknown" token, for example, is
employed for any input sequence that cannot be
matched to a token in the vocabulary.

2. The trainer drives the BPE algorithm, allowing us
to configure the vocabulary size, specify a
minimum frequency threshold for pairs to enter
the vocabulary, and to define unique prefixes and
suffixes for pairs occurring within or at the end of
words. This ensures that the same pair, like "is“, is
treated as distinct tokens when it appears at the
start, middle, or end of a word.

3. Specifies how input text is segmented into words,
handles punctuation, and applies normalization
before tokenization, such as converting text to
lowercase. Note that normalization is useful for
tasks like classification but should be avoided
when working with language models that
generate text. Lowercasing, for example, would
prevent the model to produce proper English
sentences like this one (capital cases).

4. Trains the BPE tokenizer using a set of input files,
and then apply it to encode some text.

5. Create a GPT-2 pre-trained tokenizer and use it
to encode some text.

from tokenizers import (
 models, Tokenizer,
 normalizers, pre_tokenizers,
 trainers,
)

1) define special tokens and create tokenizer object
unknown_token = "[UNK]"
special_tokens = [unknown_token, "[SEP]", "[MASK]", "[CLS]"]
tokenizer = Tokenizer(models.BPE(unk_token = unknown_token))

2) setup the trainer for BPE tokenization
trainer = trainers.BpeTrainer(vocab_size=10000,
 min_frequency=3,
 special_tokens = special_tokens,
 continuing_subword_prefix=‘#',
 end_of_word_suffix=‘>’)

3) define how to split the text and normalize words
tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
tokenizer.normalizer = normalizers.Sequence(
 [normalizers.NFD(), normalizers.Lowercase(),
 normalizers.StripAccents()]
)

4) train the tokens on a set of files
tokenizer.train(files, trainer=trainer)
tokenizer.encode(text)

5) using a pre-built BPE tokenizer
from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.encode(text)

Page 4-27Multimedia Retrieval – 2023

– WordPiece Tokenization follows BPE's general approach but extends it in two key ways:
1. It distinguishes between characters at the word's beginning and those in the middle. The original BPE version,

initially stemming from a compression algorithm, did not account for character positions. However, later
extensions, including the transforms library demonstrated on the previous page, incorporated this concept. In
our example sentence, "this course is about this topic“, the starting vocabulary is altered: '##' serves as a
special annotation for word pieces that start within the word:

 vocabulary: ##b, ##c, ##e, ##h, ##i, ##o, ##p, ##r, ##s, ##t, ##u, a, c, i, t

 this 2 t, ##h, ##i, ##s
 course 1 c, ##o, ##u, ##r, ##s, ##e
 is 1 i, ##s
 about 1 a, ##b, ##o, ##u, ##t
 topic 1 t, ##o, ##p, ##i, ##c

While this approach doubles the base vocabulary, it enhances our ability to capture prefixes, which
frequently convey shared semantics across words. The same principle applies to suffixes, which often group
inflected forms based on gender, numbers, tense, and case.

2. It constructs pairs in the same manner as BPE but prioritizes pairs with their components occurring more
frequently together than with other pieces. This results in the same scoring criteria that we introduced for
selecting bi-grams with PMI. If (𝑎, 𝑏) represents a potential candidate pair, we denote the frequencies of the
individual elements of the pair as 𝑡𝑓(𝑎) and 𝑡𝑓(𝑏), and the frequency of the pair itself as 𝑡𝑓(𝑎, 𝑏). The best
pair is determined as follows:

As discussed with PMI, we need to apply a minimum frequency filter as the formula above prefers infrequent
pairs such as the ones with 𝑡𝑓(𝑎, 𝑏) = 𝑡𝑓(𝑎) = 𝑡𝑓(𝑏) = 1.

o The BPW and WordPiece algorithms share the same process: they begin with an initial vocabulary, create pairs,
count frequencies, expand the vocabulary with the best pair, merge pairs for all words, and continue this cycle
of pair creation, vocabulary expansion, and merging until a specified vocabulary size is achieved.

(𝑎∗, 𝑏∗) = argmax
(𝑎,𝑏)∈𝑝𝑎𝑖𝑟𝑠

𝑡𝑓(𝑎, 𝑏)

𝑡𝑓 𝑎 ∙ 𝑡𝑓(𝑏)

4.3 Tokenization Revisted

Page 4-28Multimedia Retrieval – 2023

– We can employ efficient WordPiece trainers from
the transformers library. The code on the right
demonstrates how to utilize the library to train
custom WordPiece tokenizers (steps 1-4) and how
to reuse an existing WordPiece tokenizer (step 5
with BERT uncased).
1. As before, we define the special tokens

depending on the task we want to address with
the model. The "unknown" token, for example, is
employed for any input sequence that cannot be
matched to a token in the vocabulary.

2. The trainer drives the WordPiece algorithm,
allowing us to configure the vocabulary size,
specify a minimum frequency threshold for pairs
to enter the vocabulary, and to define unique
prefixes and suffixes for pairs occurring within or
at the end of words.

3. Specifies how input text is segmented into
words, handles punctuation, and applies
normalization before tokenization, such as
converting text to lowercase. Again, select
normalization that is applicable for the scenario
and model usage. Lowercase normalization, for
instance, prevents the model from producing
grammatically correct output.

4. Trains the WordPiece tokenizer using a set of
input files, and then apply it to encode some text.

5. Create a BERT (uncased) pre-trained tokenizer
and use it to encode some text.

from tokenizers import (
 models, Tokenizer,
 normalizers, pre_tokenizers,
 trainers,
)

1) define special tokens and create tokenizer object
unknown_token = "[UNK]"
special_tokens = [unknown_token, "[SEP]", "[MASK]", "[CLS]"]
model = models.WordPiece(unk_token = unknown_token)
tokenizer = Tokenizer(model)

2) setup the trainer for WordPiece tokenization
trainer = trainers.WordPieceTrainer(vocab_size=10000, \
 min_frequency=3, \
 special_tokens = special_tokens, \
 continuing_subword_prefix='_', \
 end_of_word_suffix='|’)

3) define how to split the text and normalize words
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
tokenizer.normalizer = normalizers.Sequence(
 [normalizers.NFD(), normalizers.Lowercase(),
 normalizers.StripAccents()]
)

4) train the tokens on a set of files
tokenizer.train(files, trainer=trainer)
tokenizer.encode(text)

5) using a pre-built WordPiece tokenizer
from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
tokenizer.encode(text)

Page 4-29Multimedia Retrieval – 2023

4.4 Lemmatization and Linguistic Transformation
• Stemming reduces words in the input to their root, ensuring variants match during search. For example, ‘houses’ in a

document can match a query with ‘house’. Stemming is language-dependent, but typically, removing prefixes and
suffixes is effective for most languages. Words that can undergo significant inflections, like 'go' and 'went,' present
more challenges. We distinguish different types of stemming algorithms:
– Rule-based stemmers use rules to transform words to their stems, which may not always be linguistically

correct but are designed to match variants of the same root. In text retrieval, displaying these stems to users is
not necessary; they are only used for quick lookup with inverted files.

– Dictionary-based stemmers use a small set of rules for regular inflections and rely on a dictionary and irregular
inflection list to find the correct linguistic stem. In text retrieval, this improves the success for matching word
variants, especially in cases with strong inflections like 'go' and 'went’.

• In the last chapter, we learned about the Porter algorithm, a basic English stemmer that creates pseudo-stems to
unify word variations. The Lancaster stemmer is another rule-based stemmer for English. It aggressively cuts off
word endings (suffixes), which can lead to very short stems. It is faster than other algorithms and suitable for
general English text processing.

• In various retrieval situations, handling diverse languages is common. Applying Porter or Lancaster stemmers to
non-English text does not work. As a solution, Martin Porter introduced the Snowball framework to create rule-
based stemmers for multiple languages similar to Porter and Lancaster. This framework features its own rule
definition language, and can generate code for different programming languages. The result is still a pseudo-stem,
and in languages with strong inflections, the stem can vary due to gender, tense, or case changes. These algorithms
are highly efficient and can operate in any environment without requiring a large dictionary.

• An improvement over the rule based stemmers are dictionary based stemmers such as provided by WordNet and
spaCy. They consist of three parts:
– a simple rule-based stemmer for regular inflections (e.g., ‘-ing’, ‘-ed’)
– an exception list for irregular inflections
– a dictionary of all possible stems of the language

4.4 Lemmatization and Linguistic Transformation

Page 4-30Multimedia Retrieval – 2023

• The dictionary based algorithms works as follows:
1. Retrieve a part-of-speech (POS) tag for the current word. This is typically

done during tokenization and considers the broader context to determine the
correct tag (e.g., noun, verb, adjective, punctuation). For example, whether
‘run’ is a noun or a verb depends on its context.

2. Search for the word in the dictionary; if it is found, the the word is not
inflected, we can return it as its own stem.

3. Search for the word in the exception list for its POS tag (see tables below for
examples); if it is found, we can return the stem as given in the list.

4. Apply rules based on the POS tag to shorten regularly inflected forms using
their suffixes. The table on the right shows some English examples. Use each
applicable rule and check the dictionary; if the word is found, return the form
from the dictionary.

5. If no dictionary entry is found, return the word as its own stem. This can occur
with names, misspelled words, or loanwords (words from another language,
like English words in German).

4.4 Lemmatization and Linguistic Transformation

Type Suffix Ending

NOUN s

NOUN ses s

NOUN xes x

NOUN zes z

NOUN ches ch

NOUN shes sh

NOUN men man

NOUN ies y

VERB s

VERB ies y

VERB es e

VERB es

VERB ed e

VERB ed

VERB ing e

VERB ing

ADJ er

ADJ est

ADJ er e

ADJ est e

adj.exc (1500):

...

stagiest stagy

stalkier stalky

stalkiest stalky

stapler stapler

starchier starchy

starchiest starchy

starer starer

starest starest

starrier starry

starriest starry

statelier stately

stateliest stately

...

noun.exc (2000):

...

neuromata neuroma

neuroptera neuropteron

neuroses neurosis

nevi nevus

nibelungen nibelung

nidi nidus

nielli niello

nilgai nilgai

nimbi nimbus

nimbostrati nimbostratus

noctilucae noctiluca

...

verb.exc (2400):

...

ate eat

atrophied atrophy

averred aver

averring aver

awoke awake

awoken awake

babied baby

baby-sat baby-sit

baby-sitting baby-sit

back-pedalled back-pedal

back-pedalling back-pedal

backbit backbite

...

Page 4-31Multimedia Retrieval – 2023

• nltk and spaCy provide multiple stemmers for text processing in
different languages. The code on the right demonstrates how to
begin using these stemmers.
– English Example: The table below displays stemming outcomes

for Porter, Lancaster, Snowball, WordNet, and spaCy when
applied to English text. The table excludes terms that yield the
same stem across all stemmers. It also include the part-of-speech
tag (pos) that was used for WordNet and spaCy.

import nltk
from nltk.corpus import wordnet
import spacy

building a stemmer
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()
snowball = nltk.SnowballStemmer("english")
wordnet = nltk.WordNetLemmatizer()
spacy = spacy.load('en_core_web_sm')

applying it
porter.stem('discovered')
lancaster.stem('discovered')
snowball.stem('discovered')
wordnet.lemmatize('discovered', 'v')

spacy processes full text sequence,
not just one word
for token in spacy(‘I have discovered it'):
 print(token.text, token.lemma_)

term pos porter lancaster snowball wordnet spaCy

blue ADJ blue blu blue blue blue

bottles NOUN bottl bottl bottl bottle bottle

bristled VERB bristl bristl bristl bristle bristle

companion NOUN companion comp companion companion companion

cry NOUN cri cry cri cry cry

discovered VERB discov discov discov discover discover

distant ADJ distant dist distant distant distant

feet NOUN feet feet feet foot foot

flickering NOUN flicker flick flicker flickering flicker

found ADP found found found found find

had VERB had had had have have

have VERB have hav have have have

his PRON hi his his his his

is VERB is is is be be

lofty ADJ lofti lofty lofti lofty lofty

nothing NOUN noth noth noth nothing nothing

one NUM one on one one one

only ADV onli on onli only only

over ADP over ov over over over

Page 4-32Multimedia Retrieval – 2023

– English Example (cont’d): The Snowball and Porter algorithm
yield very similar results as they mostly rely on the same rules,
with Snowball being a slightly revised version of Porter. In
contrast, Lancaster is more aggressive in removing suffixes, often
resulting in overly short stems that may collide with unrelated
words, especially when they are short themselves (e.g., ‘one’ and
‘only’ both reduced to ‘on’). WordNet and spaCy produce similar
results, but their stems differ from those of the other algorithms.
Notably, all WordNet and spaCy stems are linguistically correct
(‘bottle’ vs. ‘bottle’). In text retrieval, stem correctness matters
less than ensuring variants map to the same stem and thus the
same token ID in the index. This is evident in examples like ‘had’
and ‘have’ which the rule-based algorithms map to different
stems, while the dictionary-based algorithms map them to the
same base form ‘have’. This enhances the search engine's ability
to match query variants with those found in documents.

– German Example: Snowball and spaCy are the only options for
German stemming, allowing us to compare Snowball's rule-based
approach with spaCy's dictionary-based approach. The results
are displayed on the right. We observe similar differences
between rule-based (Snowball) and dictionary-based (spaCy)
stemming. Additionally, Snowball maps special characters to a
base character set and converts text to lowercase. It also handles
cases like ‘ae’ → ‘a’ if the text doesn't use ‘ä’ correctly. spaCy
corrects casing only if a word starts a sentence and would
normally be in lowercase. Snowball's results are acceptable for
text retrieval, but spaCy performs significantly better in
identifying the true linguistic stem and matching strongly
inflected variants (consider ‘beschloß’ and ‘beschließen’).

term pos snowball spaCy

abgefunden VERB abgefund abfinden

abraten VERB abrat abraten

alleiniger ADJ allein alleinig

alles PRON all alle

am ADP am an

Andererseits ADV andererseit andererseits

Anteil NOUN anteil Anteil

aufgerichtet VERB aufgerichtet aufrichten

Augen NOUN aug Auge

bedeutet VERB bedeutet bedeuten

beschloß VERB beschloss beschließen

blickte VERB blickt blicken

damals ADV damal damals

das PRON das der

dem PRON dem der

den DET den der

des DET des der

Die DET die der

Einerseits ADV einerseit einerseits

endgültig ADV endgult endgültig

energischen ADJ energ energisch

Erbe NOUN erb Erbe

Firma NOUN firma Firma

Flamme NOUN flamm Flamme

Page 4-33Multimedia Retrieval – 2023

– French Example: For French stemming, Snowball and spaCy are
the sole options, and the table on the right compares their
performance with a French text. Unlike in German, French
Snowball retains accented characters but still converts words to
lowercase, while spaCy preserves casing for names. We observe
similar differences between the rule-based (Snowball) and
dictionary-based (spaCy) approaches as seen in the German
example. In this French example, the ability to map various
inflected forms to the same stem is even more noticeable, as
Snowball often assigns different stems to different inflected
forms of the same root (e.g., ‘aperçu’ and ‘aperçut’, ‘avait’ and
‘avaient’).

term pos snowball spaCy

Aiguillon PROPN aiguillon Aiguillon

Aramis X aram Aramis

Artagnan PROPN artagnan Artagnan

Tous ADJ tous tout

Tréville PROPN trévill Tréville

agréable ADJ agréabl agréable

aperçu ADJ aperçu apercevoir

aperçut VERB aperçut apercevoir

approcha PROPN approch approcher

arrivé VERB arriv arriver

avaient AUX avaient avoir

avait AUX avait avoir

causant VERB caus causer

cet DET cet ce

comme SCONJ comm comme

conciliation NOUN concili conciliation

contraire NOUN contrair contraire

conversation NOUN convers conversation

courtoisie NOUN courtois courtoisie

côté NOUN côt côté

devant ADP dev devant

du ADP du de

emporté ADJ emport emporté

entier ADJ enti entier

Page 4-34Multimedia Retrieval – 2023

• In linguistics, compounds are words created by combining two or more base words, occasionally using binding
syllables (e.g., ‘Liebeslied’) or characters (e.g., ‘must-have’). While most languages support basic compound formation
to create new words (e.g., ‘smalltalk’), languages such as German and Finnish permit the formation of arbitrary long
compounds. Let's examine a few examples:
– Finnish:

– kolmivaihekilowattituntimittari en: electricity meter
– atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde

en: atomic nuclear energy reactor generator condenser turbine cogwheel stage
– rautatieasema en: railway station

– German:

– Wolkenkratzer en: skyscraper
– Rinderkennzeichnungs- und Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz (German (law in

Mecklenburg-Vorpommern, 1999-2013)
en: cattle marking and beef labeling supervision duties delegation law

– Stacheldraht en: barbed wire

– Dutch

– arbeidsongeschiktheidsverzekering en: disability insurance
– rioolwaterzuiveringsinstallatie en: sewage treatment plant
– doorgroeimogelijkheden en: possibilities for advancement

• We can classify compounds as either endocentric or exocentric.
– Endocentric compounds derive their meaning from their constituent parts. They have a ‘head’ that imparts both

semantic and syntactic attributes to the compound, while the other elements modify and refine its meaning. For
instance, in ‘sunglasses’, ‘glasses’ serves as the head, and ‘sun’ acts as the modifier.

– Exocentric compounds do not derive their meaning from their constituent parts and may even ignore the lexical
class of their individual elements (e.g., ‘must-have’ is a noun, not a verb). In the word ‘skyscraper’, neither ‘sky’ nor
‘scraper’ acts as the head, and the term names an entirely different object (in this case, a type of building).

4.4 Lemmatization and Linguistic Transformation

Page 4-35Multimedia Retrieval – 2023

• Consider a compound word like ‘Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz’: the first
challenge is spelling it correctly, making it difficult to locate the term in document titles if users do spelling mistakes
in the query (perhaps why the law was abandoned). Another issue is that we must list all constituent parts to find
this document. However, it would be more user-friendly to search with ‘Rindfleisch Etikettierung Gesetz’ as a partial
query match. Unfortunately, the retrieval models we have discussed so far do not support partial term queries
against the vocabulary or the use of such matches for actual searches.

• The recommended approach for handling compounds is to break them into their constituent parts and include both
the parts and the compound as tokens in the document. For instance, the German word ‘Abfalleimer’ is treated as
three tokens: ‘Abfall’, ‘Eimer’, and ‘Abfalleimer’. This allows users to match this word with a broader range of query
possibilities. While this method works well for endocentric compounds like ‘Abfalleimer’ where the parts convey a
similar meaning to the compound, it is less effective for exocentric compounds. Take ‘skyscraper’ as an example
(similarly in German: ‘Wolkenkratzer’). If we split the compound into ‘sky’ and ‘scraper’ (German: ‘Wolke’, ‘Kratzer’),
we introduce incorrect semantics into the document descriptors. The effectiveness of balancing the additional value
gained from splitting endocentric compounds with the introduction of incorrect semantics for exocentric
compounds depends on the specific retrieval scenario.

• We discuss two approaches to split compounds. Both approaches use a rule-based or morphological analysis to
identify potential splits of a term. The specific details vary from language to language. Let’s look at examples:
– In English, we can split compounds using hyphens and syllables in accordance with English hyphenation rules. For

example: ‘must-have’ becomes ‘must’ and ‘have’; and ‘skyscraper’ becomes ‘sky’, ‘scrap’, and ‘er’.
– In German, we split on syllables following German hyphenation rules. For example, ‘Wolkenkratzer’ becomes ‘wol’,

‘ken’, ‘krat’, ’zer’; and ‘Schifffahrtskapitän’ becomes ‘Schiff’, (‘fahrt’, ‘fahrts’), ‘ka’, ‘pi’, ‘tän’. Note that in that last
example ‘s’ is a binding letter for compound generation and we have to test with both pieces ‘fahrt’ and ‘fahrts’.

As a next step, we produce all possible combinations of such splits:

skyscraper → (sky, scrap, er), (skyscrap, er), (sky, scraper)
wolkenkratzer → (wol, ken, krat, zer), (wolken, krat, zer), (wol, kenkrat, zer), (wol, ken, kratzer),
 (wolken, kratzer), (wolkenkrat, zer), (wol, kenkratzer)
Schifffahrtskapitän → (Schiff, fahrt, ka, pi, tän), (Schiff, fahrts, ka, pi, tän), (Schifffahrt, ka, pi, tän),
 (Schifffharts, ka, pi, tän), (Schiff, fahrtka, pi, tän), (Schiff, fahrtska, pi, tän),
 … (Schifffhart, kapitän), (Schifffharts, kapitän)

4.4 Lemmatization and Linguistic Transformation

Page 4-36Multimedia Retrieval – 2023

• To find valid splits, we start by discarding any splits that contain components not found in our vocabulary or
dictionary. When multiple options remain, we determine the best split based on the frequency of the components.
Let 𝕊 represent the set of all possible splits, and let 𝑆 = 𝑝𝑖 represent all the individual components of split option
𝑆 ∈ 𝕊. We calculate 𝑡𝑓(𝑝𝑖) as the number of times piece 𝑝𝑖 appears in the corpus (or is provided by the dictionary),
and 𝑁 represents the total number of tokens in the corpus (or as given by the dictionary):

In simpler terms, we choose the split with the highest average log-frequency values for its components. This
indicates the most probable way to combine the parts into a compound.

• When analyzing text, we come across homonyms and synonyms. A homonym is a word that looks the same as
another word but has a different meaning and sometimes different pronunciation (e.g., ‘lead’ for guiding or as a
metal). In contrast, a synonym has a similar or nearly identical meaning but is expressed with a different word, often
to prevent repetition in writing (e.g., ‘big’ and ‘large’). Let's explore how they affect text retrieval and methods to
address them effectively:
– Synonyms are commonly used to add variety to written text. However, this can affect the retrieval engine's ability

to match query terms with those in the document. For instance, if the document contains ‘purchase’, a query with
‘buy’ or ‘acquire’ can not match it due to the different token forms. There are two main alternatives to address
this. First, synonym expansion involves tokenizing the document (and/or the query) and expanding tokens using
predefined synonym lists. Second, as discussed later in this chapter, word embeddings can be used to map terms
into a high-dimensional, sparse space, considering relationships between words.

– Handling homonyms involves analyzing the context to clarify the intended meaning. In straightforward cases,
part-of-speech tags can distinguish between verb and noun forms (e.g., ‘lead’ as a guide or as a metal). More
advanced solutions use machine learning models to determine the context accurately or analyze grammatical
structures for context. When a query contains a homonym, we can either select the most common meaning or
present the user with individual results for each potential interpretations. For example, the word ‘bank’ has two
meanings (sloping land by water, financial institution). We can seek user feedback for the correct interpretation or
offer two result options with synonym expansion for both possible meanings.

𝑆∗ = argmax
𝑆 ∈𝕊

ෑ

𝑝𝑖∈𝑆

𝑡𝑓 𝑝𝑖

𝑁

1
|𝑆|

= argmax
𝑆 ∈𝕊

1

|𝑆|
∙ ෍

𝑝𝑖∈𝑆

log
𝑡𝑓(𝑝𝑖)

𝑁
= argmax

𝑆 ∈𝕊

1

|𝑆|
∙ ෍

𝑝𝑖∈𝑆

log 𝑡𝑓 𝑝𝑖

4.4 Lemmatization and Linguistic Transformation

Page 4-37Multimedia Retrieval – 2023

• Another common word relationship is between hypernyms and hyponyms. A hypernym has a broader, more general
meaning and is often seen as the higher-level category among words. In contrast, a hyponym has a narrower, more
specific meaning and is typically viewed as the lower-level category. For instance, ‘animal’ is a hypernym (a more
general class) related to the hyponyms ‘cat’ and ‘dog’ which represent more specific types of animals. Words can be
hypernyms and hyponyms at the same time. A mammal is hypernym for cat, but a hyponym for animal.
– Faceted search enables users to explore search results by expanding or narrowing categories using

hypernym/hyponym relationships. For example, in an image search for ‘animals’, users can drill down to more
specific types like ‘cats’ and ‘dogs’. Conversely, if a query is too specific and yields few results, users can quickly
broaden the search using presented hypernym hierarchies.

– Automatically expand queries with hypernyms and hyponyms to broaden the search. We can assign weights to
the original term, its hypernyms (with less weight), and its hyponyms (with the same or less weight) to incorporate
term relationships into the search process.

– Relevance ranking considers hypernym/hyponym relationships to evaluate document relevance, even when the
query term is absent. This is similar to query expansion, but the distinction lies in where the expansion occurs. In
query expansion, we submit a longer query with weighted hypernyms and hyponyms. In relevance ranking, we
retain the user's original query and adjust scoring functions to account for hypernyms and hyponyms.

• The WordNet website offers an online demo for in-depth exploration of synonyms, homonyms, hypernyms, and
hyponyms in English. You can access WordNet data through nltk.corpus.wordnet.synsets(word), which
returns synsets providing functions to access synonyms, homonyms, hypernyms, meronyms, and various other
relationships. Visit http://wordnetweb.princeton.edu/perl/webwn for the WordNet online demo.

• The last discussion in this section on tokenization considers spelling mistakes and how to treat them. Typically, we
employ a spellchecker to replace words not found in the dictionary. During document indexing, we retain the
original misspelled version, and add the auto-corrected version(s) to the index. In queries, we can expand the query
with auto-corrected version(s) or suggest alternative queries if the misspelled query yields insufficient results (“did
you mean?”). Spelling mistakes, especially in names, are common but can be challenging to differentiate from
intentional variations. For instance, the name “Britney” has various alternative forms such as “Britni”, “Brittney”,
“Britnee”, “Britneigh”, “Britnie” and many more. If we would only use auto-corrected versions, we may not find these
alternative forms.

4.4 Lemmatization and Linguistic Transformation

http://wordnetweb.princeton.edu/perl/webwn

Page 4-38Multimedia Retrieval – 2023

4.5 Part of Speech
• Sentences consist of words belonging to various grammatical classes, known as part-of-speech (POS) categories,

which share similar grammatical characteristics. In English, common parts of speech include noun, verb, adjective,
adverb, pronoun, conjunction, interjection, numeral, article, and determiner. POS tagging is a method for assigning
the appropriate class to a word based on its position and function within a sentence. Note that the mapping from a
word to its POS tag is not always deterministic; for example, the word “run” can function as both a noun and a verb.

• In information retrieval, POS tags can substitute words for stop word filtering. For example, we keep “IT” if it is a
noun but remove it if it is a pronoun. In query processing, we analyze a query's structure, especially in questions.
This analysis helps to extract details, and to query directly against structured metadata instead of relying solely on
keyword–based search. For instance, the question “Who is Albert Einstein?” can be split into a query word “who”, a
verb “is”, and a name “Albert Einstein”. Using POS tagging, we can infer that the user seeks a person named “Albert
Einstein”. Rather than a full-text search, we query a ‘people’ database for structured information.

• A treebank is a text corpus where sentences are parsed and annotated to depict their syntactic structure. These
trees also convey information about word-to-word grammatical relationships and hierarchical sentence composition.
Treebanks offer labeled data to aid algorithms in learning grammatical structures and associating POS tags with
words in sentences.

• A closely related issue is Named Entity Recognition (NER), as seen with “Albert Einstein” in the previous example.
Typical categories for NER classification include names, locations, organizations, and currencies. Typically, NER
terms are not found in dictionaries, and their frequencies and occurrences vary over time. Identifying a term (or n-
gram) as an NER helps us to infer the user's intent. In some cases, NER searches are common, such as in online
shops, where proper indexing is crucial. Instead of learning valuable bi-grams to add to the dictionary, we can
generate them using simple rules based on NER tags. For instance, if we encounter two names (two consecutive
NER-people tags), we can index them both individually and as a bi-gram (or tri-gram if three consecutive names
appear). POS tags provide additional insights into the roles of names, as seen in sentences like “How to drive from
Basel to Luzern”, “I am in Basel and want to drive to Luzern”, or “How to drive to Luzern from Basel”.

• Let’s look at a few common implementation for POS and NER tagging, and the algorithms behind them.

4.5 Part of Speech

Page 4-39Multimedia Retrieval – 2023

• Rule-based POS tagging: These algorithms use predefined rules based on context to assign POS tags to words. In
machine learning models, simplified versions of these rules are often integrated as fallback or pre-filtering
mechanisms to enhance accuracy for common patterns. For instance, in English:

If a word ends with the suffix “ing” and the stem (without “ing”) is a recognized verb, assign the tag VERB.

This rule effectively handles many regular gerund forms like “hearing” and “walking”, correctly ignores “thing” and
“king”, but can not handle “running” or “swimming” correctly (though it is straightforward to add a secondary rule for
such cases). While simple and fast in processing, each language requires a fresh set of rules.

• Stochastic POS Tagging: A hidden Markov model (HMM), is a probabilistic technique applied in multiple domains. It
is a graphical representation comprising states, their probabilistic transitions, and emitted symbols at each state. It
consists of four essential components:
– Hidden States: These represent unobservable internal states that capture the system's behavior. They form a

Markov chain, where transitions between states depend solely on the current state and are independent of
previous states.

– Observations: These are symbols or events linked to hidden states, emitted during transitions between one
hidden state and another. However, uncertainty often exists regarding which symbol is emitted because each
hidden state can produce multiple outcomes (according to a probability distribution), and an observable symbol or
event can be emitted by multiple hidden states.

– Transition Probabilities: Usually represented as a transition matrix, these probabilities indicate the likelihood of
moving from one hidden state to another. They are learned from training data, often using maximum likelihood
estimation. In the transition matrix, rows correspond to the current state, and columns correspond to the next
state.

– Emission Probabilities: These are probabilities associated with each hidden state, indicating the likelihood of
generating specific observations or emissions when in that state. These probabilities help define how likely it is for
a hidden state to produce particular observable outcomes. Emission probabilities are often represented as an
emission matrix or emission probability distribution, with rows corresponding to the state, and columns
representing the observations.

Chapter 11 discusses Hidden Markov Models and the Viterbi algorithm to efficiently find the most likely transition
of internal states (here: POS tags) for an observed sequence of symbols (here: terms/words).

4.5 Part of Speech

Page 4-40Multimedia Retrieval – 2023

– For simplicity, let's consider three POS tags: nouns, verbs, and others. The structure of a Hidden Markov Model
(HMM) for POS tagging is as follows:

Each POS tag is a hidden state, including a start state that marks the beginning of sentence processing. The
transition matrix specifies the probability of transitioning between hidden states. These probabilities can be
learned by using maximum likelihood estimation based on state transitions in the training data. For a transition
probability from state 𝑠𝑖 to 𝑠𝑖+1, denoted as 𝑃(𝑠𝑖+1|𝑠𝑖), and the count of such state transitions in the training data
as 𝐶(𝑠𝑖 , 𝑠𝑖+1), the maximum likelihood estimate for 𝑃(𝑠𝑖+1|𝑠𝑖), ∀1 ≤ 𝑖 < 𝑚 is given by:

Where 𝑚 represents the total number of states. The smoothing variant serves to avoid zero-values in the
transition matrix, which can cause numerical problems when performing calculations with logarithms in the Viterbi
algorithm. Additionally, it enables the model to handle transitions that were not observed in the training data but
are encountered when processing new sentences. Similarly, we compute the maximum likelihood estimates for
the probability 𝑃(𝑡𝑘|𝑠𝑖) of term 𝑡𝑘 being emitted at state 𝑠𝑖 based on counts denoted as 𝐶(𝑠𝑖 , 𝑡𝑘):

noun verb

other

<start> Transition noun verb other

<start> 0.4 0.2 0.4

noun 0.2 0.5 0.3

verb 0.3 0.2 0.5

other 0.2 0.2 0.6
term 1

term 1

term 1
Emission term 1 … term n

noun 0 … 0.004

verb 0 … 0.001

other 0.01 … 0

𝑃(𝑠𝑖+1|𝑠𝑖) =
𝐶(𝑠𝑖 , 𝑠𝑖+1)

σ𝑗=1
𝑚 𝐶(𝑠𝑖 , 𝑠𝑗)

 𝑃(𝑠𝑖+1|𝑠𝑖) =
𝐶 𝑠𝑖 , 𝑠𝑖+1 + 𝜖

σ𝑗=1
𝑚 𝐶 𝑠𝑖 , 𝑠𝑗 + 𝑚 ∙ 𝜖

with smoothing (small 𝜖):

𝑃(𝑡𝑘|𝑠𝑖) =
𝐶 𝑠𝑖 , 𝑡𝑘

σ𝑘=1
𝑛 𝐶 𝑠𝑖 , 𝑡𝑘

 𝑃(𝑡𝑘|𝑠𝑖) =
𝐶 𝑠𝑖 , 𝑡𝑘 + 𝜖

σ𝑘=1
𝑛 𝐶 𝑠𝑖 , 𝑠𝑗 + 𝑚 ∙ 𝜖

with smoothing (small 𝜖):

4.5 Part of Speech

Page 4-41Multimedia Retrieval – 2023

– Using the trained Hidden Markov Model, we can apply the Viterbi Algorithm (refer to Chapter 11) to determine
the most probable state transitions for a given sentence's observed term sequence. These states can then be
linked to the terms in the sequence to assign them the corresponding POS tags.

• Transformation-based POS tagging builds upon rule-based POS tagging by iteratively correcting errors. It starts
with an initial, simple, and hand-crafted rule-based tagging, which is compared to training data to find errors.
Transformation rules, either learned from training data or manually created based on observed patterns, are then
used to correct these errors. This error identification and rule application process is repeated until a maximum
number of iterations is reached or no more errors are found. During sentence analysis, the initial tagging and all
transformation rules are consistently applied to generate the final POS tagging for the sequence.
After applying the “ing” rule for verb detection, we notice that in some cases, the gerund form of a verb can also
function as a noun. For example, in the sentence “The swimming was nice”, “swimming” is a noun but was initially
tagged as a verb. To address this, we introduce a straightforward transformation rule: verbs that follow articles or
adjectives should be reclassified as nouns.

• Deep learning POS tagging, on the other hand, employs neural networks to automatically learn and predict POS
tags for words in a text. Instead of relying on hand-crafted rules or transformations, deep learning models leverage
large datasets to capture complex patterns and relationships between words and their corresponding POS tags.
These models use layers of neurons and sophisticated architectures to process sequential data, making them
particularly effective for tasks like POS tagging, where the order of words in a sentence is crucial. Deep learning
approaches have achieved remarkable accuracy in various natural language processing tasks, including POS tagging,
and continue to be a cornerstone of modern NLP research and applications.
Modern taggers utilize a transformer-based architecture. In this architecture, the input sequence represents the
sentence and is transformed into embeddings and including positional encoding. The transformer architecture then
maps this sequence to a POS (Part-of-Speech) sequence. Training these models with POS-tagged sentences enables
the neural network to learn its parameters. These specialized models are optimized for POS-tagging and are not
suitable for other tasks.

• All these approaches have a common limitation: they usually support only one language. While multi-language POS-
tagging is possible, it is more advisable to use a language-optimized model when the language of the sentence is
known. Most of these approaches achieve high accuracy, often exceeding 99%, across a wide range of sentences.

4.5 Part of Speech

Page 4-42Multimedia Retrieval – 2023 4.5 Part of Speech

• NLTK employs a transformation-based POS tagger. The process starts with sentence tokenization, followed by a
dedicated classifier that predicts the POS tags for the tokens. It is crucial to input the entire sentence into the POS
tagger because words that can assume various grammatical roles might be misclassified otherwise (e.g., "running" as
a gerund form and "running" as a noun). By considering the complete sentence context, NLTK can provide more
accurate POS tags. Here is the Python code to obtain and list the tokens:

 tokens = nltk.word_tokenize(text_en)
 # tagset = None for standard, or tagset = 'universal'
 tagged_tokens = nltk.pos_tag(tokens, tagset=tagset)
 ner_chunks = [chunk for chunk in nltk.ne_chunk(tagged_tokens) if hasattr(chunk,'label')]

nltk supports different tag sets. The standard tag set is more detailed and depicted on the left side. The universal
tag set focuses on a few main categories as shown on the right side. The standard set is often used for deep NLP
tasks to construct parse trees which allows the extraction of context and the transformation of sentences.

POS Description (standard)

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

POS Description (standard)

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

WH-words are:
where, what,

which, when, …

with NLTK, use
nltk.help.upenn_tagset()

Proper nouns are
specific people,
places, things.

POS Description (universal)

ADJ adjective

ADP adposition

ADV adverb

CONJ conjunction

DET determiner, article

NOUN noun

NUM numeral

PRT particle

PRON pronoun

VERB verb

. punctuation marks

X other

Page 4-43Multimedia Retrieval – 2023

– Named Entity Recognition (NER) is a transformation based on POS tagging. It involves collapsing individual tokens
or groups of tokens into a single named entity using an entity database. These entities can be names of people,
product brands, companies, non-governmental organizations, locations, currencies, and more. In NLTK, the POS
tagged tokens are processed with the ne_chunk function to obtain NER tags. These NER tags enable the
extraction of valuable contextual information, such as person names, locations, or product names. When applied
to a query in question form, it helps to better understand the user's intent and to optimize search results:
o When searching for a name, such as “Who is Albert Einstein?”, prioritize web pages like Wikipedia, IMDb,

Musicbrainz, and sports sites that users commonly visit to gather information about prominent individuals.
o When a query includes time, date, or age information, like “Who won the F1 race last weekend?”, enhance the

visibility of news articles or utilize the extracted time/date to conduct a temporal range query.
o When a query mentions a location, such as “What to do in Basel?”, prioritize regional content and provide a

map of the named location to assist users with navigation.
o When a query involves product brands, like “Where is the latest iPhone available?”, boost advertisements and

shopping sites, conduct a product search to offer a "best price" view, or provide recommendations for buyers.
– Chunking is a versatile technique that involves creating non-overlapping phrases using a defined grammar. For

example, the grammar NP: {<DT>?<JJ>*<NN>} combines articles, adjectives, and nouns into a single group,
facilitating the understanding of term relationships for more effective searching. For instance, “a red car” would
form a parse tree that links the adjective “red” with the noun “car”. More intricate grammars enable the dissection
of sentences into smaller components, allowing for reasoning about context and sentence meaning through
additional dependency information between terms.
o A good online dem with deep NLP capabilities is available here: https://corenlp.run

– To analyze sentence structure, we require a grammar similar to that used in programming languages. Unlike
programming languages, natural language grammar is imperfect and riddled with ambiguities, making it challenging
for both humans and machines to grasp context. Grammar alone cannot resolve these ambiguities; context plays a
crucial role in their resolution (as discussed in the preceding sentence).

4.5 Part of Speech

https://corenlp.run/

Page 4-44Multimedia Retrieval – 2023

• spaCy uses a neural network to predict POS and NER tags, however with different tag names than nltk. The left
table below shows the POS tags, and right table the NER tags. The code is also simple:

 nlp_spacy = spacy.load('en_core_web_sm’)
 tokens = nlp_spacy(text)
 tagged_tokens = [(t.text, t.pos_) for t in tokens]
 ner_entities = [(e.text, e.label_) for e in tokens.ents]

spaCy also offers support for various languages. Refer to their documentation to choose the suitable model.

POS Description Examples

ADJ adjective big, old, green, incomprehensible, first
ADP adposition in, to, during
ADV adverb very, tomorrow, down, where, there
AUX auxiliary is, has (done), will (do), should (do)

CONJ conjunction and, or, but
CCONJ coordinating conjunction and, or, but

DET determiner a, an, the
INTJ interjection psst, ouch, bravo, hello

NOUN noun girl, cat, tree, air, beauty
NUM numeral 1, 2017, one, seventy-seven, IV, MMXIV
PART particle ’s, not,
PRON pronoun I, you, he, she, myself, themselves

PROPN proper noun Mary, John, London, NATO, HBO
PUNCT punctuation ., (,), ?
SCONJ subordinating conjunction if, while, that

SYM symbol $, %, §, ©, +, −, ×, ÷, =, :), 😝
VERB verb run, runs, running, eat, ate, eating

X other sfpksdpsxmsa
SPACE space

NER Description

PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.

PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws.

LANGUAGE Any named language.
DATE Absolute or relative dates or periods.
TIME Times smaller than a day.

PERCENT Percentage, including ”%“.
MONEY Monetary values, including unit.

QUANTITY Measurements, as of weight or distance.
ORDINAL “first”, “second”, etc.

CARDINAL Numerals that do not fall under another type.

4.5 Part of Speech

Page 4-45Multimedia Retrieval – 2023

• Finally, the transformers library offers two pipelines for extracting POS and NER tags using trained neural networks.
It also supports fine-tuning of NER tags to adapt to specific document collections and scenarios. Since transformers
models are continuously advancing, we present the general code structure here and recommend visiting the
Hugging Face website to access the latest models for these pipelines:

nlp_bert = pipeline("token-classification",
 model="vblagoje/bert-english-uncased-finetuned-pos",
 aggregation_strategy="max")
tokens = nlp_bert(text)
tagged_tokens = [(token['word'], token['entity_group']) for token in tokens]

nlp_bert = pipeline("ner",
 model="dslim/bert-base-NER",
 aggregation_strategy="max")
tokens = nlp_bert(text_ner)
ner_entities = [(t['word'], t['entity_group']) for t in tokens]

The aggregation strategy combines tokens, typically sub-words, to reconstruct words or n-grams, especially for
names. Without an aggregation strategy, the model assigns entity values to individual model tokens, potentially
splitting words into smaller tokens without grouping them into entities.
Please consult the model description to determine the specific POS and NER tags used, as these may vary between
different models. In addition to the English version used here, there are models available for other languages as well.

4.5 Part of Speech

Page 4-46Multimedia Retrieval – 2023

• Example: The table on the right (blue) shows the POS tags for the methods discussed on an English sentence
(punctuation and repeating words were removed). On the right side (green), we see the NER tags for the sentence:
“Jack Higgins, wearing Nike shoes, deposits £50,000 with BestBank in London at Jermyn Street close to Piccadilly
Circus”. And finally, the lower, right tables (orange) list the POS tags and their frequency in an English novel.

term
nltk
(standard)

nltk
(universal)

spaCy BERT

this DT DET PRON PRON
was VBD VERB AUX AUX
a DT DET DET DET
lofty JJ ADJ ADJ ADJ
chamber NN NOUN NOUN NOUN
lined VBN VERB VERB VERB
and CC CONJ CCONJ CCONJ
littered VBN VERB VERB VERB
with IN ADP ADP ADP
countless JJ ADJ ADJ ADJ
bottles NNS NOUN NOUN NOUN
broad NNP NOUN ADJ ADJ
low JJ ADJ ADJ ADJ
tables NNS NOUN NOUN NOUN
were VBD VERB AUX AUX
scattered VBN VERB VERB VERB
about IN ADP ADP ADV
which WDT DET PRON PRON
bristled VBD VERB VERB VERB
retorts NNS NOUN NOUN NOUN
little JJ ADJ ADJ ADJ
their PRP$ PRON PRON PRON
blue JJ ADJ ADJ ADJ
there EX DET PRON PRON
only RB ADV ADV ADV
one CD NUM NUM NUM

NER entity nltk spaCy BERT

50,000 MONEY

BestBank ORGANIZATION ORG ORG

Jack Higgins PERSON PERSON PER

Jermyn Street FACILITY FAC LOC

London GPE GPE LOC

Nike PERSON ORG MISC

Piccadilly Circus PERSON ORG LOC

POS (nltk,
standard)

freq

NN 6906
IN 5602
DT 4620
PRP 4031
VBD 3459
JJ 3070
, 2959
NNP 2558
. 2433
RB 2171
CC 1786
VB 1730
NNS 1470
PRP$ 1358

POS
(spaCy)

freq

PUNCT 8080
NOUN 7433
PRON 6745
VERB 6025
ADP 5073
DET 4451
SPACE 3844
AUX 3055
ADJ 2877
ADV 2265
CCONJ 1698
PROPN 1648
SCONJ 1449
PART 993

POS (nltk,
universal)

freq

NOUN 10953
VERB 9292
PRON 5653
ADP 5602
. 5550
DET 5260
ADJ 3234
ADV 2520
CONJ 1786
PRT 1359
NUM 345
X 49

4.5 Part of Speech

Page 4-47Multimedia Retrieval – 2023

4.6 Latent Semantic Analysis
• Previously, we viewed documents as sparse high-dimensional vectors, using either binary (set-of-words) or 𝑡𝑓 ∙ 𝑖𝑑𝑓

values. We leveraged vector sparsity with the inverted index for fast document retrieval, and employed parallelism
to enhance performance and concurrency. However, this approach assumed term independence, limiting matching
for similar but different terms like “house”, “villa”, and “houses”. To address this, we used stemming techniques to
reduce words to a common stem and lemmatization to identify synonyms and hypernyms. This improved matching
between query and document terms, such as query expansion for “house” queries with synonyms like “villa”.

• Stemming and lemmatization, while effective, are language-dependent, general across various documents, and
demand substantial manual effort for high-quality results. Moreover, they often fail to address semantically similar
terms specific to a collection. In our course, we discussed tokens, words, and terms, which, though not identical, can
be seen as closely related. For instance, a search for “tokens” might also yield paragraphs mentioning “terms”. To
enhance term matching in such situations, we need a method capable of learning semantic relationships specific to
each context, ideally without manual intervention.

• Latent Semantic Indexing (LSI) is a method to understand the semantic meaning of terms in document collections
through dimensionality reduction. The sparse, high-dimensional document vectors are transformed into a compact,
lower-dimensional representation unique to that collection. These dimensions no longer align with individual terms
but instead represent latent topics that characterize the collection. However, these topics may not precisely align
with our conceptual understanding. Both documents and terms can be expressed as combinations of these topics,
and it is this connection between terms and topics that partly explains the extracted topics. For instance, consider a
retrieved topic explained as 3.45 * airplane + 0.34 * bird. We might interpret this as “flying”. However, the
model can also generate a mathematically justified description as 3.45 * airplane + 0.34 * flower, which
does not immediately align with a concept we commonly associate with our thinking.

• LSI was developed at Bell Labs in the 1980s by Susan Dumais and Scott Deerwester to enhance information
retrieval systems. The first article was published in 1988, and a patent was granted the same year (the patent has
since expired). Although LSI found applications in various scenarios, it faced challenges due to the substantial
computational requirements for topic learning and the inability to use inverted files with the compact lower-
dimensional vectors. While computational challenges have been addressed, LSI now lacks the fine-grained semantic
associations found in embeddings.

4.6 Latent Semantic Analysis

Page 4-48Multimedia Retrieval – 2023 4.6 Latent Semantic Analysis

• We briefly introduce the mathematical concepts before delving into their application in text retrieval. In linear
algebra, eigenvector decomposition is a technique used to convert a quadratic 𝑛 × 𝑛-matrix 𝐀 into a set of
eigenvalues 𝜆𝑖 and corresponding eigenvectors 𝑣𝑖 of length 1, satisfying the equation for matrix 𝐀:

Eigenvalues are determined by solving the equation det(𝐀 − 𝜆𝐈) = 0, equivalent to finding roots of a polynomial of
degree 𝑛. Eigenvalues can be real or complex and may have multiplicity. The associated eigenvectors are
orthonormal. The formula on the right illustrates the eigenvalue decomposition of matrix 𝐀. Let 𝑟 ≤ 𝑛 be the rank of
𝐀. We can express matrix 𝐀 as the product of 𝐔 (an 𝑟 × 𝑟 matrix) containing the eigenvectors and 𝚲 (an 𝑟 × 𝑟 diagonal
matrix) containing the corresponding eigenvalues.

• Eigenvectors describe the directions in which the matrix scales and stretches, valuable for characterizing latent topics
in a text corpus. However, the document-term matrix is generally non-square. Therefore, we use the Singular Value
Decomposition (SVD), a generalization of the eigenvalue decomposition. Let 𝐀 be an m × 𝑛-matrix of rank r. There
exists an 𝑟 × 𝑟-diagonal matrix 𝐒, an orthonormal m × 𝑟-matrix 𝐔, and an orthonormal n × 𝑟-matrix 𝐕 such that:

The connection between singular value and eigenvalue decomposition is shown with the following representations.
Specifically, the singular values are the square roots of the eigenvalues for the matrices 𝐀⊤𝐀 and 𝐀𝐀⊤:

• We can express 𝐀 = 𝐔𝐒𝐕⊤ as a sum of vector products, known as dyadic vector products.

By omitting one or more of these summands, we obtain an approximation for 𝐀. We get the best approximation
(Frobenius norm) of rank 𝑘 < 𝑟 by keeping the summands of the 𝑘 largest singular values and their corresponding
columns in 𝐔 and 𝐕. This provides then a mapping from the original 𝑚-dimensional to a compact 𝑘-dimensional space.

𝐀𝒗 = 𝜆𝒗 𝐀 = 𝐔𝚲𝐔⊤

𝐀 = 𝐔𝐒𝐕⊤

𝐀⊤𝐀 = USV⊤ ⊤ 𝐔𝐒𝐕⊤ = VSU⊤US𝐕⊤ = VS2V⊤ 𝐀𝐀⊤ = USV⊤ 𝐔𝐒𝐕⊤ ⊤ = USV⊤VS𝐔⊤ = US2U⊤

𝐀 = 𝑠1 𝒖𝟏𝒗𝟏
⊤ + 𝑠2 𝒖𝟐𝒗𝟐

⊤ + ⋯ + 𝑠𝑟 𝒖𝒓𝒗𝒓
⊤

Page 4-49Multimedia Retrieval – 2023

4.6.1 Application in Text Retrieval

4.6.1 Application in Text Retrieval

• In text retrieval, we can apply the Singular Value Decomposition (SVD) to the document-term matrix 𝐀, typically
using 𝑡𝑓 ∙ 𝑖𝑑𝑓 weighted components. SVD decomposes 𝐀 into matrices 𝐔, 𝐒, and 𝐕, reducing them to the intrinsic
rank 𝑟 ≤ min(𝑚, 𝑛). Matrix 𝐔 represents the 𝑚 terms of the vocabulary in an 𝑟-dimensional space, 𝐒 contains
singular values (usually sorted by decreasing value on the diagonal), and 𝐕 holds the 𝑛 documents in the collection as
representations in an 𝑟-dimensional space.

• As we enumerate singular values in decreasing order, the values quickly diminish in magnitude, allowing us to
remove many of them while still be able to accurately reconstruct matrix 𝐀. Removing singular values and their
corresponding columns in 𝐔 and 𝐕 reduces the dimensionality of the new term and document representations.

𝑛 documents

𝑚
 t

er
m

s =

𝑚 × 𝑟

columns of 𝐔
are orthonormal

𝐀 𝐔

𝑚 × 𝑛 𝑟 × 𝑟

 𝐒 diagonal,
𝑟 ≤ min 𝑚, 𝑛

𝑟 × 𝑛

rows of 𝐕⊤
are orthonormal

𝐕⊤

x
 x
 x
 x
 x
𝐒

𝐀 = 𝐔𝐒𝐕⊤

d
o
c
u
m

e
n
t

d
o
c
u
m

e
n
t

Note that we use 𝐕⊤ and
thus columns of 𝐕 are

depicted as rows of 𝐕⊤

term term

Page 4-50Multimedia Retrieval – 2023

x
 x
 x

documents

te
rm

s

= U

𝑘 × 𝑘
𝐒𝑘 diagonal

k ≤ 𝑟 ≤ min 𝑚, 𝑛

𝑘 × 𝑛
rows of 𝐕𝑘

⊤ are
orthonormal

𝐕𝑘
⊤

𝐒𝑘

4.6.1 Application in Text Retrieval

• Dimensionality reduction: When we reduce the number of singular values in the dyadic vector product
representation of 𝐀, we also eliminate corresponding columns in 𝐔 and 𝐕, resulting in reduced matrices 𝐔𝑘, 𝐒𝑘, and
𝐕𝑘, as illustrated below. Consequently, the new representations for documents and terms in the original document-
term matrix are now more compact, with 𝑘 dimensions. Columns in 𝐕𝑘

⊤ (equivalent to rows in 𝐕𝑘) contain the new
representations for documents, each dimension expressing a latent topic in the corpus. Consequently, the 𝑖-th row
in 𝐕𝑘

⊤ (or 𝑖-th column in 𝐕𝑘) describes the 𝑖-th latent topic in terms of the documents. Similarly, columns in 𝐔𝑘
contain the new representations for terms, again with each dimension expressing a latent topic in the corpus.
Consequently, the 𝑖-th column in 𝐔𝑘 portrays the relationship between the 𝑖-th topic and the vocabulary terms. This
enables us to describe the topics identified by LSI.

• When new documents, possibly with new terms, are added to the collection, we must repeat this process for the
updated document-term matrix to adapt to topic changes. To avoid recalculations for each new document, the
following pages detail an approximate approach that delays the need for renewed SVD computations.

𝐀𝑘 𝐔𝑘

new, reduced
representation of

the document

d
o
c
u
m

e
n
t d

o
c
u
m

e
n
t

term term

𝑚 × 𝑘

columns of 𝐔𝑘
are orthonormal

𝑚 × 𝑛

new, reduced
representation of

the term

Page 4-51Multimedia Retrieval – 2023 4.6.1 Application in Text Retrieval

• Inserting new documents (approximation): Using the approximate representation 𝐀𝑘 from the redcued singular
value decomposition, we can derive a mapping from the original term space to the topic space in three steps as
follows: 1) transpose both sides of the equation, 2) multiply first by 𝐔𝑘

⊤ −𝟏
= 𝐔𝒌 and then by 𝐒𝑘

−1, and 3) focus on a
single document in 𝐀𝑘

⊤ (denoted as 𝒅⊤) and 𝐕𝑘 (denoted as 𝒅⊤).

As long as the new documents do not significantly alter the collection's characteristics, the latent topics remain
relatively consistent, allowing us to delay the SVD recalculations. When the collection size has increased by a certain
threshold percentage, we can initiate recalculations and operate with updated topics.

• What about new terms? We can map new terms to their reduced space in 𝐔𝑘 with the formula 𝒕⊤ = 𝒕⊤𝐕𝑘𝐒𝑘
−1.

However, because a new term appears only in a new document, the term vector 𝒕 solely depends on the reduced
representation of that new document in 𝐕𝑘 and the values in 𝐒𝑘. If a document has two new terms, they both
receive the same approximate representation 𝒕 due to this. A better approach is to disregard terms not in the
vocabulary and introduce them through a fresh SVD calculation.

documents

te
rm

s

= U

x
 x
 x

𝐕𝑘
T

𝐒𝑘𝐀𝑘 𝐔𝑘

n
e
w

 d
o
c
u
m

e
n
t

n
e
w

 d
o
c
u
m

e
n
t

𝒅⊤ = 𝒅⊤𝐔𝑘𝐒𝑘
−1

𝐀𝑘 = 𝐔𝑘𝐒𝑘𝐕𝑘
⊤ 𝐀𝑘

⊤ = 𝐕𝑘𝐒𝑘𝐔𝑘
⊤ 𝐕𝑘 = 𝐀𝑘

⊤𝐔𝑘𝐒𝑘
−1 𝒅⊤ = 𝒅⊤𝐔𝑘𝐒𝑘

−11 2 3

Page 4-52Multimedia Retrieval – 2023 4.6.1 Application in Text Retrieval

• Like vector space retrieval, LSI treats queries as miniature documents. To compare them with the documents in the
collection, we must initially map the query, akin to newly added documents, to the reduced topic space:

• We apply the same similarity functions, using either the dot-product or the cosine measure, to compare the query
with the document collection.

• The primary difference is that we are now comparing two dense vectors. Since the query vector usually has non-
zero values in all dimensions, the inverted index method cannot be used to expedite the search. Instead, we must
evaluate similarity for each document and arrange them by score. Despite the lower dimensionality of LSI vectors
compared to the original document vectors, we need to process substantially more data and cannot eliminate
documents as efficiently as with inverted indexes. We will consider indexing methods for dense vector search in a
later chapter. For now, it is vital to understand that we must strike a balance between having more topics for a
richer semantic representation of the corpus's latent topics and fewer dimensions to minimize retrieval costs.

• While it is feasible to reuse the mapping from document vectors to a compact, lower-dimensional representation
when using the same vocabulary in different collections, the common approach is to apply LSI separately for each
corpus. This is because LSI not only learns the vital topics from terms but also their context within the documents.
Consequently, the mapping for an IT article collection will differ significantly from that of news articles. Employing a
generic mapping would diminish topic quality and potentially harm retrieval performance.

𝒒⊤ = 𝒒⊤𝐔𝑘𝐒𝑘
−1

𝑠𝑖𝑚𝑑𝑜𝑡 𝑄, 𝐷𝑖 = 𝒒 ∙ 𝒅𝑖 = ෍

𝑗=1

𝑀

𝑞𝑗 ∙ 𝑑𝑖,𝑗
𝑠𝑖𝑚𝑐𝑜𝑠 𝑄, 𝐷𝑖 =

𝒒 ∙ 𝒅𝑖

𝒒 ∙ 𝒅𝑖
=

σ𝑗=1
𝑀 𝑞𝑗 ∙ 𝑑𝑖,𝑗

σ𝑗=1
𝑀 𝑞𝑗

2 ∙ σ𝑗=1
𝑀 𝑑𝑖,𝑗

2

Page 4-53Multimedia Retrieval – 2023

4.6.2 A Simple Example with LSI
• Let’s consider a simple example to illustrate, step-by-step, how LSI works:

 c1 Human machine interface for Lab ABC computer applications

 c2 A survey of user opinion of computer system response time

 c3 The EPS user interface management system

 c4 System and human system engineering testing of EPS

 c5 Relation of user-perceived response time to error measurement

 m1 The generation of random, binary, unordered trees

 m2 The intersection graph of paths in trees

 m3 Graph minors IV: Widths of trees and well-quasi-ordering

 m4 Graph minors: A survey

• We observe that the collection comprises two distinct document subgroups: one focusing on human interfaces and
the other on graph algorithms. When we query this collection with “human-computer interaction”, we notice that
not all relevant documents c1...c5 contain the query terms. With classical retrieval models, query expansion is
necessary to introduce synonyms and broader terms for improved search quality (e.g., “human” to “user”,
“computer” to “system”). Now, let's assess how LSI performs in this example.

4.6.2 A Simple Example with LSI

Page 4-54Multimedia Retrieval – 2023 4.6.2 A Simple Example with LSI

• First, we create the document-term matrix. For simplicity, we consider only term frequencies and assume equal
importance for all terms (i.e., 𝑖𝑑𝑓 = 1 for all terms). We also exclude stop words and terms that appear only once in
the collection since they are unlikely to contribute to topics, being isolated to a single document.

c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 1

interface 1 1

computer 1 1

user 1 1 1

system 1 1 2

response 1 1

time 1 1

EPS 1 1

survey 1 1

trees 1 1 1

graph 1 1 1

minors 1 1

A =

(m=12, n=9)

Page 4-55Multimedia Retrieval – 2023 4.6.2 A Simple Example with LSI

• Then we apply the singular value decomposition on the matrix 𝐀 below. The results are shown below.

0.2214 -0.1132 0.2890 -0.4148 -0.1063 -0.3410 0.5227 -0.0605 -0.4067
 0.1976 -0.0721 0.1350 -0.5522 0.2818 0.4959 -0.0704 -0.0099 -0.1089
 0.2405 0.0432 -0.1644 -0.5950 -0.1068 -0.2550 -0.3022 0.0623 0.4924
 0.4036 0.0571 -0.3378 0.0991 0.3317 0.3848 0.0029 -0.0004 0.0123
 0.6445 -0.1673 0.3611 0.3335 -0.1590 -0.2065 -0.1658 0.0343 0.2707
 0.2650 0.1072 -0.4260 0.0738 0.0803 -0.1697 0.2829 -0.0161 -0.0539
 0.2650 0.1072 -0.4260 0.0738 0.0803 -0.1697 0.2829 -0.0161 -0.0539
 0.3008 -0.1413 0.3303 0.1881 0.1148 0.2722 0.0330 -0.0190 -0.1653
 0.2059 0.2736 -0.1776 -0.0324 -0.5372 0.0809 -0.4669 -0.0363 -0.5794
 0.0127 0.4902 0.2311 0.0248 0.5942 -0.3921 -0.2883 0.2546 -0.2254
 0.0361 0.6228 0.2231 0.0007 -0.0683 0.1149 0.1596 -0.6811 0.2320
 0.0318 0.4505 0.1411 -0.0087 -0.3005 0.2773 0.3395 0.6784 0.1825

U =

3.3409
 2.5417
 2.3539
 1.6445
 1.5048
 1.3064
 0.8459
 0.5601
 0.3637

S =

0.1974 0.6060 0.4629 0.5421 0.2795 0.0038 0.0146 0.0241 0.0820
-0.0559 0.1656 -0.1273 -0.2318 0.1068 0.1928 0.4379 0.6151 0.5299
 0.1103 -0.4973 0.2076 0.5699 -0.5054 0.0982 0.1930 0.2529 0.0793
-0.9498 -0.0286 0.0416 0.2677 0.1500 0.0151 0.0155 0.0102 -0.0246
 0.0457 -0.2063 0.3783 -0.2056 0.3272 0.3948 0.3495 0.1498 -0.6020
-0.0766 -0.2565 0.7244 -0.3689 0.0348 -0.3002 -0.2122 0.0001 0.3622
 0.1773 -0.4330 -0.2369 0.2648 0.6723 -0.3408 -0.1522 0.2491 0.0380
-0.0144 0.0493 0.0088 -0.0195 -0.0583 0.4545 -0.7615 0.4496 -0.0696
-0.0637 0.2428 0.0241 -0.0842 -0.2624 -0.6198 0.0180 0.5199 -0.4535

𝐕⊤ =

Page 4-56Multimedia Retrieval – 2023

• To simplify document presentation, we choose 𝑘 = 2 and adjust all matrices accordingly. The matrix 𝐕𝑘
T contains the

reduced documents as 2-dimensional vectors in its columns, maintaining the same order as in the collection. On the
next page, we use these vectors to illustrate the document positions in this 2-topic space.

• Next, we project the query into the topic space. Since “interaction” is not in the vocabulary, the query vector
contains only two 1s. This vector is then mapped to the 2-dimensional topic space. On the left side, we also display
the approximate representation of 𝐀 with 𝑘 = 2. While it may not closely resemble the original document-term
matrix, 𝐀𝑘 shown below is the best rank-2 representation for 𝐀 under the Frobenius norm.

4.6.2 A Simple Example with LSI

0.2214 -0.1132
0.1976 -0.0721
0.2405 0.0432
0.4036 0.0571
0.6445 -0.1673
0.2650 0.1072
0.2650 0.1072
0.3008 -0.1413
0.2059 0.2736
0.0127 0.4902
0.0361 0.6228
0.0318 0.4505

3.3409
 2.5417

0.1974 0.6060 0.4629 0.5421 0.2795 0.0038 0.0146 0.0241 0.0820
-0.0559 0.1656 -0.1273 -0.2318 0.1068 0.1928 0.4379 0.6151 0.5299

𝐔𝑘 𝐒𝑘 𝐕𝑘
T

0.1621 0.4005 0.3790 0.4676 0.1760 -0.0527 -0.1151 -0.1591 -0.0918
 0.1406 0.3698 0.3290 0.4004 0.1650 -0.0328 -0.0706 -0.0968 -0.0430
 0.1524 0.5050 0.3579 0.4101 0.2362 0.0242 0.0598 0.0869 0.1240
 0.2580 0.8411 0.6057 0.6974 0.3923 0.0331 0.0832 0.1218 0.1874
 0.4488 1.2344 1.0509 1.2658 0.5563 -0.0738 -0.1547 -0.2096 -0.0489
 0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169
 0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169
 0.2185 0.5496 0.5110 0.6281 0.2425 -0.0654 -0.1425 -0.1966 -0.1079
 0.0969 0.5321 0.2299 0.2118 0.2665 0.1368 0.3146 0.4444 0.4250
-0.0613 0.2321 -0.1389 -0.2656 0.1449 0.2404 0.5461 0.7674 0.6637
-0.0647 0.3353 -0.1456 -0.3014 0.2028 0.3057 0.6949 0.9766 0.8487
-0.0431 0.2539 -0.0967 -0.2079 0.1519 0.2212 0.5029 0.7069 0.6155

𝐀𝑘=

1
0
1
0
0
0
0
0
0
0
0
0

𝒒

𝐔𝑘𝐒𝑘
−1

0.1382
-0.0276

𝒒

reduced
representation

for c1

Page 4-57Multimedia Retrieval – 2023

• The right side visualizes the document
collection. We notice that topic 1 (x-
dimension) aligns more with documents
c1 to c5, while topic 2 (y-dimension)
aligns with documents m1 to m4.

• The query is represented at (0.14, -
0.03), pointing toward the c-
documents. When we apply a cosine
similarity measure, we select the green
area, which encompasses the subspace
with an angle of at most 𝛼 to the query
vector. This area includes all the c-
documents, and we can arrange them
as follows: c1 < c3 < c4 < c2 < c5.

• Interestingly, c3 ranks as the second-
best document despite lacking any of
the query terms. Due to the SVD
reduction, some of its terms align with
topics similar to the query terms,
making c3 highly relevant.

• We can extract the meaning of topic 1
from the 𝐔𝑘 matrix (first column).

0.64*system + 0.40*user +
0.30*eps + 0.27*time +
0.27*response + 0.24*computer

and for topic 2:

0.62*graph + 0.49*trees +
0.45*minors + 0.27*survey

4.6.2 A Simple Example with LSI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q

c1

c3

c4

c5

m1

m2

m4

m3

c2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5





acos(sim) < 

0.7

0.6

Page 4-58Multimedia Retrieval – 2023

4.7 Embeddings
• Word embeddings, like latent semantic indexing, map words (or sub-words) to a 𝑑-dimensional space, where 𝑑 is

much smaller than the vocabulary size, usually ranging from 100 to 1,000 dimensions. The key distinction from LSI
is as follows:
– LSI maps documents to vectors, while embeddings map vocabularies to vectors. Modern transformer-based

embeddings, however, can generate embeddings for entire sequences, capturing richer semantics than earlier
models that aggregated vectors along the sequence.

– LSI examines semantic relationships between terms globally, without considering the distance or context of
term occurrences. Earlier embedding models used defined context windows around words to establish these
relationships. Transformer-based models address the challenge of sequence-to-sequence transformations by
employing self-attention mechanisms to acquire contextualized word embeddings.

– LSI reduces dimensionality and minimizes the loss on the original document-term matrix with lower-dimensional
representations. However, SVD can be computationally expensive and does not scale efficiently (although it can
handle millions of documents). Embeddings employ neural network-based learning techniques to optimize the
loss between predictions and targets, offering a more efficient approach.

– LSI employs a static vocabulary and necessitates retraining to accommodate new terms (such as names or
brands). Earlier embedding models are vocabulary-based as well, but some operate at a sub-word level, enabling
them to handle unknown or misspelled terms. Transformer-based models utilize pre-trained sub-words like BPE
and word pieces to generate embeddings for a smaller vocabulary. They can address unseen words by breaking
them into sub-parts and providing embeddings for these smaller tokens.

– LSI mappings can theoretically be applied to other collections, but this often results in suboptimal performance
because latent topics are shaped by both documents and terms specific to a collection. Therefore, an LSI model
tailored for IT might not excel with biology articles. Conversely, embeddings create mappings based on terms
and context, enabling reuse in different but similar collections. However, optimal performance with embeddings
requires collection-specific optimization. For instance, embeddings from one language do not transfer well to
another language. Transformer-based models may also face issues with suboptimal tokens (e.g., BPE, word
pieces) when transferred to different languages, affecting embedding quality.

4.7 Embeddings

Page 4-59Multimedia Retrieval – 2023

4.7.1 Word2vec, GloVe, and fastText
• Word2Vec, initially introduced in 2013 by Mikolov at al., aims to optimize the mapping of vocabulary (words) to a 𝑑-

dimensional vector space. This mapping relies on context windows around words and is trained in a self-supervised
manner, eliminating the need for labeling. Word2Vec offers two variations:
– The Skip-Gram Model operates within a context window of size 2𝑚 + 1 around a center word. It learns word

representations by predicting context words from the center word. For example, if the center word is “apple”, the
model predicts which words are likely to appear in the context window, like “juice”, “tree”, “red”, or “eat”. Words
like “complex”, “retrieval”, “planet”, and “learn” are less likely to be found near “apple”,

– The Continuous Bag of Words (CBOW) Model employs a similar method with a context window of size 2𝑚 + 1.
However, it learns representations to predict the center word from all the context words. For instance, in the
sentence “the apple is [blank] and tastes delicious”, CBOW would aim to predict the center word "[blank]" based
on the surrounding words “the”, “apple”, “is”, “and”, “tastes”, and “delicious”. A word like “ripe” is a better match
than the word “car”.

• Both models yield a mapping from the vocabulary to a d-dimensional vector which can be used for different tasks:
– Semantic Word Analysis: Vector representations establish semantic relationships between terms, enabling the

use of similarity measures (e.g., cosine, Euclidean, dot-product) to identify closely related terms. These
relationships are learned and adapted for the collection, eliminating the need for manual dictionary curation.

– Token Classification: Word embeddings can enhance part-of-speech and named entity recognition, replacing the
need for manual or rule-based methods.

– Machine Translation: When translating between languages, word embeddings assist in selecting the optimal
words and arranging them in the target language by considering the broader context. This helps to resolve
ambiguities and to improve translation quality.

– Text Classification: By representing entire documents as sequences of vectors using embeddings, we can enhance
machine learning approaches. These semantically rich representations can lead to improved quality even with
simple models. Similarly, embeddings help to discover latent topics in collections.

– Text Retrieval: Word embeddings' semantic relationships improve query-document matching in retrieval tasks,
which we will explore in greater detail later in this section.

4.7.1 Word2vec, GloVe, and fastText

Page 4-60Multimedia Retrieval – 2023 4.7.1 Word2vec, GloVe, and fastText

• The Skip-Gram Model: Let's take the phrase “the dog chases a cat” with its center word “chases” and a context
window of size 2𝑚 + 1 = 5 (𝑚 = 2 words before and 𝑚 = 2 words after the center word). In the skip-gram model,
we assess the conditional probability of the center word generating the surrounding words, assuming independence
among the surrounding words:

We can illustrate this relationship graphically as follows:

– In the skip-gram model, a word 𝑤𝑖 is represented by two 𝑑-dimensional vectors 𝒗𝑖 ∈ ℝ𝑑 and 𝒖𝑖 ∈ ℝ𝑑 when
employed as a center word (𝒗𝑖) or as a surrounding word (𝒖𝑖). We can employ a softmax operation to model the
conditional probability of generating the surrounding word 𝑤𝑠 from the center word 𝑤𝑐:

where 𝕋 represents the set of words in a corpus of documents. Assuming the corpus consists of a sequence of 𝑛
words 𝑤1 … 𝑤𝑛, the likelihood function for the skip-gram model is expressed as:

with a context window of size 2𝑚 + 1. The objective is to find vectors 𝒗𝑖 ∈ ℝ𝑑 and 𝒖𝑖 ∈ ℝ𝑑 that maximize the
likelihood function, and we then can use the mapping 𝑤𝑖 → 𝑣𝑖 to translate words from the vocabulary to a 𝑑-
dimensional vector.

𝑃 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑡ℎ𝑒 𝑐𝑎𝑡 | 𝑐ℎ𝑎𝑠𝑒𝑠 = 𝑃 𝑡ℎ𝑒|𝑐ℎ𝑎𝑠𝑒𝑠 ∙ 𝑃 𝑑𝑜𝑔|𝑐ℎ𝑎𝑠𝑒𝑠 ∙ 𝑃 𝑎|𝑐ℎ𝑎𝑠𝑒𝑠 ∙ 𝑃 𝑐𝑎𝑡|𝑐ℎ𝑎𝑠𝑒𝑠

chases

the dog a cat

𝑃 𝑤𝑠 | 𝑤𝑐 =
𝑒𝒖𝑠

𝑇𝒗𝑐

σ𝑖∈𝕋 𝑒𝒖𝑖
𝑇𝒗𝑐

ෑ

𝑖=𝑚+1

𝑛−𝑚

ෑ

𝑗=𝑖−𝑚,𝑗≠𝑖

𝑖+𝑚

𝑃 𝑤𝑗|𝑤𝑖

Page 4-61Multimedia Retrieval – 2023 4.7.1 Word2vec, GloVe, and fastText

– To optimize the model's likelihood function, we can minimize the following loss function instead:

We cannot directly find a solution for the above optimization problem. Instead, we employ a gradient descent
method during a training phase to minimize the loss. An alternative approach is the modeling of the optimization
problem with a single hidden layer network, as shown at the bottom of this page. The model takes a one-hot
vector representing the center word as input. It then passes through a fully connected network without bias and
activation function. The columns in the corresponding weight matrix represent vectors 𝒗𝑖. The hidden layer
comprises 𝑑 neurons and is followed by another fully connected network, again without bias and activation
function. The columns in this matrix correspond to the vectors 𝒖𝑖. A softmax classifier on the output layer is
compared with the target one-hot vector of surrounding words.

0
0
0
1
0
0
0
0
0
0
0
0

one-hot
vector

center word
representation

(𝕋 dimensional)

fully
connected
→ 𝒗𝑖

𝑑 hidden neurons
(linear activation)

0
0
0
0
0
0
0
0
1
0
0
0

one-hot
vector

each surrounding word
is a training target
(𝕋 dimensional)

output layer
softmax classifier
(𝕋 dimensional)

error

function

− ෍

𝑖=𝑚+1

𝑛−𝑚

෍

𝑗=𝑖−𝑚,𝑗≠𝑖

𝑖+𝑚

log 𝑃 𝑤𝑗|𝑤𝑖

fully
connected
→ 𝒖𝑖

no bias and activation function

Page 4-62Multimedia Retrieval – 2023

– We can employ a self-supervised approach to train the model, which means we can utilize supervised learning
techniques without relying on external or human-provided labels. To train word2vec models using a large text
corpus, we create the training, test, and validation datasets from the corpus as follows:
o We enumerate all windows of size 2𝑚 + 1 in the corpus. To avoid incorrect associations across sentence

boundaries, we can split texts into sentences and ensure that windows are confined within sentences.
o For every window, we generate pairs of center word and surrounding word. In each window, we produce 2𝑚

data samples. As an example, consider the window “the red apple tastes fine”. We create four pairs: (apple, the),
(apple, red), (apple, tastes), and (apple, fine). Each of these pairs contributes to training the model.

o Optionally, we can sub-sample or exclude pairs with common terms (stop words). Sub-sampling reduces the
numbers of pairs often to as low as 1%. This enhances accuracy and accelerates the training.

o Optionally, we can lemmatize or tokenize words (e.g., stemming) to decrease vocabulary size, but this may
restrict the applicability of vectors for some contexts.

– During training, we utilize pairs of center and surrounding word to compute the loss function and make
adjustments to the model weights, that is the vectors 𝒖𝑖 and 𝒗𝑖. This process is iterated until the loss function
reaches a sufficiently low value. The outcome is a vocabulary-to-vector mapping, represented as 𝒗𝑖.

– To efficiently handle word pairs without using memory-intensive one-hot vectors, a PyTorch implementation can
use the Embedding layer and the CrossEntropyLoss function, directly working with token IDs instead of
vectors. The code below defines the model on the left side, and outlines the training process on the right side.

class SkipGramModel(nn.Module):
 def __init__(self, vocab_size: int, embedd_size: int):
 super().__init__()
 self.embeddings = nn.Embedding(
 num_embeddings=vocab_size,
 embedding_dim=embedd_size)
 self.linear = nn.Linear(
 in_features=embedd_size,
 out_features=vocab_size,
)

 def forward(self, inputs):
 x = self.embeddings(inputs)
 x = self.linear(x)
 return x

sketch of training process
model = SkipGramModel(vocab_size=len(vocab), embedd_size=100)
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.CrossEntropyLoss()

for inputs, labels in batch_loader_skipgram(text_corpus):
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = loss_fn(outputs, labels)
 loss.backward()
 optimizer.step()

4.7.1 Word2vec, GloVe, and fastText

Page 4-63Multimedia Retrieval – 2023 4.7.1 Word2vec, GloVe, and fastText

• Word2vec also defines an alternative model known as the Continuous Bag of Words (CBOW) model. It operates
similarly to the skip-gram model but focuses on the likelihood that the surrounding words generate the center word.
To illustrate, let's revisit the phrase “the dog chases a cat” with the center word “chases” and a context window of
size 2𝑚 + 1 = 5. We evaluate the conditional probability of the surrounding words generating the center word, with
an assumption of independence among the surrounding words:

We can illustrate this relationship graphically as follows:

– In the CBOW model, a word 𝑤𝑖 is represented by two 𝑑-dimensional vectors 𝒗𝑖 ∈ ℝ𝑑 and 𝒖𝑖 ∈ ℝ𝑑 when employed
as a center word (𝒗𝑖) or as a surrounding word (𝒖𝑖). We can employ a softmax operation to model the conditional
probability of generating the center word 𝑤𝑐 from its surrounding words 𝑤𝑐−𝑚, … , 𝑤𝑐−1, 𝑤𝑐+1, … , 𝑤𝑐+𝑚:

where 𝕋 represents the set of words in a corpus of documents. Assuming the corpus consists of a sequence of 𝑛
words 𝑤1 … 𝑤𝑛, the likelihood function for the skip-gram model is expressed as:

with a context window of size 2𝑚 + 1. The objective is to find vectors 𝒗𝑖 ∈ ℝ𝑑 and 𝒖𝑖 ∈ ℝ𝑑 that maximize the
likelihood function, and we then can use the mapping 𝑤𝑖 → 𝑣𝑖 to translate words from the vocabulary to a 𝑑-
dimensional vector.

𝑃 𝑐ℎ𝑎𝑠𝑒𝑠 | 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑡ℎ𝑒 𝑐𝑎𝑡

chases

the dog a cat

𝑃 𝑤𝑐 | 𝑤𝑐−𝑚, … , 𝑤𝑐−1, 𝑤𝑐+1, … , 𝑤𝑐+𝑚 =
𝑒

1
2𝑚

𝒖𝑐
𝑇 𝒗𝑐−𝑚+⋯+𝒗𝑐−1+𝒗𝑐+1+⋯+𝒗𝑐+𝑚

σ𝑖∈𝕋 𝑒𝒖𝑖
𝑇 𝒗𝑖−𝑚+⋯+𝒗𝑖−1+𝒗𝑖+1+⋯+𝒗𝑖+𝑚

ෑ

𝑖=𝑚+1

𝑛−𝑚

𝑃 𝑤𝑐 | 𝑤𝑐−𝑚, … , 𝑤𝑐−1, 𝑤𝑐+1, … , 𝑤𝑐+𝑚

Page 4-64Multimedia Retrieval – 2023

no bias and activation function

4.7.1 Word2vec, GloVe, and fastText

– To optimize the model's likelihood function, we can minimize the following loss function instead:

We cannot directly find a solution for the above optimization problem. Instead, we employ a gradient descent
method during a training phase to minimize the loss. An alternative approach is the modeling of the optimization
problem with a single hidden layer network, as shown at the bottom of this page. Contrary to the skip-gra-model,
the input is now an 2m-hot vector with each surrounding word setting a component to 1/2m. It then follows the
same structure as with the skip-gram model, passing through a fully connected network without bias and
activation function. The columns in the corresponding weight matrix represent vectors 𝒗𝑖. The hidden layer
comprises 𝑑 neurons and is followed by another fully connected network, again without bias and activation
function. The columns in this matrix correspond to the vectors 𝒖𝑖. A softmax classifier on the output layer is
compared with the target one-hot vector of the center word.

0
0
0

1/4
0
0

1/4
0

1/4
0
0

1/4
0

all words
in surrounding
average vectors

averaged words
in surrouding

(𝕋 dimensional)

fully
connected
→ 𝒗𝑖

𝑑 hidden neurons
(linear activation)

0
0
0
0
0
0
0
0
1
0
0
0

one-hot
vector

center word is the
training target

(𝕋 dimensional)

output layer
softmax classifier
(𝕋 dimensional)

error

function

− ෍

𝑖=𝑚+1

𝑛−𝑚

log 𝑃 𝑤𝑐 | 𝑤𝑐−𝑚, … , 𝑤𝑐−1, 𝑤𝑐+1, … , 𝑤𝑐+𝑚

fully
connected
→ 𝒖𝑖

Page 4-65Multimedia Retrieval – 2023

– We can employ a similar self-supervised approach to train the model as with the skip-gram model. To train
CBOW models using a large text corpus, we create the training, test, and validation datasets as follows:
o We enumerate all windows of size 2𝑚 + 1 in the corpus as with the skip-gram model.
o For every window, however, we generate only one pair of surrounding words and center word. As an example,

consider the window “the red apple tastes fine”. The data sample is given now as ([the, red, tastes, fine], apple).
o Optionally, we can sub-sample or exclude pairs with common terms (stop words), and lemmatize or tokenize

words (e.g., stemming) to decrease vocabulary size similar as discussed with the skip-gram model.
– During training, we utilize pairs of surrounding words and center word to compute the loss function and make

adjustments to the model weights, that is the vectors 𝒖𝑖 and 𝒗𝑖. This process is iterated until the loss function
reaches a sufficiently low value. The outcome is a vocabulary-to-vector mapping, represented as 𝒗𝑖.

– To efficiently handle word pairs without using memory-intensive one-hot vectors, a PyTorch implementation can
use the Embedding layer and the CrossEntropyLoss function, directly working with token IDs instead of
vectors. The key difference in the model code, shown on the left, is that inputs are now vectors of token IDs
(representing the surrounding words), rather than a scalar (representing one surrounding word). The model first
maps all surrounding words to their embeddings and then averages them to incorporate the 1/2𝑚 input encoding
from the previous page. The training process, depicted on the right side, is similar to the skip-gram model, except
for the process to generate data batches

class CBOWModel(nn.Module):
 def __init__(self, vocab_size: int, embedd_size: int):
 super().__init__()
 self.embeddings = nn.Embedding(
 num_embeddings=vocab_size,
 embedding_dim=embedd_size
)
 self.linear = nn.Linear(
 in_features=embedd_size,
 out_features=vocab_size,
)

 def forward(self, inputs):
 x = self.embeddings(inputs)
 x = x.mean(axis=1)
 x = self.linear(x)
 return x

sketch of training process
model = CBOWModel(vocab_size=len(vocab), embedd_size=100)
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.CrossEntropyLoss()

for inputs, labels in batch_loader_cbow(text_corpus):
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = loss_fn(outputs, labels)
 loss.backward()
 optimizer.step()

4.7.1 Word2vec, GloVe, and fastText

Page 4-66Multimedia Retrieval – 2023

• GloVe (Global Vectors for Word Representation) is a self-supervised embedding algorithm developed at Stanford in
2014. Like other methods, it considers word co-occurrences within context windows. However, it differs in its loss
function, which relies on co-occurrence probability ratios:
– Let 𝑋𝑖𝑗 represent the number of occurrences of word 𝑤𝑗 within the context of word 𝑤𝑖 , defined by a window

around 𝑤𝑖 . Then, 𝑋𝑖 = σ𝑘 𝑋𝑖𝑘 denotes the total number of occurrences of word 𝑤𝑖 . Define 𝑃𝑖𝑗 = 𝑃(𝑗|𝑖) = 𝑋𝑖𝑗/𝑋𝑖 as
the probability of word 𝑤𝑗 appearing in the context of word 𝑤𝑖 .

– The initial idea is to examine the relationship between two words, 𝑤𝑖 and 𝑤𝑗 , by analyzing the ratio 𝑃𝑖𝑘/𝑃𝑗𝑘 in
relation to a third word, 𝑤𝑘. If 𝑤𝑖 and 𝑤𝑘 are related while 𝑤𝑗 , and 𝑤𝑘 are not, the ratio 𝑃𝑖𝑘/𝑃𝑗𝑘 will be large.
Conversely, if 𝑤𝑗 , and 𝑤𝑘 are related but 𝑤𝑖 and 𝑤𝑘 are not, the ratio 𝑃𝑖𝑘/𝑃𝑗𝑘 will be small. When both 𝑤𝑖 and 𝑤𝑗 ,
are either related or unrelated to 𝑤𝑘, the ratio should be approximately 1. Here is the example for 𝑤𝑖=“ice” and
𝑤𝑗=“steam” from the original paper:

– We introduce vectors 𝑢𝑖 to represent words in a 𝑑-dimensional space and vectors 𝑣𝑘 to represent context words
in a 𝑑-dimensional space (adopting notation similar to word2vec, deviating from the original paper's notation).
Additionally, we require biases 𝑏𝑖 for words and 𝑐𝑗 for context words. Using the relationships described earlier, we
can build a cost function employing weighted least squares:

The function 𝑓(𝑥) = min((𝑥/𝑥𝑚𝑎𝑥)^𝛼, 1) assigns weights to co-occurrences, giving higher weights to more
frequent ones while avoiding excessive emphasis on very frequent co-occurrences. Similar to word2vec, we
create pairs from the corpus and train the parameters to optimize the cost function. The resulting vectors 𝑢𝑖
represent word vectors. A detailed training algorithm discussion is omitted here due to its similarity to word2vec.

𝑤𝑘=“solid” 𝑤𝑘=“gas” 𝑤𝑘=“water” 𝑤𝑘=“fashion”

P(k|𝑤𝑖=“ice”) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−3 1.7 × 10−5

P(k|𝑤𝑗=“steam”) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5

P(k|𝑤𝑖=“ice”) / P(k|𝑤𝑗=“steam”) 8.9 8.5 × 10−2 1.36 0.96

𝐽 = ෍

𝑖,𝑗=1

𝑛

𝑓 𝑋𝑖𝑗 ∙ 𝑢𝑖
𝑇 ∙ 𝑣𝑗 + 𝑏𝑖 + 𝑐𝑗 − log 𝑋𝑖𝑗

2

4.7.1 Word2vec, GloVe, and fastText

Page 4-67Multimedia Retrieval – 2023

• fastText was developed by Facebook's AI Research (FAIR) team and first published in 2017. It improves word2vec
algorithms in two ways:
– fastText employs sub-word representations for center words and constructs word vectors by summing the

vectors of their sub-words. In the context of a phrase like “the dog chases a cat” with “chases” as the center word,
the context words (“the”, “dog”, “a”, and “cat”) maintain their full-word vectors 𝑢𝑗 and are not split into sub-words.
However, the center word “chases” is broken into sub-words, for instance, of length 3, such as “<ch”, “cha”, “has”,
“ase”, “ses”, and “es>”. The special characters “<“ and “>” mark the start and the end of the word allowing for the
differentiation of prefixes, suffixes, and sub-words in the middle of a word. fastText considers sub-words ranging
from length 3 to 6, along with the special “<chases>” sub-word. Let's denote the set of sub-words for “chases” as
ℤ, and assign vector representations 𝑧𝑔 to each sub-word 𝑔 ∈ ℤ. The vector representation 𝑣𝑖 for “chases” is then
calculated as the sum of its sub-word representations:

We then integrate this representation of the center word into the skip-gram model, as illustrated on the right side,
and proceed to optimize the loss function as described in the word2vec part. This process yields vectors 𝑧𝑔 for
the sub-words, enabling us to build of word embeddings for any words, including those not present in the corpus.

– fastText expedites training by subsampling frequent co-occurrences and utilizing a negative sampling technique.
Instead of comparing the softmax result to the one-hot target, both the center (sub-)word and the surrounding
word are mapped to their respective 𝑑-dimensional representations, and their vectors are compared using dot
products. In addition to the positive sample, 𝑚 negative samples (words not found in the center word's
surroundings) are included to expedite training iterations and enhance weight matrix updates. Detailed
information can be found in the relevant research papers. As result, fastText can reduce the computational
complexity and produce embeddings faster than the original word2vec approach

– The sub-word approach can be customized from fixed sizes (3 to 6) to variable lengths using methods like byte
pair encoding (BPE) or word pieces algorithms. This results in more concise vocabularies and enables the encoding
of diverse Unicode words, as previously discussed in the tokenization section. For instance, English has
approximately 3 x 10^8 possible 6-grams, and it may not be efficient to store representations for all of them. By
utilizing BPE and word pieces, we can establish an upper limit on the storage required for embeddings.

𝑣𝑖 = ෍

𝑔∈ℤ

𝑧𝑔 𝑃 𝑤𝑠 | 𝑤𝑐 =
𝑒𝒖𝑠

𝑇𝒗𝑐

σ𝑖∈𝕋 𝑒𝒖𝑖
𝑇𝒗𝑐

skip-gram

4.7.1 Word2vec, GloVe, and fastText

Page 4-68Multimedia Retrieval – 2023

The code on the right side illustrates how to use the
gensim package for learning and utilizing embeddings:

1) To train your model, gensim offers both word2vec
and fastText, as shown in the code. To enhance the
quality of embeddings, it is essential to use large
collections of sentences. The example with movie
reviews may not yield robust embeddings.

2) The gensim package provides various pre-trained
embeddings, including GloVe vectors, which offer
generic embeddings primarily for English. However,
these models are trained on a wide range of topics
and may not produce optimal results for collection-
specific embeddings.

3) Embeddings are commonly used to explore word
relationships. We begin by creating vector
representations (e.g., for 'cat') and utilize these
vectors to identify the most similar terms, where
similarity is based on shared contexts (e.g., 'dog' is
highly similar). Additionally, we can perform
mathematical operations on these vectors, as seen in
'Paris + Germany - France = Berlin.' Another valuable
application involves detecting words that are outliers
in a given list, indicating they do not belong with the
other list members.

spaCy's models have vector embeddings (token.vector)
in their pipelines. In the base models, spaCy employs
floret, a variation of fastText that generates more space-
efficient vector tables. Models like "en_core_web_trf"
utilizes transformers (BERT based) for embeddings.

4.7.1 Word2vec, GloVe, and fastText

1) Train your own model with gensim
from gensim.models import Word2Vec, FastText
from nltk.corpus import movie_reviews
sentences = movie_reviews.sents()

train a word2vec CBOW model with window 5, 25 dimensions
model = Word2Vec(sentences, vector_size=25, window=5)

train a fastText model with window 5, 25 dimensions
model = FastText(vector_size=25, window=5, min_count=1)
model.build_vocab(corpus_iterable=sentences)
model.train(corpus_iterable=sentences,
 total_examples=len(sentences), epochs=10)

access learned vectors
word_vectors = model.wv

2) Use a pre-trained model with gensim
import gensim.downloader as api
word_vectors = api.load('glove-wiki-gigaword-100’)

3) Analyze token relationships (two variants)
word_vectors['cat’]
word_vectors.get_vector('cat')
⮡ [0.23, 0.28, 0.63, -0.59, -0.59, 0.63, 0.24, -0.14, …]

word_vectors.most_similar('cat')
⮡ [('dog', 0.88), ('rabbit', 0.74), ('cats’, 0.73), …]

word_vectors.most_similar(positive=['paris','germany'],
negative=['france'])
⮡ [('berlin', 0.88), ('frankfurt', 0.80), ('vienna’, 0.77), ...]

paris = word_vectors.get_vector('paris')
germany = word_vectors.get_vector('germany')
france = word_vectors.get_vector('france')
word_vectors.similar_by_vector(paris+germany-france)
⮡ [('berlin', 0.88), ('frankfurt', 0.80), ('vienna’, 0.77), ...]

word_vectors.doesnt_match("bird dog cat town".split())
⮡ town

Page 4-69Multimedia Retrieval – 2023

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import gensim.downloader

get the glove-wiki-gigaword-100 word vectors
word_vectors = gensim.downloader.load('glove-wiki-gigaword-100')

get vectors for terms
words = "animal bird dog cat horse fish bee … dinner lunch".split()
vectors = word_vectors[words]

apply a PCA to map to 2 dimensions
pca = PCA(n_components=2)
result = pca.fit_transform(vectors)

create a scatter plot of the projection
plt.figure(figsize=(14,10))
plt.scatter(result[:, 0], result[:, 1])
for i, word in enumerate(words):
 plt.annotate(word, xy=(result[i, 0]+0.05, result[i, 1]-0.05),

 fontsize=14)
plt.show()

4.7.1 Word2vec, GloVe, and fastText

• An effective demonstration of embeddings is provided in the figure below, along with the code for generating it. We
employ a pre-trained GloVe set with 100 dimensions, trained on Wikipedia text. Utilizing 25 words, we map them to
the GloVe vector space. To enhance visualization, we project these vectors into a 2-dimensional space using PCA:
– In the previous example, we employed the doesnt_match function on the words “bird dog cat town”. In the

visualization, it is now evident that the word “town” is distinctly separated from the animal-related words. This
demonstrates how we can identify words that don't belong to a specific group.

– We can also identify clusters of words, such as those related to animals, city names, or words associated with
people. Instead of manually constructing relationships from dictionaries, we can now learn these associations
between words autmatically. It is important to note that these associations do not necessarily represent semantic
relationships but indicate whether two words tend to appear in similar contexts. For example, in our previous
example, “dog” was the most similar word to “cat”. This does not mean that cats are similar to dogs, but rather
that they are frequently discussed in similar contexts, such as when people talk about their pets.

• A larger online visualization for embedding is here: https://projector.tensorflow.org

https://projector.tensorflow.org/

Page 4-70Multimedia Retrieval – 2023

4.7.2 Neural Network based Embeddings
• Previously in this chapter, we have already explored the fundamental structure of modern transformer-based

language models. The diagram below provides a visual representation of the various layers with the example of
BERT, an early version of a bi-directional transformer-based encoder model:
– BERT uses word pieces to form tokens from text. Tokens are represented by unique token IDs, and the input

sequence consists of a vector of token IDs. These input vectors are then passed through the embedding layer.
While we conceptually describe embedding layers as transforming one-hot vectors into lower-dimensional, dense
vectors, the implementation is a column lookup using the token ID in the weight matrix eliminating the need to
store and compute with one-hot vectors. Note that embedding layers do not include bias or activation functions.

– The output, which is a sequence of 𝑑-dimensional embeddings, is added to a positional encoding represented by a
sinusoidal signal function. This positional encoding is crucial because the transformer model relies on fully
connected layers rather than recurrent network structures. Positional encoding helps the model to understand the
order of tokens within the sequence which otherwise would be lost.

– The encoded vectors are subsequently given to the transformer encoder model, which can comprise multiple
layers (BERT base with 12 layers; BERT large with 24 layers). The encoder output passes a fully connected
classification layer, and the embeddings matrix together with a softmax function predicts the output token ID.

– In the training process, we simultaneously learn the parameters of both the transformer model and the weights in
the embedding layer. One approach to self-supervised training is to randomly mask words in the input sequence
(represented as <X> in the figure), and the model is required to predict these masked words. By tackling the more
challenging task of predicting masked tokens, the model inherently learns effective token embeddings.

■■

■■

■■

■■

■■

embedding
layer

■■

■■

■■

■■

■■

■■

■■

■■

■■

■■

positional
encoding

1

2

3

1

4

token
ID

the

<X>

and

the

dog

token input for
transformer

targettransformer architecture

4.7.2 Neural Network based Embeddings

Encoder

(12 or 24
layers)

C
lassification
Layer and

Em
bedding to

token softm
ax

the

cat

and

the

dog

embeddings

BERT

Page 4-71Multimedia Retrieval – 2023

• After the training, we can extract the embedding weights. These weights, in combination with the vocabulary,
establish the mapping from word pieces to 𝑑-dimensional vectors. Similar to fastText, we can construct word
embeddings by aggregating (typically averaging or pooling) the embeddings of word pieces, also for new words.

• Sentence Embeddings: Let’s consider the various options to create sentence embeddings (see below):
1) The baseline approach is to first generate embeddings for all tokens in the sentence using methods like word2vec,

fastText, or BERT. A pooling strategy, like summing up all embedding vectors or taking maximum values for each
dimension overall all embeddings, is then applied. Normalizing sentence embeddings accelerates calculations for
cosine similarity. Two sentences are more similar if their dot-product (=cosine similarity if normalized) is larger.

2) Alternatively, we can input a complete sentence into BERT and utilize the encoder's output, either by applying a
pooling strategy as previously mentioned or by using the output associated with BERT's special [CLS] token at the
sentence's beginning. However, this approach does not consistently perform well because the model wasn't
explicitly trained for this task. Also consider limits on input lengths of 512 tokens with BERT (~300 words).

3) Sentence transformers with Bi-Encoders use a BERT model, and fine-tune it using sentence pairs and additional
training epochs. The encoder's output for two sentences is passed through a classifier, and the BERT model is
fine-tuned to generate encoder output that allows for sentence comparisons. After training, the fine-tuned BERT
model can generate sentence embeddings and use the methods from 2) to compute embeddings

4) Cross-encoders are designed for sentence comparison rather than embedding generation. In this architecture, two
sentences are inputted, separated by the [SEP] token. The encoder's output for both sentences is processed by a
classifier network, and the model learns to determine the similarity between the sentences based on training
examples. After training, the model can be used to assess the similarity between two given sentences.

4.7.2 Neural Network based Embeddings

The cat and the dog.

pooling

[CLS]The cat and the dog.

BERT

pooling

[CLS]Sent A [CLS]Sent B

BERT BERT

pooling pooling

softmax

similar

[CLS]Sent A [SEP]Sent B

BERT

similar 0…1

classifier

1) Pooling of token
 embeddings

2) Pooling of encoder 3) Training bi-encoder 4) Cross-encoder

Page 4-72Multimedia Retrieval – 2023

4.7.3 Embeddings in Text Retrieval
• Embeddings have become increasingly popular for semantic search, also in combination with traditional models such

as BM25. We consider 3 models in the following: 1) retriever-ranker, 2) semantic search with retriever-reader, and
3) retrieval augmented generation. Before we consider the models in more details, let’s consider different scenarios
for an interactive retrieval system:
– Factoid queries are retrieval queries that seek concise and factual answers to questions like “What is the capital of

France?” or “Who invented the iPhone?”. These queries contrast with more complex or open-ended queries that
require longer, more detailed responses.

– Descriptive queries seek to provide a description or explanation of a topic, concept, or term. For example, “What
does relativity mean?”, or “How does a democracy work?”. There are many possible ways to answer the qeustion
and we prefer to obtain them in form of a narrative or list of points.

– Comparative queries (or decision making) request to compare two or more entities or concepts. For example,
“Compare different mobile phones by features and price”, or “Compare the risk of investing into company A to
company B”. This may involve a structured approach to enable decision making.

– Procedural queries seek step-by-step instructions or guidance on how to perform a task or achieve a goal. For
example, “How do I bake a cake?”, and “How can I pass the driver’s license exam?”. The result should be a concise
instruction with points that lead to the goal.

– Time-based queries ask questions about time-related events in the past, present or the future. “When was Mozart
born?”, or “When does the train to London leave?”. Expected results include time ranges, schedules, or timetables.

– Opinion queries seek for (subjective) advise, recommendations, or reviews. For example, “What is the best Pizza
restaurant in the town?”, or “Which movies shall I watch this evening?”. This may include the preferences,
location, time, age and personal preferences to provide a best answer for the user’s information need.

• This is not an exhaustive list, but it shows that we must approach each query type differently when generating user
answers. Factoid queries benefit from concise answers with references, while descriptive queries need longer,
natural text responses. Time-based queries can be cached for repeated (similar) questions, but opinion queries
demand personalized responses for individual information needs. Assuming that each query type can be solved with
a single approach or algorithm would be incorrect. Instead, enhancing retrieval system performance requires us to
optimize for specific target query types.

4.7.3 Embeddings in Text Retrieval

Page 4-73Multimedia Retrieval – 2023

1) Retriever-Ranker: the “retriever” component selects a pool of candidate documents from the index that match to
the query, and the “ranker” component assigns a relevance score to each candidate to produce the result.

– For instance, we can employ a BM25 retriever component that generates numerous candidate documents or
passages. To broaden the scope of potential answers, we can augment the query with extra keywords using
either a dictionary or embeddings, as demonstrated earlier.

– We can subsequently utilize embeddings or a cross-encoder to compute semantic scores between the query and
the candidate documents. However, it is important to note that this re-ranking process is constrained by the
language model's maximum input sequence length. The outcome is a revised scoring that we use to produce the
top-k results for the user.

As an alternative, we can replace the retriever with semantic search using embeddings as follows:

– The embeddings for passages are generated during indexing and for the query during retrieval. We then identify
passages with embeddings close to the query (e.g., using cosine similarity). Optionally, a cross-encoder can re-
rank a larger candidate set provided by the retriever. To facilitate this search, a high-dimensional vector search
index is essential, as the inverted files method is not applicable for dense vectors. It is important to note that we
cannot use the cross-encoder as the retriever in larger scenarios due to computational inference costs as we
compare the query with each passage. Thus, reducing the candidate document set with the retriever is necessary
to maintain efficient inference through batch comparisons.

This pipeline enhances keyword-based search but cannot address the query types discussed on the previous page.
It helps locate relevant documents, but users must extract answers from the documents themselves.

4.7.3 Embeddings in Text Retrieval

Retriever:
BM25

query

1. doc 1
2. doc 2
3. doc 3
4. …

Ranker:
embeddings or
cross-encoder

Retriever:
embeddings

query

1. doc 1
2. doc 2
3. doc 3
4. …

(optional)
Ranker:

cross-encoder

Page 4-74Multimedia Retrieval – 2023 4.7.3 Embeddings in Text Retrieval

2) Semantic Search with Reader is a pipeline that targets factoid queries. It features first a semantic search retriever
(we could also use a BM25 for the retriever), but is then identifying the text span in the retrieved passages that
best answers the query. We can either highlight the answer in the found passage, or simple use the text span to
answer the query:

– The retriever's role is to identify, as before, a broad set of potential passages. The reader, built upon a language
model like BERT, employs an added prediction layer to identify the most relevant text segment's start and end.
Models like roberta-base-squad2, derived from BERT base, are trained to answer questions, using datasets
like Stanford's SQuAD. With the best scoring text span, we can either highlight the text in the corresponding
documents, or directly answer the query to the user.

Retriever:
BM25 or

embeddings
query

Reader:
find start/end

[CLS]Question [SEP]Passage

BERT

start end

prediction head

relevant
text span

– This pipeline is designed for factoid queries and may lack accuracy for other query
types discussed earlier. However, it is highly valuable for scenarios where facts are
not publicly available or continuously evolve from news and events, making it
challenging for generative models to produce direct answers. For instance, for web
queries like “who won the game on the weekend”.

– The code below demonstrates the reader component using the transformers
library. It calculates a score and identifies the start and end positions when
comparing the query with a passage. If passages are lengthy, the reader divides
them into smaller sections. Computational expenses may necessitate keeping the
candidate list from the retriever relatively short.

from transformers import pipeline

qa_model = pipeline("question-answering",
 model="deepset/roberta-base-squad2")
answer = qa_model(question=query, context=passage)
answer['score'], answer['answer'], answer['start'], answer['end']

Page 4-75Multimedia Retrieval – 2023

3) Retrieval Augmented Generation (RAG) takes an extra step by utilizing a retriever to generate relevant passages
containing essential information. It combines this contextual information with a query within a prompt template for
a generative model to produce the desired outcome:

– Similar to the previous approach, the retriever can be either a BM25 or an embeddings-based semantic search
model. It provides a few highly relevant passages based on the query. We then utilize, for instance, a Generative
Pre-trained Transformer 3 (GPT-3) to produce the desired text to answer the user’s question. We create a
prompt template that instructs the model on what to do, enhancing it with the actual query and incorporating
the retrieved passages as context. The generator then generates an answer based on this context rather than
relying solely on its own knowledge base. This is particularly valuable when searching for non-public information
or addressing queries related to recent news or events not present in the training dataset.

4.7.3 Embeddings in Text Retrieval

Retriever:
BM25 or

embeddings
query

Generator:
Prompt template +
 query + context

Encoder

Decoder

Prompt

Result
– Below is an example of how to use the text2text pipeline from the

transformers library. The prompt is a predefined template; you can find
examples by searching for “prompt engineering” online. We include the
query and passages in the template and call the model to generate text.

– The challenges in this process include: a) creating an effective prompt
(including passages for context), b) using a sufficiently large model to
accommodate the context, and c) ensuring the model can generate
understandable text. Currently, performing this task on your own is
challenging, and you require external APIs for this step.

from transformers import pipeline
t2t_model = pipeline("text2text-generation",
 model="google/flan-t5-base")
answer = t2t_model(prompt, max_length=200)
answer[0]['generated_text']

Page 4-76Multimedia Retrieval – 2023 4.7.3 Embeddings in Text Retrieval

• Although not a retrieval model, we mention here also the standalone generator model as shown below. As on the
previous page, we can use a GPT model to produce text, and utilize a prompt template (or generator) to transform
the query into a suitable prompt that results in qualitative outcomes:

– The prompt template must align with the query types which we discussed at the beginning of this section.
Therefore, a prompt generator is frequently employed to identify the user's question type and the anticipated
output format. The prompt also provides extra instructions for the language model, e.g., “write in simple English”,
“no more than 200 words”, to generate an answer from its trained knowledge base.

– While versatile for various question types, a significant drawback is the model's inability to access non-public
corporate information and its frozen knowledge base lacking information about recent news, events, and changes
in general. To address this partly, we can fine-tune an existing model using our own knowledge base. The fine-
tuned model can adjust its answers to the current context and keep its knowledge base updated. However, like all
generative AI models, continuous fine-tuning can be costly and frequently relies on cloud-based services.

– Generative models can generate false or biased information that was embedded in their training data, and we
cannot verify the source of their answers. In some cases, the model can even self-generate wrong answers known
as “hallucinations”. Retrieval augmented generation (RAG) is a more reliable approach as it provides references to
the user and generates text closely aligned with retrieved passages, unlike fine-tuned generative models.

query

Generator

LLM

domain
knowledge

fine-tuning

prompt template

prompt generator

Page 4-77Multimedia Retrieval – 2023

4.8 Text Classifiction

4.8 Text Classifiction

• In conclusion, this chapter provides examples of text classification methods for assigning documents to predefined
classes. It covers language detection, sentiment analysis, text classification, and unsupervised clustering of text
documents. We explore various methods to demonstrate these approaches to text classification.

• Topic modeling and clustering differs from text classification. The distinction lies in the approach: classification relies
on supervised learning with predefined classes, learning how features align with these classes. In contrast, topic
modeling and clustering is unsupervised, aiming to detect clusters or co-occurrences of terms within text
documents, and assigning them topic labels (as illustrated in the figure below). LSI also employs unsupervised
techniques to learn topics through singular value decomposition and thereby reduces the rank of the document-
term matrix. While this process shares similarities with topic modeling methods like Latent Dirichlet Allocation (LDA)
and Non-Negative Matrix Factorization (NMF), LSI's primary objective is not to extract and explain topics found
within the collection. Instead, it leverages these abstract topics for semantic retrieval.

• While deep learning can handle various tasks, we should also explore cost-effective methods that provide
satisfactory solutions. Training complex language models can be resource-intensive, whereas simpler techniques can
yield comparable results, particularly when term occurrences is the dominating factor for class assignments.

Terms
Embeddings

POS Tags

Classification

Topic
Modelling

supervised

unsupervised

Page 4-78Multimedia Retrieval – 2023

4.8.1 Language Detection
• Language detection is the problem of determining the language in a text or document. This task is rather simple for

long documents, but can become quite challenging for short texts or when a large number of languages have to be
detected automatically. A related problem: detecting programming languages.

• Let’s start with the simple method of detecting languages in longer texts. The most efficient approach is to apply a
number of rules, and count stop words to detect the language on simple counts:
– Alphabet Diversity: Each language has unique characters found in only a few related languages. Examples include

Latin, Cyrillic, Greek, Arabic, Hebrew, Devanagari, Thai, Tamil, Bengali scripts, as well as Chinese, Hiragana, and
Katakana characters. Languages often borrow words from others, leading to a mix of alphabets. To handle this,
we can filter out rarely used alphabets.

– Character Diversity: Some languages have special characters within an alphabet that are typical of their linguistic
uniqueness. For instance, diacritical marks and accent symbols in Latin-based scripts, or tonal markers in certain
Asian languages, add distinctive features to characters. Only a few Latin based languages use ä, ö, and ü.

– Stop word Counts: Evaluating stop word frequencies in text can reveal a language. For instance, languages like
English and French often employ frequent stop words, while others, like Mandarin Chinese, rely less on them.
Using managed stop word lists allows us to guess a language simply by counting how often the stop words of a
language occurs.

– Vocabulary Counts: Examining the unique words or vocabulary in a text can also help identify the language.
Different languages have distinct vocabularies, and by comparing word frequencies and diversity, it becomes
possible to make language determinations with a degree of accuracy.

• For longer texts, these rules quickly lead to the identification of the language. However, the method does not easily
scale to large numbers of languages. The alphabet and character rules are simple, but the stop word lists and
vocabularies (most frequent words) require large amount of data to perform language detection.

• For shorter texts or brief phrases, these methods are less effective unless we have comprehensive vocabularies for
all languages. In some cases, it may be challenging to identify the correct language, as a single word or short phrase
can exist in multiple languages. Even more complex are phrases containing loanwords from other languages, such as
IT terms in a German phrase like "mein computer."

4.8.1 Language Detection

Page 4-79Multimedia Retrieval – 2023

• Modern language detectors operate at the sub-word level and incorporate rules like those mentioned earlier, such
as Alphabet and Character rules. Additionally, they introduce new rules based on character-based n-grams that are
specific to certain languages. The key distinction of these new methods, however, lies in utilizing the frequencies of
character-based n-grams for language detection, and this is achieved using a Naïve Bayes learning model.

• Naïve Bayes employs a conditional probability model based on Bayes' theorem.

In this equation, 𝒙 represents a feature vector, and 𝐶𝑘 is the class or target. 𝑃 𝐶𝑘 is the prior, that is knowledge
about the distribution (probability) of classes 𝐶𝑘. 𝑃 𝒙 𝐶𝑘 is the likelihood of observing feature 𝒙 for a specific class
𝐶𝑘, and 𝑃 𝒙 is the overall evidence of observing 𝒙, regardless of class. 𝑃 𝐶𝑘 𝒙 represents the posterior which is the
knowledge gained or predicted when observing feature 𝒙, allowing us to infer its association with class 𝐶𝑘.

• Consider 𝒙 as a high-dimensional vector, often derived from a vast term space used in documents. Given the high
dimensionality and the restricted training data, accurately modeling the probability distribution function in this
sparse space is challenging. To simplify, naïve Bayes assumes conditional independence among features, resulting in
the following simplification:

• Using the probability model, we choose the most probable hypothesis, that is class 𝐶𝑘∗ that maximizes the
probability function. This selection principle is commonly referred to as maximum a posteriori (MAP):

• Now, we need to estimate the probabilities 𝑃(𝐶𝑘) and 𝑃 𝑥𝑗 𝐶𝑘 based on observations from the training set.

𝑃 𝐶𝑘 𝒙 =
𝑃 𝒙 𝐶𝑘 ∙ 𝑃 𝐶𝑘

𝑃 𝒙
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑃 𝐶𝑘 𝒙 = 𝑃 𝐶𝑘 𝑥1, … , 𝑥𝑀 =
1

𝑃 𝒙
∙ 𝑃(𝐶𝑘) ∙ ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘

Note that 𝑃 𝒙 is a constant across classes
𝐶𝑘 and only scales the probabilities. For our

purposes, we do not require its value

𝑘∗ = argmax
𝑘

 𝑃 𝐶𝑘 𝒙 = argmax
𝑘

 𝑃(𝐶𝑘) ∙ ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘

That is it! The equation describes the decision rule of
Naïve Bayes. The only thing left are the estimates for

the probabilities on the right hand side

4.8.1 Language Detection

Page 4-80Multimedia Retrieval – 2023 4.8.1 Language Detection

• In our language detection scenario, we use character-based n-grams of varying lengths (e.g., n from 1 to 5). We
count how often these n-grams appear in the text, resulting in a bag-of-words representation that forms a
multinomial distribution. The feature vector 𝒙 represents these counts for a defined vocabulary for each language.

• The priors 𝑃 𝐶𝑘 depend on the scenario: we can use a maximum likelihood estimator based on observations in the
training set. Let 𝑁𝑘 be the number of texts for the language of class 𝐶𝑘, and 𝑁 be the total number of texts:

If we lack knowledge of the language distribution or wish to avoid training bias, we can select a constant prior for all
classes, which can then be omitted from subsequent calculations since it only scales posteriors for all classes.

• To estimate the likelihoods 𝑃 𝑥𝑗 𝐶𝑘 from texts in a language represented by class 𝐶𝑘, we count the n-gram
occurrences in the training data for that language (multinomial distribution). For each language, we establish first an
appropriate vocabulary, using methods similar to word-pieces or BPE, to control vocabulary size. We prioritize the
most frequent n-grams since they have the most influence on the posterior and impact language determination the
most. Let 𝑛𝑘,𝑗 denote the total occurrences of n-gram 𝑡𝑗 in all training texts for the language represented by class 𝐶𝑘:

As we choose the vocabulary tailored to the target language and exclude infrequent or absent n-grams from the test
set, we do not require the “+1” smoothing on the right-hand side. However, in other text classification tasks,
smoothing prevents 𝑝𝑘,𝑗 from reaching 0 for rare tokens during predictions (which leads to a posterior of value 0).

• Finally, we can predict the language based on posteriors. Instead of multiplying probabilities as shown on the
previous page, we rather use sums over log-probabilities:

We can obtain scores with a softmax classifier over the target languages, and select the language with highest score.
If several languages reach a low threshold values, we can return multiple predictions.

𝑃 𝐶𝑘 =
𝑁𝑘

𝑁
𝑃 𝐶𝑘 =

1

𝐾
or if 𝑁𝑘 is not known:

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗

σ𝑙 𝑛𝑘,𝑙
𝑝𝑘,𝑗 =

𝑛𝑘,𝑗 + 1

σ𝑙 𝑛𝑘,𝑙 + 𝑀
or smoothed:

𝑘∗ = argmax
𝑘

 𝑃 𝐶𝑘 𝒙 = argmax
𝑘

log 𝑃(𝐶𝑘) + ෍

𝑥𝑗>0

𝑥𝑗 log 𝑝𝑘,𝑗

Page 4-81Multimedia Retrieval – 2023

• Examples: The lingua-language-detector is a highly efficient language detector with over 99% accuracy for
more than 70 languages. Let's explore its functionality through examples.

– We can also inquire about the likelihood of a phrase belonging to a particular set of languages:

– The detector also are able to predict the languages out of fragments:

– This also demonstrates that the detector operates at sub-word levels. The 3-grams “hau” and “mei” are more
common in German texts than in English and Italian, resulting in higher confidence scores.

• Another Python library is langdetect, which is also a rule and n-grams based language detector for 55 languages. It
provides ISO-codes for the detected languages:

4.8.1 Language Detection

from lingua import Language, LanguageDetectorBuilder
detector = LanguageDetectorBuilder.from_all_languages().build()
detector.detect_language_of("This is an example sentence") # → Language.ENGLISH
detector.detect_language_of("Je suis un exemple de phrase") # → Language.FRENCH
detector.detect_language_of(" ") # → Language.THAI

languages = [Language.ENGLISH, Language.FRENCH, Language.ITALIAN]
detector = LanguageDetectorBuilder.from_languages(*languages).build()
detector.compute_language_confidence_values("Je suis à New York")
⮡ FRENCH: 0.45 ENGLISH: 0.37 ITALIAN: 0.18

confidence_values = detector.compute_language_confidence_values("hau mei")
⮡ GERMAN: 0.82 ENGLISH: 0.10 ITALIAN: 0.07

from langdetect import detect, detect_langs
detect("This is an example sentence") # → en
detect("je suis un exemple de phrase") # → fr
detect("Este es un ejemplo de frase") # → es
detect("Dies ist ein Beispieltext") # → de
detect("Questo è un esempio di frase") # → it
detect(" ") # → th
detect_langs("Je suis à New York") # → [fr:0.86, en: 0.14]
detect_langs("hau mei") # → [cy: 1.00]

Page 4-82Multimedia Retrieval – 2023

4.8.2 Sentiment Analysis

4.8.2 Sentiment Analysis

• Sentiment analysis deciphers human language to understand emotions and opinions. It's widely used to assess
customer sentiment from reviews, social media, and support cases, aiding data-driven decisions for product
improvement and customer satisfaction. It also can help to filter and moderate user-generated content to safeguard
brand reputation and enforce community guidelines.

• In sentiment analysis, a fundamental task is to classify text polarity—identifying if it is positive, negative, or neutral.
Advanced tasks can recognize emotions like anger, fear, disgust, joy, and surprise. Here, we focus on basic sentiment
prediction with positive, negative, and neutral categories. Let’s start with a look at some example, and the challenges
machine learning models may encompass:
– Many statements are straightforward and sentiment is often driven by a few key words:

“I like this product” → positive
“I was going to the town” → neutral
“The food was really bad” → negative

– However, we can express ourselves in many, sometimes confusing ways that are difficult to analyze:
“I can’t say I liked it” → negation handling
“Drinking wine is not my thing” → negative or neutral?
“What a fine artist you've become!” → potentially sarcastic
“I haven't ever owed anything to anyone” → lots of negation, but actually positive

• We consider 3 different approaches:
– Naïve Bayes with the example of sentiment analysis in Twitter (now called X)
– TextCNN, a convolutional network on embeddings to predict classes
– Transformer based classification models

Page 4-83Multimedia Retrieval – 2023

• Naïve Bayes is popular for its simplicity, speed, and accuracy. We used it before for language detection with a
multinomial distribution, considering term presence and counts. In Twitter sentiment analysis, short texts mean
terms usually occur only once, except for stop words. We use a set-of-word representation and assume a
multivariate Bernoulli distribution for likelihood estimation. This examples uses two classes: positive and negative
– The priors 𝑃 𝐶𝑘 measure how likely a class is compared to the other one. We can use a maximum likelihood

estimator based on observations in the training set. Let 𝑁𝑘 be the number tweets for class 𝐶𝑘, and 𝑁 be the total
number of texts (with 𝑘 = ‘positive’ or ‘negative’):

If we do not know the sentiment distribution or wish to avoid training bias, we can select a constant prior for all
classes, which can then be omitted from subsequent calculations since it only scales posteriors for all classes.

– Assuming a multivariate Bernoulli distribution for the set-of-word representations, we can estimate the
likelihoods 𝑃 𝑥𝑗 𝐶𝑘 as follows. Let 𝑁𝑘(𝑥𝑗 = 1) denote the number of tweets from 𝐶𝑘 that contain a term 𝑡𝑗:

We can use either smoothing to prevent 𝑝𝑘,𝑗 = 0 if a term 𝑡𝑗 does not occur in the tweets of class 𝐶𝑘, or we simply
ignore terms that were not present in the training data of class during predictions.

– Finally, we can predict the sentiment (‘positive’ or ‘negative’ class) based on posteriors. Instead of multiplying
probabilities, we again use sums over log-probabilities (and ignore terms with 𝑝𝑘,𝑗 = 0):

– Instead of using the entire vocabulary, we can reduce features by selecting the most informative terms present in
the document (𝑥𝑗 = 1). In this case, the formula simplifies to the sum of log 𝑝𝑘,𝑗 for the most informative terms in
the document.

𝑃 𝐶𝑘 =
𝑁𝑘

𝑁
𝑃 𝐶𝑘 =

1

𝐾
or if 𝑁𝑘 is not known:

𝑝𝑘,𝑗 =
𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘
𝑝𝑘,𝑗 =

min 𝑁𝑘 − 1, max 1, 𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘

or smoothed:

𝑘∗ = argmax
𝑘

 𝑃 𝐶𝑘 𝒙 = argmax
𝑘

log 𝑃(𝐶𝑘) + ෍

𝑗=1

𝑀

𝑥𝑗 log 𝑝𝑘,𝑗 + 1 − 𝑥𝑗 log 1 − 𝑝𝑘,𝑗

4.8.2 Sentiment Analysis

Page 4-84Multimedia Retrieval – 2023

The code on the right hand side shows the Twitter
sentiment implementation:

1) We utilize the Twitter samples data from the nltk
corpus, consisting of 5,000 positive and 5,000
negative labeled tweets. These tweets are read and
labeled accordingly. Additionally, we create a list of
stop words, create a Snowball stemmer, and utilize a
tweet tokenizer that recognizes Twitter-specific
tokens like hashtags, user tags, and emoticons.

2) In the process of cleaning the tweets, we eliminate
HTTP links and user tags, as they are not relevant for
sentiment analysis. We employ the Twitter tokenizer
and remove single-letter tokens, numbers, and stop
words. However, we retain emoticons like “:-)” since
they can carry sentiment information.

3) We divide the training and test data into an 80:20
ratio while ensuring an even distribution of positive
and negative tweets in both the training and test
subsets through stratification.

4) We obtain a classifier from the nltk Naïve Bayes
training and then assess its training accuracy (0.999)
and test accuracy (0.995). The Naïve Bayes classifier
makes only 16 incorrect predictions out of 10,000
samples. Some of the most informative features for
this classifier are “:)” and “:(“, among others.

In this scenario, Naïve Bayes is not only highly accurate
but also remarkably fast, with training and classification
taking less than a second. None of the deep learning
methods can compete with this speed.

1) get started with data and settings
tweets = [(t,"pos") for t in twitter_samples.strings("pos…")] + \
 [(t,"neg") for t in twitter_samples.strings("neg…")]

stopwords = nltk.corpus.stopwords.words('english')
stemmer = nltk.stem.SnowballStemmer('english')
tokenizer = nltk.tokenize.casual.TweetTokenizer()

2) cleaning all the tweets --> set of words model
def set_of_words(text):
 text = re.sub(HTTP_REGEXP,'', text)
 text = re.sub("(@[A-Za-z0-9_]+)","", text)
 tokens = tokenizer.tokenize(text)
 tokens = [stemmer.stem(t) for t in tokens
 if len(t)>1 and
 not t.isnumeric() and
 t not in stopwords]

 return {t:1 for t in tokens}

data = [(set_of_words(text), label) for text, label in tweets]

3) split training and test (stratify pos/neg samples)
pos_data = [x for x in data if x[1] == 'pos']
neg_data = [x for x in data if x[1] == 'neg']
pos_split = 80 * len(pos_data) // 100
neg_split = 80 * len(neg_data) // 100

train_data = pos_data[:pos_split] + neg_data[:neg_split]
test_data = pos_data[pos_split:] + neg_data[neg_split:]

4) classify with Naive Bayes (bernoulli)
classifier = nltk.NaiveBayesClassifier.train(train_data)

print(nltk.classify.accuracy(classifier, train_data))
print(nltk.classify.accuracy(classifier, test_data))
print(classifier.show_most_informative_features(10))

false_predictions = [t for t in train_data
 if classifier.classify(t[0]) != t[1]]
false_predictions += [t for t in test_data
 if classifier.classify(t[0]) != t[1]]

Page 4-85Multimedia Retrieval – 2023

4.8.3 Text Classification with Deep Learning

4.8.3 Text Classification with Deep Learning

• Sentiment analysis falls under text classification, and Naïve Bayes methods can be expanded to handle broader
classification tasks. In this section, we explore the application of deep learning techniques to tackle more complex
classification challenges. It is essential to begin by discussing the fundamental differences beforehand:
– Naïve Bayes is a straightforward, yet highly effective and efficient method capable of real-time classification with

low resource demands. Training and re-training are quick and straightforward, and model parameters occupy
minimal storage. Storage consumption and performance can be further enhanced by selecting a subset of the
most informative features. Consequently, Naïve Bayes, along with other simple classifiers like XGBoost or SVM,
serves as an excellent initial choice. More advanced methods should only be considered when they can
substantiate increased resource requirements with significantly higher accuracy.

– Consider the sentiment analysis results from previous sections. Naïve Bayes achieves high accuracy, scoring 0.995
with only 16 false predictions out of 10,000 samples. While theoretically, we could opt for a deep learning
approach like a transformer-based sentiment analyzer, such a model would not classify tweets as quickly as Naïve
Bayes. In fact, a basic RoBERTa model takes seconds to minutes for classifying 10,000 samples (dependent on
available hardware). Even if it achieved perfect accuracy (100%), the enhanced quality would not justify the
significantly greater resource requirements.

– Simpler models like Naïve Bayes rely on the independence assumption. In many complex scenarios, this
assumption does not hold, leading to a rapid decline in the performance of simple models. While we can employ
lemmatization techniques to enhance quality, these models cannot capture dependencies. On the other hand,
deep learning models can adapt to complex scenarios and are versatile enough to handle various classification
tasks without requiring substantial architectural changes.

• In this section, we examine the architecture of TextCNN and transformer-based classification architectures which
offer distinct approaches to text classification. TextCNN utilizes convolutional layers to extract features from text
embeddings, making it effective for capturing local patterns in data. In contrast, transformers excel in handling long-
range dependencies through self-attention mechanisms, making them ideal for tasks requiring a broader context
understanding. While textCNN is computationally efficient and interpretable, transformers are highly flexible and
excel in tasks demanding nuanced contextual understanding. The choice between the two depends on the specific
requirements of the classification problem, with textCNN being suitable for simpler tasks, and transformers shining
in more complex, context-sensitive scenarios.

Page 4-86Multimedia Retrieval – 2023

TextCNN-Architecture

This

is

an

example

for

a

deep

learning

model

d-dimensional
embeddings

feature maps for sequences
of 2, 3, 4, and 5 tokens

(3 maps for each)

⊛

max pooling

concat

fully
connected

softmax

class 1

class 2

class 3

class 4

class 5
1D-convolution

4.8.3 Text Classification with Deep Learning

Page 4-87Multimedia Retrieval – 2023

• TextCNN Architecture
– Tokens are converted into d-dimensional embedding vectors and fed into the network. Unlike the transformers

architecture, the sequence length is treated as an input dimension, not an architectural parameter. This allows us
to handle sequences of arbitrary length and apply convolutions to both short and long sentences without the
need for padding. We can select any method and dimensionality for the embeddings.

– We can utilize a set of feature maps to perform 1D convolutions on the sequence of embeddings. A feature map
consists of weights of size 𝑛 × 𝑑 × 𝑚, where 𝑛 represents the number of consecutive embeddings in the sequence
window, 𝑑 is the embedding dimensionality, and 𝑚 denotes the number of output values from the convolution.
The feature map traverses the sequence, applying 1D convolution to the next 𝑛 embeddings, adding a bias, and
applying an activation function for an output value. With 𝑚 feature maps, we compute 𝑚 output values for each
position. With a sequence length of 𝑠, this results in 𝑠 − 𝑛 + 1 values for each of the 𝑚 feature maps.

– As the input sequence can vary in length, the next step employs max pooling to condense the 𝑠 − 𝑛 + 1 values
from each feature map into a single value. These resulting values are then concatenated into a vector of fixed
length. In this example, we utilized feature maps of dimensions 2 × 𝑑 × 3, 3 × 𝑑 × 3, 4 × 𝑑 × 3, and 5 × 𝑑 × 3,
resulting in a concatenated feature vector of dimensions 4 ∗ 3 = 12 as the output of the convolutional layer.

– A fully connected network translates this 12-dimensional vector into 𝑘 logits (in our example, 𝑘 = 5) and then
applies a softmax function to predict the text's associated class.

4.8.3 Text Classification with Deep Learning

Page 4-88Multimedia Retrieval – 2023

• Transformer-based classification leverages pre-trained transformer models like BERT or
GPT as the core, extending them with extra layers to make class predictions. Typically, in
transformer-based classification, we initiate a sequence with a model-specific token
(e.g., [CLS] for BERT) and utilize the corresponding encoder output vector. This vector is
then passed through a deep classification layer, which computes the logits for the
𝑘 classes related to the task. A softmax function is applied to determine the class to
which the input text belongs.

• There are two ways to train the model for a given classification task:
– The base transformer model (also called foundation model) is frozen and we only

train the parameters of the additional classification layers. The foundation model can
be shared across various classification tasks.

4.8.3 Text Classification with Deep Learning

[CLS]Question [SEP]

BERT

classification layer

softmax

– Both the base transformer model and the classification layer are trained together. This leads to a fine-tuned
foundation model optimized for the classification task, but requires separate models for each classification task.

Transformer-based models have demonstrated state-of-the-art performance in various NLP tasks, including
sentiment analysis, text classification, question answering, and machine translation. They are known for their ability
to capture intricate contextual information, making them versatile and highly effective for a wide range of natural
language processing tasks.

cl
as

s
1

cl
as

s
2

cl
as

s
3

cl
as

s
4

cl
as

s
5

Page 4-89Multimedia Retrieval – 2023

4.8.4 Text Clustering
• Embeddings can assist in discovering clusters of related documents or sentences. These clusters can help in

recognizing document groups or outliers. A basic method for visual clustering is to map high-dimensional
embeddings into a 2D representation, often achieved using techniques like PCA.

• Another method is employing k-means clustering to group similar documents together. To detect outliers, we
calculate the minimum distance to the established clusters. If this distance surpasses a defined threshold, we can
classify the document as an outlier.

• PCA provides a visual representation that can quickly reveal the structure of collections in 2D space, but it may not
be as precise for fine-grained clustering. On the other hand, k-means clustering is more systematic and precise in
grouping similar documents, making it a robust choice for understanding the relationships between documents.
When determining outliers, it calculates distances to clusters, allowing for a clear definition of what is an outlier.

4.8.4 Text Clustering

from sentence_transformers import SentenceTransformer
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

1) encode all movies with a sentence transformer
model_name = 'nq-distilbert-base-v1'
strf = SentenceTransformer(model_name)
vectors = strf.encode([m['title'] + m['summary'] for m in movies])

2) apply a PCA to map to 2 dimensions
pca = PCA(n_components=2)
result = pca.fit_transform(vectors)

3) create a scatter plot of the projection
plt.figure(figsize=(14,10))
plt.scatter(result[:, 0], result[:, 1])
for i, r in enumerate(result):
 plt.annotate(movies[i]['title'], xy=(r[0]+0.1, r[1]-0.1))

plt.show()

Page 4-90Multimedia Retrieval – 2023

4.9 Literature and Links
Online Books

– S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O'Reilly Media, 2009. Free online version:
http://www.nltk.org/book/

– A. Zhang, Z. C. Lipton, Mu Li, A J. Smola. Dive into Deep Learning. Cambridge University Press, to be released. Free online version:
https://d2l.ai

– I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org

Papers
– Susan T. Dumais (2005). Latent Semantic Analysis. Annual Review of Information Science and Technology.

https://doi.org/10.1002%2Faris.1440380105
– T. Wolf et. al. Transformers: State-of-the-Art Natural Language Processing, Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, 2020. https://www.aclweb.org/anthology/2020.emnlp-demos.6
– T. Kiss, and J. Strunk: Unsupervised Multilingual Sentence Boundary Detection. Computational Linguistics, 2006.

https://aclanthology.org/J06-4003.pdf
– C. Paice. Another Stemmer. ACM SIGIR Forum 24.3 (1990). https://dl.acm.org/doi/pdf/10.1145/101306.101310
– P. Koehn, K. Knight. Empirical Methods for Compound Splitting. 10th Conference of the European Chapter of the Association for

Computational Linguistics, 2003. https://arxiv.org/ftp/cs/papers/0302/0302032.pdf
– S. Deerwester, et. al, Improving Information Retrieval with Latent Semantic Indexing, Proceedings of the 51st Annual Meeting of the

American Society for Information Science 25, 1988.
– T. Mikolov, et. al. Distributed Representations of Words and Phrases and their Compositionality. 2013.

https://doi.org/10.48550/arXiv.1310.4546
– T. Mikolov, et. al. Efficient Estimation of Word Representations in Vector Space. 2013. https://arxiv.org/pdf/1301.3781.pdf
– P. Bojanowski, et. al. Enriching Word Vectors with Subword Information. 2017. https://aclanthology.org/Q17-1010.pdf
– J. Pennington, R. Socher, C. Manning. GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014. https://aclanthology.org/D14-1162
– N. Reimers, I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019. https://aclanthology.org/D19-1410

4.9 Literature and Links

http://www.nltk.org/book/
https://d2l.ai/
http://www.deeplearningbook.org/
https://doi.org/10.1002%2Faris.1440380105
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/J06-4003.pdf
https://dl.acm.org/doi/pdf/10.1145/101306.101310
https://arxiv.org/ftp/cs/papers/0302/0302032.pdf
https://doi.org/10.48550/arXiv.1310.4546
https://arxiv.org/pdf/1301.3781.pdf
https://aclanthology.org/D14-1162
https://aclanthology.org/D19-1410

Page 4-91Multimedia Retrieval – 2023

4.9 Literature and Links
Implementations

– Models: Huggingface, the AI community building the future. https://huggingface.co
– Data & Competitions: Kaggle: Your Machine Learning and Data Science Community. https://www.kaggle.com
– Transformers: State-of-the-art Machine Learning. https://github.com/huggingface/transformers,

https://huggingface.co/docs/transformers/index
– LangChain: Framework for developing applications powered by language models: https://python.langchain.com/
– NLTK: Natural Language Toolkit. https://www.nltk.org/
– spaCy: Industrial-Strength Natural Language Processing. https://spacy.io/
– Apache OpenNLP: Machine learning based toolkit. https://opennlp.apache.org/
– WordNet: A Lexical Database for English. https://wordnet.princeton.edu/
– Snowball: Stemming Algorithms. https://snowballstem.org/
– GloVe: Global Vectors for Word Representation. https://github.com/stanfordnlp/GloVe

4.9 Literature and Links

https://huggingface.co/
https://www.kaggle.com/
https://github.com/huggingface/transformers
https://huggingface.co/docs/transformers/index
https://python.langchain.com/
https://www.nltk.org/
https://spacy.io/
https://opennlp.apache.org/
https://wordnet.princeton.edu/
https://snowballstem.org/
https://github.com/stanfordnlp/GloVe

	Advanced Text Retrieval
	Slide 1

	Introduction
	Slide 2: 4.1 Introduction
	Slide 3

	Chunking Text
	Slide 4: 4.2 Chunking Text
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

	Tokenization Revisted
	Slide 12: 4.3 Tokenization Revisted
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

	Lemmatization and Linguistic Transformation
	Slide 29: 4.4 Lemmatization and Linguistic Transformation
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	Part of Speech
	Slide 38: 4.5 Part of Speech
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

	Latent Semantic Analysis
	Slide 47: 4.6 Latent Semantic Analysis
	Slide 48
	Slide 49: 4.6.1 Application in Text Retrieval
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 4.6.2 A Simple Example with LSI
	Slide 54
	Slide 55
	Slide 56
	Slide 57

	Embeddings
	Slide 58: 4.7 Embeddings
	Slide 59: 4.7.1 Word2vec, GloVe, and fastText
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: 4.7.2 Neural Network based Embeddings
	Slide 71
	Slide 72: 4.7.3 Embeddings in Text Retrieval
	Slide 73
	Slide 74
	Slide 75
	Slide 76

	Text Classifiction
	Slide 77: 4.8 Text Classifiction
	Slide 78: 4.8.1 Language Detection
	Slide 79
	Slide 80
	Slide 81
	Slide 82: 4.8.2 Sentiment Analysis
	Slide 83
	Slide 84
	Slide 85: 4.8.3 Text Classification with Deep Learning
	Slide 86
	Slide 87
	Slide 88
	Slide 89: 4.8.4 Text Clustering

	Literature and Links
	Slide 90: 4.9 Literature and Links
	Slide 91: 4.9 Literature and Links

