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11.1 Machine Learning Process

• In the upcoming chapters, we will explore a range of machine learning (ML) approaches, starting from simple 
methods like Naïve Bayes to more advanced techniques like transformers for language processing. While the focus 
of this course is on retrieval techniques, understanding and correctly applying ML methods are crucial. Mastering 
the retrieval problem requires a comprehension of the strengths and limitations of these underlying methods. 
Therefore, we cover specific ML methods when they are first needed. The final chapter of this course provides a 
comprehensive description of these methods, rather than cluttering them throughout all chapters.

• In this introductory section, our emphasis is on the machine learning process in general. We introduce key learning 
concepts and discuss potential pitfalls such as underfitting and overfitting, which can hinder the successful 
application of ML methods. In modern data science, the concept of MLOps has gained significance aiming to 
structure and organize the data preparation, training, deployment, and operations of ML functions more effectively.

• In his 1997 book, "Machine Learning," Mitchell defined the machine learning problem as follows:

– Mitchell considers the task to be anything that we want the system to perform, ranging from simple classification 
tasks to complex scenarios like self-driving cars, as we will explore with examples in the following pages.

– To evaluate system performance for a given task, Mitchell introduces the notion of a performance measure. This 
measure not only helps in improving the system's task performance but also allows us to compare two systems. In 
the next chapter "Evaluation“, we delve into benchmarking systems and comparing them with each other. On the 
next pages, we present two commonly used performance measures in machine learning.

– Lastly, the term "experience" refers to the input provided to the system and its ability to utilize that input to 
enhance its performance. In supervised learning, we provide numerous examples to demonstrate how to perform 
a task correctly. In reinforcement learning, we offer feedback through a reward function, guiding the system 
towards better models. In unsupervised learning, we provide only data without labels or a reward function. The 
system must learn to describe the underlying distribution, either by clustering objects or detecting anomalies.

A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T, as measured by P, improves with experience E   

[Mitchell 1997]
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11.1.1 Tasks

The following provides a summary of the most common learning tasks that we will encounter throughout this course. 
It's important to note that there are many more learning tasks in various domains where machine learning is applied.

• Classification: The task involves mapping input features to a set of K categories. Typically, this means finding a 
function f that maps an M-dimensional vector x to a category represented by a discrete value y. Another variant of 
classification involves assigning a probability distribution P(y) over all classes y, which sum up to 1 over all classes y. 
Applications of classification include object recognition in images, text categorization, spam filtering, handwriting 
and speech recognition, credit scoring, pattern recognition, and more.

• Classification with missing input: This task is similar to classification but allows for missing input values. Instead of a 
single function f, a set of functions is required to map different subsets of inputs to a category y (or a distribution 
P(y)). Alternatively, learning probability distributions over relevant features and marginalizing out the missing ones 
can be a better approach. All tasks have a generalization that accommodates missing inputs.

• Regression: The task involves predicting a numerical value based on the input features. The learning algorithm must 
find a function f that maps an M-dimensional vector x to a numeric value. Unlike classification, regression aims to 
produce a real number as the output and does not provide distribution functions over all possible values. 
Applications of regression include predictions/extrapolations to the future, statistical analysis, algorithmic trading, 
expected claim estimation in insurance, financial risk assessment, cost restrictions, budgeting, data mining, pricing 
(and its impact on sales), and correlation analysis.

Sample fixed acidity volatile acidity citric acid pH alcohol quality

#1 8.5 0.28 0.56 3.3 10.5 7

#2 8.1 0.56 0.28 3.11 9.3 5

#3 7.4 0.59 0.08 3.38 9 4

#4 7.9 0.32 0.51 3.04 9.2 6

#5 8.9 0.22 0.48 3.39 9.4 6
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• Clustering divides a set of inputs into groups. Unlike classification, the number of groups is not known in advance, 
and the machine learning algorithm must discover them. Since the output is unknown during training, this task is 
referred to as "unsupervised," while the previous tasks are labeled as "supervised" (we provided expected outputs). 
Applications of clustering include human genetic clustering, market segmentation (customer groups), social network 
analysis (communities), image segmentation, anomaly detection, and crime analysis.

• Density estimation (probability mass function estimation) 
entails constructing an estimate of an unknown probability 
density function based on the input features. In its simplest 
form, the algorithm learns a function p: ℝᴹ → ℝ where p(x) 

is interpreted as a probability density function (or a 
probability mass function for discrete x). An example of 
basic density estimation is shown using histogram-based
density estimation with different numbers of bins. 
Applications of density estimation include age estimation 
for countries, modeling complex patterns, feature extraction, 
and simplification of models.

• Imputation of missing values involves replacing (estimating/guessing) missing data with substituted values. Given a 
new example x ∈ ℝᴹ with some missing xᵢ, the algorithm must provide a prediction for the missing values. 
Applications of imputation of missing values include incomplete sensing data, demographics (incomplete personal 
data), medical analysis (incomplete or expensive test data), and signal restoration after data loss.

• Anomaly detection requires the algorithm to identify unusual, incorrect, or atypical events or data points. The 
output can be a simple binary flag (0 or 1, indicating an anomaly) or a probability of an anomaly. Supervised anomaly 
detection requires a training set with labels for "normal" (0) and "abnormal" (1) instances. Unsupervised anomaly 
detection involves the algorithm describing normal behavior (e.g., using density estimation) and automatically 
detecting outliers. Applications of anomaly detection include credit card fraud detection, intrusion detection 
(cybersecurity), elimination of outliers for statistical analysis, change detection, system health monitoring, event 
detection, and fault detection.
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• Generative AI involves generating new data instances that 
resemble the existing training data. It captures underlying 
patterns to create samples with similar characteristics, such 
as images, text, music, and other content. Generative AI is 
an unsupervised learning task where algorithms generate 
output not tied to specific inputs. Applications include image 
synthesis, text generation, artistic style transfer, data 
augmentation, chatbots, computer-assisted coding, artefact
creation for games, and text summarization.

• Machine translation maps input symbols from one language to output symbols in another language. In natural 
language translation, simple word-by-word translation is insufficient. The algorithm must find a structurally and 
semantically correct representation in the target language. 
– Example with Google Translate

• Transcription involves converting unstructured data into a discrete, often textual form. Optical character 
recognition (OCR) and speech recognition are well-known transcription applications.

• Dimensionality reduction simplifies input vectors by transforming them into a lower-dimensional space. The output 
is interpreted as topics, concepts or embeddings, making it easier for the machine to find documents with similar 
topics. Dimensionality reduction is commonly used for data mining, latent semantic analysis, principal component 
analysis, statistical analysis, data reduction, and compression.
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• Reasoning involves generating conclusions from knowledge using logical techniques like deduction and induction. 
Knowledge-based systems, including expert systems written in Prolog, have been used for the past 30 years. These 
systems used facts and rules to prove or disprove statements within a closed world. Modern approaches utilize 
machine learning for theorem proving or constraint solving. Cognitive reasoning and cognitive AI have recently 
improved the performance of chatbots and speech recognition.

• Autonomous robots employ reinforcement learning, where they adjust their behavior based on incentives and 
penalties from the environment. Autonomous driving has presented new challenges in reinforcement learning, 
particularly in machine ethics. Robots must make decisions in unforeseen scenarios where programmers cannot 
anticipate or hard-code the behavior. For instance, when faced with an inevitable collision with either an animal or a 
person, should the machine risk an evasive maneuver that endangers its passengers or accept the potential harm to 
the animal or person on the street?
– While the field is relatively young, recent progress 

has been accelerated by deep learning techniques. 
Tesla claims that its autopilot is ten times safer than 
the average driver. 

– Laws and societal acceptance of robots are still in 
their early stages. Concerns regarding safety, 
privacy, and car hacking are raised, and insurance 
issues regarding who is liable for mistakes made by 
robots remain as further obstacles.
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• Performance measures evaluate the effectiveness of a system in performing a task, with each task having its own 
interpretation of what "good" means. These measures can be categorized broadly whether they support supervised, 
unsupervised, and reinforcement learning.

• In supervised learning, the main tasks are regression and classification
– In regression tasks, performance is measured using the mean squared error (MSE), which calculates the squared 

difference between the actual values (vector 𝒚 ∈ ℝ𝑁 ) and the predicted values (vector ෝ𝒚 ∈ ℝ𝑁). 

Regression models, represented by a function f with parameters θ, map M input values xᵢ to N output values yᵢ, 
where 𝑓: ℝ𝑀 → ℝ𝑁 and 𝜽 ∈ ℝ𝐷. The number of parameters, D, depends on the chosen function. The goal is to find 
the best solution 𝜽∗ that minimizes the MSE, which involves finding the values of θ where the gradient is zero.

For simple regression models, an exact solution can be found using calculus. In more complex cases, a numerical 
solution using gradient descent is often used, even if it only finds a local minimum (approximate result). The use of 
squared error simplifies the gradient calculations significantly. Backpropagation, employed in neural networks, 
utilizes a similar approach to train the weights in the network through stochastic gradient descent.
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– Classification tasks can be categorized based on two dimensions: 
1) Binary vs. multi-class: Binary classification distinguishes between two output values, while multi-class deals 
with multiple output values. In the next chapter "Evaluation“, we will explore the assessment of binary 
classification in more detail, including precision, recall, accuracy, and confusion matrix. Tasks often involve 
classifying against hundreds of different labels, where the confusion matrix helps assess model accuracy.

2) Hard vs. soft assignments: To understand this dimension, let's consider an example of detecting different 
animals in pictures (dogs, cats, horses, sharks). With hard assignments, a neural network can use an output bin 
for each animal where the highest value represents the predicted class (1) and the other bins are set to 0. With 
soft assignments, the network outputs probabilities or likelihoods for each class, forming a probability 
distribution across the classes. Soft assignments require mapping the network's logits (unnormalized output of 
the neural network) to meaningful probabilities that should align with the 0/1 values of the training set.

With hard assignments, we can compare the output of a neural network directly with the labels in the training 
set and assess the accuracy of the predictions (see next chapter on “Evaluation” for more details). In contrast, 
with soft assignments, we first need an effective method to map the logits (network outputs) to meaningful 
probabilities for each class. Secondly, we require performance measures that evaluate how well these 
probabilities align with the 0/1 values of the training set.

Consider the above example: the logits are converted into probabilities (the next page will introduce the 
softmax function). For instance, the bin representing "cats" receives an 88% probability, indicating that the 
picture likely contains a cat (hard assignment). However, a system that generates only a 79% likelihood for 
"cats" performs comparatively worse, even though it still results in the same hard assignment (“it’s a cat”).

11.1.2 Performance
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With soft assignments, machine learning models produce K output values 𝑜𝑘 ∈ ℝ, known as logits, where K is the 
number of classes. The range of values for 𝑜𝑘 can vary based on the model and activation functions used in deep 
neural networks, making it challenging to control or predict. We have to convert these values into probabilities 𝑝𝑘,  
maintaining the relative order among 𝑜𝑘 values and ensuring ∑𝑝𝑘 = 1 for a valid probability distribution across the 
K classes. There are many options for such a mapping, but the “softmax” function is a widely used approach.

In information theory, cross-entropy measures the accuracy of a model distribution p in matching the true 
distribution q over a set of events 𝜀. For classification, the true distribution is often represented as a 'one-hot' 
vector y, with only one component with value 1, and all others with value 0. The cross-entropy loss is then:

By plugging in the softmax definition, we arrive at the formula on the right, which can be further simplified to:

Similar to regression earlier, our goal is to find a model that minimizes this loss function using gradient descent 
search. To do this, we need to compute the partial derivatives of the loss function for each logit 𝑜𝑘, which 
simplifies to the difference between the softmax value ො𝑦𝑘 and the true label 𝑦𝑘.
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• Unsupervised learning encompasses tasks where no ground truth is available, making comparison methods from the 
previous pages inapplicable. Instead, we evaluate unsupervised tasks based on the model's effectiveness in tasks like 
identifying "good" clusters and detecting "true" outliers.
– Clustering presents a key challenge in selecting the appropriate number of clusters and achieving well-defined 

cluster shapes. Having too many clusters may cause coherent regions to split, while too few clusters might result 
in insufficient distinction among data items, causing everything to blur together. Common methods to address this 
challenge include the elbow method, Silhouette Score, Davies-Bouldin Index, and Adjusted Rand Index (ARI).

– Dimensionality reduction methods, like Principle Component Analysis (PCA) or auto-encoders, simplify and 
compress data representation. Performance measures evaluate the model's ability to reconstruct the original data 
from the reduced representation. Often, dimensionality reduction approximates results for main tasks, like vector 
search for text retrieval. This requires balancing faster execution with potential loss of quality due to 
approximation when compared to methods without compression.

• Reinforcement learning agents evaluate actions in an environment to maximize cumulative rewards. The tasks are 
broad and studied in various fields like game theory, control theory, autonomous driving, simulations, and genetic 
algorithms. Unlike supervised learning, reinforcement learning doesn't have known input/output correlations. The 
focus is on balancing exploration (of unknown situations) and exploitation (of current knowledge). The agent 
interacts with the environment in discrete time steps, observing potential rewards, choosing actions, and receiving 
rewards for transitions. The goal is to maximize cumulative rewards. A few examples:
– Autonomous Driving: The reward function encourages safe and efficient driving. The agent (self-driving car) 

receives positive rewards for following traffic rules, staying on the road, and avoiding collisions. It receives 
negative rewards for breaking rules, driving too fast or erratically, and causing accidents.

– Game Playing: The reward function focuses on gaining strategic advantages that lead to winning the game. In 
chess, this includes capturing opponent pieces, controlling strategic cells in the center of the board, and avoiding 
losing own pieces.

– Financial Trading: The reward function balances trade profitability with risk exposure. If the agent (trade bot) 
focuses too much on highly profitable trades, it may deviate from the defined risk profile of the portfolio owner. 
Conversely, a low-risk trading strategy could result in missed opportunities. The trading strategy must withstand 
unpredicted market changes while aiming for profitable outcomes.

11.1.2 Performance
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• Supervised Learning algorithms observe a dataset with features and corresponding target labels. The objective is to 
learn a generic rule that maps features to target labels, allowing the algorithm to predict outcomes for new data 
instances. The term "supervised" comes from the idea that the target labels are provided by an instructor or teacher. 
For example, in classification tasks, each data example consists of features and a corresponding label. The "teacher" 
provides instructions on how the features should be mapped to labels, and the algorithm learns this mapping rule.
– In the next section, the task is not merely to "learn" the mappings in the training set, but to create a generic model 

that performs well for new data. The teacher typically provides both the labels and a performance measure, 
assessing how effectively the generalization worked compared to exact replication of the training data

– Generating labels for training sets is a laborious and expensive task, similar to obtaining metadata for data objects. 
New approaches aim to avoid the need for explicit labeling while still gaining the advantages of supervised 
learning. An example is Generative Adversarial Networks (GANs), where a generator creates fake data (e.g., 
images) and a competing discriminator evaluates whether a given sample is real (drawn from a given data set) or 
generated. The generator attempts to deceive the discriminator by maximizing the number of “real” outcomes, 
while the discriminator optimizes its model to better distinguish between real drawn from the given set and 
generated data.
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• Semi-Supervised Learning is a variation of supervised learning. The algorithm receives both features and targets, but 
some of features or label may be missing in the training data  (incomplete observation). Depending on the task, the 
algorithm needs to either fill in the missing features or predict targets for new data sets. 
– Missing targets occur when some objects in the training set lack targets (or labels) due to the expensive or labor-

intensive labeling process. For instance, in credit card fraud detection, only a small subset of transactions is 
labeled as "fraud" or "no fraud" based on investigations. The vast majority remains unlabeled. Algorithms dealing 
with such data make assumptions to learn effectively.

1) Smoothness: points in close proximity share the same label. Hence, 
we assume that the distribution function is smooth and continuous. 

2) Cluster: data tends to form clusters and all objects in the same 
cluster share the same label 

3) Manifold: often, features are high-dimensional but the data is more 
likely to lie on a low dimensional manifold

o Induction: When only a few labels are missing, a useful approach is to 
learn the distribution from the labeled data using supervised learning. 
We can then use this knowledge to predict the missing labels. However, 
this method becomes ineffective when a large number of objects lack 
labels, as the training set becomes inadequate to capture the true label 
distribution. Consequently, this approach disregards a significant portion 
of the data, leading to information loss.

o Transduction: To utilize all data points, transductive algorithms identify 
clusters in the dataset and assign the same label to all objects within 
each cluster. One  approach is the partitioning transduction method:

1. Start with a single cluster containing all objects.
2. While a cluster has two objects with different labels, partition 
the cluster to resolve the conflict.
3. Assign the same label to all objects within each cluster.

Various other variants exist for developing these clusters.
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– Missing features: The training set has complete targets, but some items lack some of the features. For newly 
presented data, potentially with missing features, the algorithm must predict the target. A good example is disease 
prediction where the target (“healthy”, “has disease”) must be predicted from a set of test results. Laboratory tests 
are expensive and thus not all features (test results) are available. 
o Naïve Bayes is a simple technique for building classifiers using conditional probabilities. With K classes 𝐶𝑘 and 

M features 𝑥𝑖 , the best class 𝑘∗ is determined by 𝑘∗ = argmax
𝑘

𝑃(𝐶𝑘) ς𝑖 𝑃 𝑥𝑖|𝐶𝑘 . The probabilities 𝑃(𝐶𝑘) and 

𝑃 𝑥𝑖|𝐶𝑘  are learned from the training data (ignoring missing features 𝑥𝑖). When predicting the class for a new 
object with missing features, we simply ignore those features in the Naïve Bayes optimization.

o If we have learned the distribution function for all features, we can simply "integrate" or "average" over the 
missing features. This means assuming that the missing features follow the distribution of the training set and 
approximating them with an expected value.

• Unsupervised Learning algorithms analyze a data set without targets and derive a function that captures the 
underlying structure or distribution of the data. The goal is to discover meaningful patterns and gain insights into the 
data's structure. Unlike supervised learning, there is no instructor or teacher providing targets or evaluating the 
model's performance. The algorithm must learn and make discoveries independently.
– Clustering: Identifying groups of objects that are similar based on 

a distance function. The number of clusters is often unknown.
– Outlier/Anomaly Detection: Learning the "normal" behavior and 

identifying outliers that significantly deviate from the rest. The training 
data may also contain outliers.

– Density Function: Describing the data with an appropriate density 
function. Gaussian approximation is a method, while more complex 
ones optimize for the best fit among different distribution functions.

– Dimensionality Reduction: Extracting core concepts from high-
dimensional features using techniques like Principal Component 
Analysis for a simpler yet accurate view of the data.

– Self-Organizing Maps (SOM): Mapping high-dimensional data to 
2-dimensional presentation using a competitive learning approach.
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• Training is a vital step in the broader "Model Development" process, which is now integrated with DevOps to form a 
comprehensive machine learning lifecycle known as MLOps. This process encompasses four main cycles:
– The data cycle collects, curates, and generates datasets for learning. For example, this involves gathering images, 

filtering, and labeling them for an object recognition task, and creating training, test, and validation subsets.
– The machine learning cycle selects an appropriate model, optimizes hyperparameters, trains the model, and 

evaluates its performance to choose the best option. In the image recognition example, we might use a ResNet 
architecture, adjust the number of layers and other parameters to achieve the highest accuracy on the test set.

– The development cycle integrates the model into the application architecture or business process and conducts 
end-to-end testing of the (business) use case. For the image example, this could mean embedding the trained 
model in a container with an API accessible by other parts of the architecture.

– The operations cycle extends the application operations to monitor the performance of the machine learning 
model and trigger feature requests if its performance falls below the desired level. In the image example, this 
might include a feedback mechanism where end-users can report issues with objects not properly identified.

source: ml4devs.com, Satish Chandra Gupta
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• While we aim for good performance on the training data, our primary goal is to ensure that the model excels with 
new, unseen data. Memorizing the training data is undesirable since it leads to poor performance on unfamiliar data. 
Instead, we seek a model that not only performs well on the training data but also generalizes its learnings, allowing 
it to achieve equally impressive results on new, previously unseen data.

• Earlier in this chapter, we introduced cross-entropy as a loss function for classification tasks. During model training, 
our goal is to minimize this loss. However, the best model is not solely determined by the lowest loss on the training 
data. It is the model that achieves the highest accuracy on new, unseen data. To estimate this accuracy, we split the 
data into two parts: roughly 80% for training, and the remaining for final evaluation without being used in training. 
In machine learning competitions, participants do not event have access to the test data. They can optimize their 
models with training data, but final evaluation is with unknown new data to identify the best-performing models.

• Most models have hyperparameters, like ResNet in PyTorch with varying layer numbers. Self-developed models may 
have other hyperparameters like activation functions, optimization algorithms, regularization features, and different 
number representations (int16, fp16, fp32). This adds an extra optimization loop to the training process to find the 
best hyperparameter set.
– Once more, our goal is to find the best hyperparameters that perform well on future predictions. While 

minimizing the training loss is essential, we do not want the model to memorize it; instead, it should learn to 
generalize based on the chosen hyperparameters. We select the hyperparameters that enables the model to 
generalize most effectively.

– However, using the test data for this purpose would "leak" information into the training process that compromises 
the accuracy of future predictions. Even model developers should refrain from inspecting the test data to 
diagnose model failures, as it could lead to over-optimization for the training and test sets, rather than improving 
the model’s ability to generalize.

– Instead, we further divide the training data: approximately 80% for model training, and the remaining portion for 
validating the chosen hyperparameters. After finding a good set of hyperparameters, we can then use the test set 
to assess the final model performance.

• To avoid bias towards the training set, modify the validation set in each iteration when searching for optimal 
hyperparameters. Remember, we want to find models that generalize well and not models that memorize training 
and/or validation data
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• In cases where we have limited training examples due to the double splitting of the data, we can use the k-fold 
cross-validation approach. This method not only ensures effective model training but also prevents overfitting by 
presenting different data to the model in each epoch.
– As before, it is crucial to keep the test data separate from the training data. Never use any part of the test data 

during the training process, even if you are running low on examples.
– However, we vary the validation set in each epoch. An epoch is a full iteration over all the training data, and 

during this iteration, we evaluate the model on the validation set. For each epoch, we split the training and 
validation data differently using the following approach illustrated below.
o The training data, after splitting the test data, is divided into k folds. For smaller datasets, using a larger value for 

k can lead to better results, with typical values ranging between 5 and 10.
o In each epoch, one fold is used for validation, while the other folds are used for training. As we iterate over 

epochs, different folds are used for training, reducing the risk of bias towards the training data. However, this 
increases the variance of our accuracy estimates.

o k is a hyperparameter itself, and you have to optimize it for each learning process again. Try varying k to 
observe which value yields the best validation results (do not use the test data for this, as discussed before).

o Sometimes datasets are imbalanced, with some labels being rare while others are frequent. To improve the 
stability of the learning process, we need to ensure that the folds contain a representative number of each class.

– If more epochs are required, we can restart with the first fold and continue iterating until the model's 
performance has converged or we decide to stop the current run and begin again with new hyperparameters.

validation set training set

1st epoch

2nd epoch

3rd epoch

4th epoch

5th epoch
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The training process involves the following steps (see picture below)
1. Split the data into training and test sets. Keep about 20% test data for final assessment, but avoid using or 

looking at the test data during training. In competitions, the test data is usually not shared with contestants
2. Split the training data again into training and validation sets. Allocate about 20% for validating hyperparameters. 

Consider k-fold cross-validation for limited data or to prevent bias towards the training data
3. Train the model with the training set and iterate over epochs until performance converges or it has become 

evident that the current hyperparameters are sub-optimal
4. Adjust hyperparameters based on validation results. Retrain the model with the optimal set of hyperparameters 

using more epochs if needed
5. Finally, evaluate the model's performance using the test data and compare it with other approaches. If you 

iterate the training process, use a different test data set to avoid bias. In competitions, the contestants only 
receive the final assessment results but cannot inspect where and why the model has failed
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11.1.5 Over- and Underfitting

• During the training process, we mentioned the bias towards the training set without fully explaining its meaning and 
how to detect it. A fundamental concept in machine learning deals with the balance between two types of errors 
that can occur during the training process: bias and variance
– Bias is the error introduced by using an overly simplistic model to approximate the data. A model with high bias is 

not able to capture the essential patterns and relationships in the data
– Variance is the sensitivity of the model to small changes in the data, often caused by a too complex model. A 

model with high variance has good performance on the training data but poor performance on new, unseen data
– A tradeoff is necessary because reducing bias can increase variance, and vice versa. The goal is to strike a balance 

by finding a model that generalizes well to unseen data. Thus, the goal is to minimize the sum of bias and variance

• Model complexity is a key factor influencing bias and variance. Different machine learning structures have different 
facets of complexity. For instance, a linear regression model is simpler with fewer parameters to adjust 𝑦 = 𝑎 ∙ 𝑥 + 𝑏, 
while a polynomial model has more parameters, giving it greater adaptability to different datasets. Capacity, in this 
context, refers to a model's ability to adjust itself through structural changes and model parameters.

• But what is the right complexity: if the model is too simple (low complexity), we risk a high bias; if the model too 
complex, we risk a high variance like memorizing the training data rather than generalizing the observed patterns
– An example for a too simplistic model: “if the sun is out, it is warm”
– An example for an overly complex model: “if the sun is out and it is a summer month and you are on the north 

side or it is a winter month and you are on the south side or you are equatorial or you are in a dessert and it is not 
an ice dessert and it is not cloudy or raining or snowing and there is not a strong wind and there is not a sun 
eclipse and there is not a volcano eruption and you are not in the water or in a cave or in the shadows or in a 
house with air conditioning or in a car with air conditioning or in a freezer … then it is warm”

• Our brain is excellent in finding the right level of abstraction. Consider the following examples:
– “birds can fly” but wait, not all birds can fly  → we us a simple model and learn the exceptions
– “describe what makes a chair a chair” → no simple model, so we employ abstract concepts (“you can sit on it”)
– “horse” → narrow variety of forms and what is accepted as a horse (e.g., donkey, zebra, giraffe) 
– “dog” → wide variety of forms that count as dogs yet we recognize them immediately
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• Overfitting and underfitting are common issues in machine learning. Overfitting happens when the model becomes 
overly complex, trying to match the training data too closely. This often occurs when the model has too many 
parameters relative to the available training data, leading to poor predictive performance when applied to new data. 
Underfitting, on the other hand, occurs when the model is too simplistic to capture the underlying data trends. For 
example, fitting a linear model to a non-linear data distribution will result in high training error and inadequate 
predictive performance.
– As shown below, overfitting occurs when the model is optimized for the training data using too many parameters. 

Such a model may display a small training loss, indicating good adaptation to the training data, but it fails to 
predict new data points effectively

– On the other hand, underfitting exhibits large errors on the training data and poor prediction performance for 
new data points. It clearly fails to capture the true essence of the distribution

– To control overfitting and underfitting, we can adjust the model's capacity. The optimal capacity is achieved when 
the model shows small errors on both the training set and the validation set

• To recognize overfitting and underfitting during training, we use a loss function like mean squared error or cross-
entropy loss. Underfitting is indicated by high losses on both the training and validation sets, while overfitting is 
characterized by small losses on the training data but significantly higher losses on the validation set. Note that the 
loss on validation sets is typically higher, but a large gap is a key sign of overfitting.

underfitting overfitting

optimal
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underfitting

overfitting
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• How can we optimize the model’s capacity to strike a balance between bias and variance?
– Occam's razor is an intuitive heuristic, first stated by William of Ockham (c. 1287-1347). It has been further 

refined, especially in the 20th century, for statistical learning purposes.

Numquam ponenda est pluralitas sine necessitate (Plurality must never be posited without necessity

In a modern interpretation, Occam's razor suggests that when multiple hypotheses explain observations equally 
well, we should prefer the simplest one. This means we aim for models with low complexity and only increase it if 
needed to perform well for the specific task. We can also find examples for Occam’s razor in physics, such as 
Newton's laws, which offer a simplified yet effective approximation of the real-world in many situations.

– Simpler models are better at generalizing, but we must avoid models that are overly simplistic and have high 
training loss. As we increase the model's capacity, the training loss decreases. However, if the capacity becomes 
too high, the model loses its ability to generalize (e.g., memorizing data), and the gap between training loss and 
validation loss widens. The illustration below shows the underfitting and overfitting zones, divided by the optimal 
model capacity that reduces training loss and enables good generalization at the same time.

– Modern language models use deep learning architectures with billions of parameters. Handling such a large 
number of parameters presents new challenges as we must prevent the model to memorize and instead 
encourage it to generalize. Later in the course, we will explore different regularization techniques, which aim to 
penalize complex models and strike a balance between bias and tradeoff. For instance, L2 regularization in deep 
learning introduces a penalty in the loss function to discourage the utilization of large parameter values. This 
motivates the model to use fewer connections in the network and prevents overfitting
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