
Computer Science / 15731-01 / 2024

Multimedia Retrieval

Chapter 3: Classical Text Retrieval

Dr. Roger Weber, roger.weber@gmail.com

3.1 Introduction

3.2 Fundamentals

3.3 Text Retrieval Models

3.4 Indexing Structures

3.5 Lucene - Open Source Text Search

3.6 Literature and Links

3.1 Introduction
3.2 Fundamentals
3.3 Text Retrieval Models
3.4 Indexing Structures
3.5 Lucene - Open Source Text Search
3.6 Literature and Links

Page 3-2Multimedia Retrieval ģ2024

3.1 Introduction

ĭText retrieval originated in the 1950s and 1960s through pioneering research by Gerard Salton, Karen SpärckJones,
and others. It became popular due to its wide range of applications, simplicity, and user-friendly interface. As
discussed earlier, text retrieval is less affected by the semantic gap compared to other media types (although this will
be further discussed in upcoming chapters). Users input text queries against unstructured documents, and the
systems can easily match the query with the document, as they share the same representation. Additionally, textual
metadata enables any media type to be searchable using the same approach.

ĭThis allowed the relatively basic computer systems back then to offer efficient and effective search for expert users.
As early computers had limitations in terms of storage and compute, models progressed from simple Boolean
matching to more complex vector space and probabilistic models as technology improved. The first generation
primarily focused on "Retriever-only" models.

ģBoolean Retrieval Systems hold a significant advantage as they can determine document relevance while scanning
the data, without the need for post-processing to sort and rank documents. Additional filters, such as publication
date or author, can be easily integrated into the Boolean model. This builds a robust foundation still observed in
today's systems like when searching for files on a local drive

ģThe Boolean Model uses set theory and Boolean algebra. Documents are represented as a set of terms, without
considering the number of occurrences. The query is formulated as a Boolean expression using operators like AND
and OR to combine term match atomic queries. If a document satisfies the Boolean expression (and other filter
conditions on its metadata), it is included in the result set; otherwise, it is excluded

ģBoolean models do not use scoring or ranking, so they can return results as soon as they find the first matching
document while scanning the data (consider the example of to searching through a local hard drive). In addition,
they can utilize a simple index structure called inverted file which makes the search process very efficient by
considering only a small fraction of the data. This method is still used in modern algorithms today.

3.1 Introduction

Retriever

query

Å doc 1
Å doc 2
Å doc 3
Å Į

index

Page 3-3Multimedia Retrieval ģ 2024

ĭAs collections grew larger, the Boolean model needed an extension for better result organization and exploration.
When there are hundreds of hits, users want a more efficient way to browse through search results. A post-
processing step was introduced, enabling query-independent filtering and sorting, such as sorting by publication date
or filtering for a specific language. Unlike the retriever step, users can add or remove filters and change sorting while
exploring the results and without re-submitting the search. In other words, this post-processing does not impact the
set of relevant documents and is often implemented in the interface directly:

ĭThe above method works well for scenarios where exploration is mostly focused on metadata, as in shop or library
searches. However, a key drawback is that sorting does not consider how well an object fits the query. Early
extensions of the Boolean model (Extended Boolean Model) addressed this limitation by studying the impact of the
query terms' presence in documents and their relevance assessment. For example, consider the query "cat AND dog"
and the three documents:

1) "A cat walked down the street."

2) "The dog chased the cat."

3) "The cat played with the dog when another cat and dog approached them."

Documents 2) and 3) meet the condition "cat AND dogĨ, but document 1) is dismissed by the Boolean logic although it
appears partially relevant to the query. Furthermore, document 3) contains the query terms more frequently and
seems to be a better fit for the query, but the Boolean expression classifies documents 2) and 3) the same. The
Extended Boolean Model, changes the foundation model in two ways:

ģIt allows for partial matches to the query (like Document 1) but assigns them lower relevance scores

ģIt considers how often query terms appear in documents when calculating relevance scores

Using these relevance scores, we can sort the document collection and present results even if not all conditions are
met. In other words, instead of using "hard" conditions, we apply penalties for not meeting the condition.

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. Į

index

Filter & Sort

meta-datacriteria

3.1 Introduction

Page 3-4Multimedia Retrieval ģ 2024 3.1 Introduction

ĭIn the 1970s, classical Vector Spaceand Probabilistic Retrieval models emerged. Both methods established a
relevance model for document-query matching. In the vector space model, documents and queries are represented as
high-dimensional vectors, and heuristic methods compare vectors to obtain a notion for relevance. Probabilistic
retrieval models assume that documents are generated randomly from a probabilistic model, and relevance is
determined by the probability of a document being relevant to the query. Newer models like BM25 combine vector
space and probabilistic retrieval techniques.

Extended Boolean Model, Vector Space Retrieval, and Probabilistic Retrieval follow a similar approach: a retriever
gathers a larger set of candidate documents based on query terms, and a ranking model assesses the relevance to
produce a sorted result list. Further filter conditions can be applied to explore the result collection, such as language
filtering or year of publication.

ĭIn this chapter, we delve into classical text retrieval models in detail:

ģWe begin by exploring document descriptions and performing simple linguistic operations to reduce words to
terms, forming a vocabulary for search

ģNext, we study classical models like the Standard and Extended Boolean Model, Vector Space Retrieval Model,
Probabilistic Model, and the modern BM25 model used in popular software packages

ģWe then examine indexing methods, notably inverted file, and a simple implementation using a relational database
to accelerate the search process

ģFinally, we conclude the chapter by discussing Apache Lucene, a popular software packages that offer state-of-the-
art text retrieval for various platforms

ĭIn the chapters to follow this one, we will explore: 1) natural language processing and advanced techniques for
generating vectors from text representations, 2) web retrieval as a unique search challenge, and 3) modern AI-
supported classification and search methods.

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. Į

index

(Filter &) Ranker

rank model

Page 3-5Multimedia Retrieval ģ 2024

Offline Phase

docID = doc10
dog word 10, word 25
cat word 13
home word 2, word 27
...

index

feature
extraction

new
document

insert

a

b

c

d

3.2 Fundamentals

ĭMany search systems, like searching through files on a
local drive, scan through all the data for each query.
However, this approach is not efficient for large text
collections. Instead, the search is divided into two parts:
an offline indexing phase (depicted on the left) and an
online querying phase (see next page).

ĭThe offline phase extracts meaningful features from
text documents and stores them, along with metadata,
in an index for future query use. These features provide
a concise representation of the document's content and
are typically represented by high-dimensional vectors.

ĭDuring the offline mode, the following steps take place:

a) add a new document (or find one by scanning/
crawling)

b) each addition triggers feature extraction and updates
search indexes

c) extract features that best describe the content,
analyze context, and include higher-level features

d) pass the features to an index that accelerates
searches for queries

ĭThe main challenge lies in extracting concise
representations from the documents. In this chapter,
we will use simple methods to create vector
representations. In the chapters to follow this one, we
will explore more advanced techniques.

3.2 Fundamentals

Page 3-6Multimedia Retrieval ģ 2024

Online

query
transformation

inverted file:

dog doc3,doc4,doc10
cat doc10
home doc1,doc7,doc10
....

index

ĪDogs at homeĨ

Q= {dog, dogs,
hound,
home}

retrieval

relevance ranking

sim(Q,doc1) = .2
sim(Q,doc4) = .4
sim(Q,doc10) = .6

result
doc10
doc4
doc1

3

2

1

4

ĭIn the online mode, users can search for documents
using the indexed data from the offline phase. The
query is analyzed similarly to the documents with
additional processing to correct spelling mistakes or
include synonyms for a broader search. Retrieval
involves comparing features. If two documents have
similar features, they are considered similar in content.
Thus, a document is considered a good match to a query
if its features are close to those of the query.

ĭIn the online mode, the following steps take place:

1) user enters a query (or speech/handwriting
recognition)

2) we extract features from the query, similar to the
process for documents, and transform the query as
needed (e.g., correcting spelling mistakes)

3) we use the query features to search the index for
documents with similar features

4) we rank the documents based on their retrieval
status value (RSV) and return the best-matching
documents

ĭThe primary challenge is relevance ranking. The goal is
to accurately assess a document's relevance based
solely on its feature representation, and given the
features of the query. In subsequent chapters, we will
explore more sophisticated methods, including
generative AI. However, in this chapter, we will use
simple yet efficient and effective methods that are
suitable for many use cases.

3.2 Fundamentals

d

Page 3-7Multimedia Retrieval ģ 2024

ĭIn the rest of this chapter, we explore the fundamental steps to extract features from source documents ("offline
phase"), as mentioned earlier. The overall process is detailed in the picture below. We will discuss indexing in a later
section, focusing here on four fundamental steps during feature extraction: 1) extract, 2) split, 3) tokenize, and 4)
summarize. The outcome includes a vocabulary containing all terms found in the documents, which is also used for
query analysis. Additionally, we obtain for each document chunk out of the splitting step a feature representation
that we can store in an index along with metadata from the source document and split ranges (start and end
coordinates in the source document).

HTML

Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

don, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

tokenize

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

vocabulary

e
xtra

ct

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

su
m

m
a

riz
e

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

Index

terms

metadata features

split

range

3.2 Fundamentals

Page 3-8Multimedia Retrieval ģ 2024

3.2.1 Step 1: Extract (with the example of HTML)

ĭText documents are available in different formats such as HTML, PDF, EPUB,
metadata, or plain text. The first step involves extracting meta information
and the sequence of characters that form the text stream without control
sequences and formatting information present in the source document. This
may include structural analysis of the document, encoding adjustments, and
identifying relevant information for feature extraction. In some cases, we may
have to apply text extraction from images.

ĭConsider a simple example in HTML with the following snippet representing a
web page's structure. The initial task is to identify the useful bits of
information within it. The header typically holds rich meta information, while
the body contains the main text parts. Although HTML follows a well-defined
standard, extracting information (known as scraping) requires analyzing the
data structure used for the pages. In contrast, a web search engine considers
everything present on the page.

ĭAt this point, we must decide for a character encoding that we will use for the
terms and the index, and convert the source text. UTF-8/16/32 are widely
used but can limit the ability to support different languages.

HTML

e
xtra

ct

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

<html>
<head>

<title> MMIR Ƶ2023 </title>
<meta name="keywords"

content ="multimedia, retrieval, course" />
</head>

<body>
...
...

</body>
</html>

Header: Contains meta-
information about the
document. We can utilize this
information to add relevant
metadata for the document
(and its chunks).

Body: Contains the main
content enriched with
markups. The document's
flow is not always obvious
and may appear differently
on screen than in the file.

Page 3-9Multimedia Retrieval ģ 2024

ĭLetĦs use the example of HTML to illustrate some aspects for metadata generation:

ģURI of page: both metadata and content (may serve concise key words for retrieval)

ģTitle of document : both metadata and content (may serve concise key words for retrieval)

ģMeta information in header section: (enriched information provided by author)

ģAs we discussed in the metadata section, we must be cautious about its reliability. It might include false information
or describe aspects differently from what we observed in other documents. Nevertheless, in many cases, the brief
nature of metadata allows us to assign high weights to the text parts.

ĭWeb pages contain links. How do we handle them effectively? Links describe relationships between documents and
can enhance the current document's description. More importantly, they also describe the referenced document.
Since web page authors often use concise anchor texts, the keywords in anchor texts serve as an excellent source of
additional terms for the referenced document. Usually, the link text is associated with both the embedding and linked
documents. However, we typically give much higher weight to keywords for the referenced document. It is essential
to consider the approach's effectiveness, especially when dealing with click baits (promising more than the
referenced documents reveal) or navigational hints like "click here" or "back to the main page". These keywords add
no additional content for the referenced document.

ĭThe body includes all text blocks and uses tags to control rendering. The page's flow may not exactly match the order
in the HTML file, but it's usually a good enough approximation. Certain tags offer valuable additional information on
the following text pieces. For example, we can assign higher weights to term occurrences in headlines, bold text, or
text with emphasized rendering on the page.

ĭHTML includes escape sequences for special characters that need to be translated into the target encoding format.

https://dmi.unibas.ch/de/studium/computer - science - informatik/lehrangebot - hs23/lecture - multimedia - retrieval/

<title> Multimedia Retrieval - Homepage</title>

<meta name="keywords" content ="MMIR, information, retrieval" >
<meta name="description" content =ʏ4ÈÉÓ ×ÉÌÌ ÃÈÁÎÇÅ ÙÏÕÒ ÌÉÆÅƛʏ>

 - > space & uuml; - > ü

3.2.1 Step 1: Extract (with the example of HTML)

Page 3-10Multimedia Retrieval ģ 2024

ĭThe illustration below shows how anchor texts (and their surroundings) provide relevant terms for describing target
pages (and images). We emphasized the need for caution with human metadata. However, anchor texts come from
diverse sources, simplifying the identification of useful terms across all mentions and filtering out "outliers" with
obviously incorrect information. In a subsequent chapter, we will delve into using the link network to assess a page's
importance and (objective) relevance through PageRank.

Unlock your creative
potential with

Multimedia Retrieval

Outstanding Grades in
Multimedia Retrieval

Chapter 4 with great
illustrations

15731 Lecture: Multimedia
Retrieval Roger Weber Fri

15:15 ģ18:00

multimedia course at Uni
Basel is an absolute marvel

Text Retrieval and
Search Engines

3.2.1 Step 1: Extract (with the example of HTML)

Page 3-11Multimedia Retrieval ģ 2024

3.2.2 Step 2: Split

ĭMost traditional retrieval methods are optimized for smaller documents. This
is because they assign a single term vector to represent the entire document.
For instance, a 3-page document and a 1000-page novel are both described
using a single vector.

ģIn cases where the document is small, returning the entire document to
users is acceptable as they can easily find the relevant location within it.
However, with larger documents like novels, it becomes essential to
provide additional information on the specific passage's location. Splitting
the documents into smaller pieces allows for a more precise retrieval at the
expense of having more data entries in the collection.

ģAnother reason is that many traditional retrieval models do not include
support for proximity metrics in their relevance assessment. For example, a
query like "cats AND dogs" could retrieve a novel containing the term
"cats" only on the first page and "dogs" only on the last page. Splitting
documents into smaller chunks enforces proximity between query terms.
For instance, if we split the novel by chapter, the novel and its chapters are
no longer relevant for the query as none of the chapters contain both "cats"
and "dogs".

ĭThere is no one-size-fits all solution for splitting documents. In general, it is a
trade-off between more and smaller but semantically coherent parts of the
documents, and additional costs for storage and retrieval:

ģFor instance, splitting a novel by sentences may create too many entries
that negatively impacts performance given a library with thousands of
books. Sentences may also be too narrow for finding meaningful matches
for more complex queries

ģOn the other side, a search engine for citations in religious texts may split
documents at the sentence or verse level to create thousands of smaller
parts that can be individually retrieved with searches

Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

don, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

sp
lit

Page 3-12Multimedia Retrieval ģ 2024

ĭMethod 1: Splitting the text into fixed -sized chunks

ģThe document is divided into chunks with a constant
number of tokens, such as words or characters. This
approach is straightforward and has even sizes for all
document chunks simplifying normalization

ģAt the chunk boundaries, we may encounter half-
sentences and splits of passages that belong together
such as a paragraph in a document

ģIn the example on the right, the chunks are split after
every 50 tokens. The number of tokens used for
splitting is a hyperparameter and requires training to
achieve optimal results in the given search context

ĭMethod 2: Splitting the text with NLP techniques

ģUsing NLP methods, the text is first divided into
sentences. Then, several sentences are combined
until a minimum number of tokens is reached

ģAt chunk boundaries, we no longer observe half-
sentences (unless sentence segmentation was
incorrect), but we might still split passages that
belong together, such as a paragraph in a document

ģIn the example on the right, we first split the text into
sentences and then combine them until each chunk
contains at least 50 tokens. As mentioned before, the
number of tokens used for splitting is a
hyperparameter that requires training to achieve
optimal results in the given search context.

ģChunks sizes can now vary in length and variations
depend on the length of sentences.

ü In the year 1878 I took my degree of Doctor of Medicine of the University of London, and
proceeded to Netley to go through the course prescribed for surgeons in the army. Having
completed my studies there, I wasduly attached to the Fifth Northumberland Fusiliers as

ü Assistant Surgeon. The regiment was stationed in India at the time, and before I could join it, the
secondAfghan war had broken out . On landing at Bombay,I learned that my corps had advanced
through the passes,and wasalready deep in the

ü enemyĦscountry . I followed, however, with many other officers who were in the samesituation
asmyself, and succeededin reaching Candaharin safety, where I found my regiment, and at once
entered upon my new duties. The campaignbrought honours and promotion

ü to many,but for me it had nothing but misfortune and disaster. I was removed from my brigade
and attached to the Berkshires, with whom I served at the fatal battle of Maiwand. There I was
struck on the shoulder by aJezailbullet, which

ü shattered the bone and grazed the subclavian artery . I should have fallen into the hands of the
murderous Ghazishad it not been for the devotion and courage shown by Murray, my orderly,
who threw me acrossapack-horse,and succeededin bringing me safely to

ü the British lines. Worn with pain,and weak from the prolonged hardshipswhich I had undergone,
I was removed, with a great train of wounded sufferers, to the basehospital at Peshawar. Here I
rallied, and had already improved so far asto

ü Į

ü In the year 1878 I took my degreeof Doctor of Medicine of the University of London,and proceeded
to Netley to go through the courseprescribed for surgeonsin the army.Having completed my studies
there, I wasduly attached to the Fifth Northumberland FusiliersasAssistant Surgeon.

ü The regiment wasstationed in India at the time, and before I could join it, the secondAfghan war had
broken out.On landing at Bombay,I learned that my corps hadadvancedthrough the passes,andwas
already deepin theenemyĦscountry .

ü I followed, however,with manyother officers who were in the samesituation asmyself,andsucceeded
in reachingCandaharin safety, where I found my regiment, and at once entered upon my new duties.
The campaignbrought honours and promotion to many,but for me it had nothing but misfortune and
disaster.

ü I wasremoved from my brigade andattached to the Berkshires,with whom I servedat the fatal battle
of Maiwand.There I wasstruck on the shoulder by aJezailbullet, which shattered the boneandgrazed
the subclavianartery . I should havefallen into the handsof the murderous Ghazishad it not been for
the devotion and courage shown by Murray, my orderly, who threw me across a pack-horse, and
succeededin bringing mesafely to the British lines.

ü Worn with pain,andweak from the prolonged hardshipswhich I hadundergone,I wasremoved,with a
great train of wounded sufferers, to the base hospital at Peshawar. Here I rallied, and had already
improved so far as to be able to walk about the wards, and even to bask a little upon the verandah,
when I wasstruck down by enteric fever, that curseof our Indian possessions.

ü For months my life wasdespairedof, andwhen at last I cameto myself andbecameconvalescent,I was
so weak and emaciated that a medical board determined that not a day should be lost in sendingme
backto England.I wasdispatched,accordingly,in the troopshipĨOrontes,ĩandlandedamonth later on
Portsmouth jetty, with my health irretrievably ruined, but with permission from a paternal
government to spendthe next nine months in attempting to improve it .

ü Į

Page 3-13Multimedia Retrieval ģ 2024

ü In the year 1878 I took my degree of Doctor of Medicine of the University of London, and
proceeded to Netley to go through the course prescribed for surgeons in the army. Having
completed my studies there, I wasduly attached to the Fifth Northumberland Fusiliers asAssistant
Surgeon. The regiment was stationed in India at the time, and before I could join it, the second
Afghan war had broken out. On landing at Bombay,I learned that my corps had advancedthrough
the passes,and was already deep in the enemyĦscountry . I followed, however, with many other
officers who were in the samesituation as myself, and succeededin reaching Candahar in safety,
where I found my regiment, andat onceentered upon my new duties.

ü The campaignbrought honours and promotion to many,but for me it had nothing but misfortune
anddisaster. I wasremoved from my brigade andattached to the Berkshires,with whom I servedat
the fatal battle of Maiwand. There I was struck on the shoulder by a Jezail bullet, which shattered
the bone and grazed the subclavian artery . I should have fallen into the hands of the murderous
Ghazishad it not been for the devotion and courageshown by Murray, my orderly, who threw me
acrossapack-horse,andsucceededin bringing mesafely to the British lines.

ü Worn with pain, and weak from the prolonged hardships which I had undergone, I was removed,
with a great train of wounded sufferers, to the basehospital at Peshawar. Here I rallied, and had
already improved so far as to be able to walk about the wards, and even to bask a little upon the
verandah, when I was struck down by enteric fever, that curse of our Indian possessions. For
months my life wasdespairedof, and when at last I cameto myself and becameconvalescent,I was
soweak andemaciatedthat amedicalboard determined that not aday should be lost in sendingme
back to England. I wasdispatched,accordingly, in the troopship ĨOrontes,ĩand landedamonth later
on Portsmouth jetty, with my health irretrievably ruined, but with permission from a paternal
government to spendthe next nine months in attempting to improve it .

ü Į

ĭMethod 3 : Metadata or structural information

ģIf the document contains metadata or structural
markers for paragraphs, sections, chapters, or pages,
we can use these markers as chunk boundaries. With
plain text, we can also look for paragraphs often
marked with a newline character or an empty line

ģChunks now are contextually coherent like a full
paragraph in a document. But we have considerable
differences in the number of tokens per chunk that
require normalization during the ranking process (see
BM25 later for an example)

ģIn the example on the right, we split at the end of a
paragraph. Especially in novels with spoken
sentences, it sometimes is not so obvious where a
paragraph ends

ĭMethod 4: Semantic splitting

ģThe text is initially divided into smaller parts, such as
sentences. By using machine learning techniques,
sentences with similar topics and concepts are
grouped or clustered together

ģChunks are contextually coherent and may
encompass multiple passages and paragraphs from
the source document. But it may also split paragraphs
or sections if topics change

ģAs mentioned before, we encounter chunks with
significantly different numbers of tokens

ģIn the example on the right, we merged sentences
that semantically belong together

ü In the year 1878 I took my degreeof Doctor of Medicine of the University of London,and proceeded
to Netley to go through the courseprescribed for surgeonsin the army.Having completed my studies
there, I wasduly attached to the Fifth Northumberland Fusiliers asAssistant Surgeon.

ü The regiment wasstationed in India at the time, and before I could join it, the secondAfghan war had
broken out.On landing at Bombay,I learned that my corps hadadvancedthrough the passes,andwas
already deep in the enemyĦscountry . I followed, however, with many other officers who were in the
samesituation asmyself, and succeededin reaching Candahar in safety, where I found my regiment,
andat onceentered upon my new duties.Thecampaignbrought honours andpromotion to many,but
for meit hadnothing but misfortune anddisaster. I wasremoved from my brigade andattached to the
Berkshires,with whom I servedat the fatal battle of Maiwand.There I wasstruck on the shoulder by a
Jezailbullet, which shattered the bone and grazedthe subclavianartery . I should have fallen into the
handsof the murderous Ghazishad it not been for the devotion and courage shown by Murray, my
orderly, who threw me acrossa pack-horse, and succeededin bringing me safely to the British lines.
Worn with pain,andweak from the prolonged hardshipswhich I hadundergone,I wasremoved,with a
great train of wounded sufferers, to the basehospital at Peshawar.

ü Here I rallied, andhadalready improved sofar asto beableto walk about the wards,andevento baska
little upon the verandah,when I wasstruck down by enteric fever, that curseof our Indian possessions.
For months my life wasdespairedof, andwhen at last I cameto myself andbecameconvalescent,I was
so weak and emaciated that a medical board determined that not a day should be lost in sendingme
backto England. I wasdispatched,accordingly, in the troopship ĨOrontes,ĩĮ

ü Į

Page 3-14Multimedia Retrieval ģ 2024

3.2.3 Step 3: Tokenize

ĭA token is formed by a sequence of characters. Typically, we use complete
words to create tokens, but there are other options which we will explore
later in this course. Here's a brief overview:

ģCharacters and fragments of words can be used to form tokens. For
example, breaking the character stream into tokens of 3 characters would
turn "street" into "str" and " eet". This method is frequently employed by
large language models to maintain a small and constant-sized vocabulary
while still being able to encode previously unseen words

ģWords are the primary approach used in classical text retrieval. However,
we require additional definitions for special characters, numbers, and
abbreviations. In certain languages, word boundaries may not always be
evident (e.g., Japanese and Chinese). The most significant challenge arises
from variations in word forms. For instance, "cat" and "cats" are
semantically related, but they are different tokens. Stemming is a linguistic
method to merge such tokens, enabling better control over vocabulary size
and term matching

ģN-grams and phrasesare composite tokens where multiple words that
consistently appear together form a single token. Examples include "San
Francisco," "Salt Lake City," "Prime Minister," or "Thai food." While you can
manually add such phrases to the vocabulary, we will explore automated
methods to detect meaningful phrases or n-grams in the collection in the
next chapter of this course

ĭIn this chapter, we use words as the foundation for studying classical text
retrieval methods. In the following chapters, we will delve deeper into
tokenization and explore various linguistic transformations, along with newer
approaches such as embeddings commonly used in generative AI applications.

3.2.3 Step 3: Tokenize

Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

don, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

In the year 1878 I took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, I was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
I could join it, the secondAfghan war had
broken out. On landing at Bombay, I
learned that my corps had advanced
through the passes,and wasalready deep
in the enemy'scountry . IĮ

to
ke

n
iz

e

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

Page 3-15Multimedia Retrieval ģ 2024

ĭLemmatization and linguistic transformation are essential for matching query terms with document terms, even if
they have different inflections or spellings (e.g., "colour" vs. "color"). Depending on the scenario, one or several of the
following methods can be used:

ģA common step is stemming. In most languages, words appear in various inflected forms based on time, case, or
gender. Examples:

English: go, goes, went, going, house, houses, master, masterĦs
German: gehen, gehst, ging, gegangen, Haus, Häuser, Meister, Meisters

As evident from the examples, the inflected forms differ significantly but essentially convey the same meaning. The
concept of stemming is to reduce tokens to a common stem and utilize this stem instead. In some languages, like
German, stemming is difficult due to its numerous irregular forms and the use of strong inflections ("gehen" Ÿ
"ging"). In English, Porter defined a very simple algorithm to compute near-stems as explained on the next pages

ģAdditionally, some languages permit compound words which can result in words of arbitrary length:

German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und
Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz
(cattle marking and beef labeling supervision duties delegation law)

Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde
(atomic nuclear energy reactor generator condenser turbine cogwheel stage)

In many cases, we aim to break down such compounds to improve the likelihood of matching against query terms.
Otherwise, we might never find that German cattle law with a query like "Rind Kennzeichnung." However, breaking
a compound may also alter the true meaning of tokens:

German: Gartenhaus ĄGarten, Haus (ok, not too far away from the true meaning)

German: Wolkenkratzer ĄWolke, Kratzer (no, this is completely wrong)

3.2.3 Step 3: Tokenize

Page 3-16Multimedia Retrieval ģ 2024 3.2.3 Step 3: Tokenize

ĭFor English, the Porter Algorithm finds a near-stem of words. This stem is not linguistically correct but it often
reduces words with the same linguistic stem to the same near-stem. The algorithm is highly efficient, and various
extensions have been proposed over the years. In this context, we focus on Porter's original version from 1980:

ģPorter defines vas a ĪvocalĨ if

ģit is an A, E, I, O, U
ģit is a Yand the preceding character is not a ĪvocalĨ (e.g. RY, BY)

ģAll other characters are consonants (c)

ģLet Cbe a sequence of consonants, and let Vbe a sequence of vocals

ģEach word follows the following pattern:

[C](VC) m[V] mis the measure of the word

ģfurther:

Ƶ*o : stem ends with cvc ; second consonant must not be W, X or Y (-WIL, -HOP)
Ƶ*d : stem with double consonant (-TT, -SS)
Ƶ*v* : stem contains a vocal

ģThe rules on the next pages establish mappings for words using the forms mentioned above. The variable mis
utilized to prevent over-stemming of short words. Due to limited space, only a few rules are presented here. For a
complete set of rules, please refer to one of the many implementations of the Porter algorithm or consult the
original paper: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

ģThere are 5 main steps with several sub-steps within each. Each (sub-)step includes a list of ordered rules to match
the endings of terms. Only the first rule that matches is applied, and the algorithm proceeds to the next (sub-)step.
Most sub-steps have only a few rules (less than 10) and not more than 20 rules. The JavaScript implementation
comprises around 200 lines of code.

ĭIn subsequent chapters of this course, we will explore more advanced methods

Page 3-17Multimedia Retrieval ģ 2024 3.2.3 Step 3: Tokenize

Step 1

SSES - > SS caresses -> caress

IES - > I ponies -> poni

SS - > SS caress -> caress

S - > cats -> cat

(m>0) EED - >EE feed -> feed

(*v*) ED - > plastered -> plaster

(*v*) ING - > motoring -> motor

... +5 more rules if 2nd/3 rd rule match

(*v*) Y - >I pony -> poni

Step 2

(m>0) ATIONAL - > ATE relational -> relate

(m>0) TIONAL - > TION conditional -> condition

(m>0) ENCI - > ENCE valenci -> valence

(m>0) IZER - > IZE digitizer -> digitize

... +16 more rules

Rule Examples

a)

b)

c)

Page 3-18Multimedia Retrieval ģ 2024

Step 3

(m>0) ICATE - > IC triplicate -> triplic

(m>0) ATIVE - > formative -> form

(m>0) ALIZE - > AL formalize -> formal

... +4 more rules

Step 4

(m>1) and (* S or * T) ION - > adoption -> adopt

(m>1) OU - > homologou -> homolog

(m>1) ISM - > platonism -> platon

... +16 more rules

Step 5

(m>1) E - > rate -> rate

(m=1) and (not * O) E - > cease -> ceas

(m>1 and * D and * L) - > single letter controll -> control

a)

b)

3.2.3 Step 3: Tokenize

Rule Examples

Page 3-19Multimedia Retrieval ģ 2024

3.2.4 Step 4: Summarize

ĭDuring summarization, we create concise representations for documents,
usually in the form of a high-dimensional feature vector where components
represent terms and their occurrences in the documents. To achieve this, we
maintain a vocabulary and assign each term a dimension in the feature space.

ĭTo control vocabulary size, we discussed linguistic transformations in the
previous action. During summarization, we also evaluate the importance of
terms and their ability to describe the content of documents in the collection.
The inverse document frequency (IDF) is a widely used method to measure
the significance of terms. Additionally, we look at stop word elimination as a
simpler method of discrimination.

ĭOnce terms are extracted, classical retrieval methods generally use one of
two methods to build the feature vector. Let Ὀbe a document, ὓbe the size
of the vocabulary. Then, Ὠᶰᴙ is its feature representation, and Ὠȟ
represents the term ὸin the vocabulary. Additionally, we use ὸὪὈȟὸ to
denote the number of occurrences of term ὸin document Ὀ.

ģThe set-of-words model is a basic representation that only considers
whether a term is present or not. It disregards the order of terms, their
number of occurrences, and proximity between terms. The feature vector is
binary where dimension Ὦindicates the presence of term ὸ

ģThe bag-of-words model is a more common representation and differs
from the set-of-words by preserving term frequencies:

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(IN) (THE) (YEAR) (1878)(I) (TOOK) (MY)
(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF)
(THE) (UNIVERSITY) (OF) (LONDON) (ĥ,Ħ) (AND)
(PROCEEDED) (TO) (NETLEY) (TO) (GO)
(THROUGH) (THE) (COURSE) (PRESCRIBED)
(FOR) (SURGEONS) (IN) (THE) (ARMY) (ĥ.Ħ)
(HAVING) (COMPLETED) (MY) (STUDIES)
(THERE) (ĥ,Ħ) (I) (WAS) (DULY) (ATTACHED) (TO)
(THE) (FIFTH) (NORTHUMBERLAND)
(FUSILIERS) (AS) (ASSISTANT) (SURGEON) (ĥ.Ħ)
(THE) (REGIMENT) (WAS) (STATIONED) (IN)
(INDIA) (AT) (THE) (TIME) (ĥ,Ħ) (AND) (BEFORE) (I)
(COULD) (JOIN) (IT) (ĥ,Ħ) (THE) (SECOND)
(AFGHAN) (WAR) (HAD) (BROKEN) (OUT) (ĥ.Ħ) Į

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

(YEAR) 1
(MEDICINE) 2
(HOLMES) 3
(SURGEON) 2
(LONDON) 1
(ATTACH) 2
(UNIVERSITY) 3
(DULY) 1
Į

su
m

m
a

rize

vocabulary

terms

Ὠȟ
ρ ὸὪὈȟὸ π

π ὸὪὈȟὸ π
orὨ ὸȿὸὪὈȟὸ π

Ὠȟ ὸὪὈȟὸ

Page 3-20Multimedia Retrieval ģ 2024

https://faculty.georgetown.edu/wilsong/IR/WD3.html

https://www.kaggle.com/datasets/heeraldedhia/stop-words-in-28-languages

ĭClassical retrieval models treat terms as independent regardless of how close they are
syntactically or semantically. For example, "cat" and "cats" are considered different terms. This
implies that a query for "cats" will not match documents containing only "cat". To make them
match, we need to reduce these forms to the same term as shown with the stemming algorithm
during tokenization. The same principle applies to spelling mistakes or variations, either in the
document or in the query: "colour" does not match with "color".

ĭControlling the vocabulary size is not primarily a storage or performance concern as we will see
with the indexing methods for classical retrieval. Usually, a vocabulary can include millions of
terms. However, most documents consist of only a few hundred or thousand terms, depending
on how we split them. Consequently, the feature vectors are densely populated with non-zero
values. Using the inverted file method, we store only the non-zero values and during retrieval,
we only consider documents that contain a query term.

ĭHowever, we notice many terms that are grammatically necessary but do not contribute
significantly to the content description. For example, the article "the" in English is one of the
most frequent terms in English texts but does not provide relevant information to describe the
content. Since almost all English texts contain this article, a search with "the" would retrieve all
documents making it unable to differentiate between relevant and non-relevant ones.

ĭApart from "the," there are other common stop words , as shown in the table on the right with
the 50 most frequent terms in a collection Ὀof around 20,000 documents. The second column
shows the document frequency ὨὪὸ which is the number of documents containing the term ὸ
shown as a percentage of all documents. The last column shows the term frequency of ὸacross
all documents in the collection Ὀ, presented as a percentage of the total number of terms in Ὀ
(source: https://faculty.georgetown.edu/wilsong/IR/WD3.html)

ģThe top-50 terms already account for one-third of all terms in the collection, yet they do not
significantly contribute to the document description (wasting storage space)

ģAll terms appear in more than 60% of the documents, making them unable to distinguish
between relevant and non-relevant documents, as they match with most documents

ĭStop word lists for most languages are readily available, for example:
https://www.kaggle.com/datasets/heeraldedhia/stop -words-in-28-languages

◄▒ ▀█◄▒ ◄█╓ȟ◄▒
the 100% 6.03%

a 99% 2.57%

of 99% 2.55%

and 99% 2.40%

to 99% 2.58%

in 99% 2.00%

for 98% 0.97%

that 96% 1.15%

on 96% 0.75%

is 95% 0.93%

with 95% 0.70%

at 93% 0.55%

by 92% 0.49%

it 92% 0.69%

as 91% 0.57%

but 91% 0.49%

from 90% 0.44%

be 88% 0.46%

an 88% 0.38%

have 88% 0.45%

was 85% 0.65%

not 84% 0.38%

this 83% 0.35%

are 83% 0.45%

has 83% 0.40%

who 81% 0.37%

they 78% 0.37%

he 78% 0.70%

one 77% 0.26%

said 77% 0.70%

more 75% 0.26%

about 75% 0.27%

or 75% 0.31%

when 74% 0.24%

their 71% 0.27%

his 70% 0.49%

had 70% 0.29%

been 70% 0.21%

all 69% 0.20%

which 69% 0.20%

will 68% 0.27%

out 68% 0.20%

up 68% 0.20%

if 67% 0.21%

than 66% 0.18%

were 66% 0.22%

would 65% 0.23%

can 65% 0.20%

new 64% 0.23%

there 64% 0.18%

3.2.4 Step 4: Summarize

https://faculty.georgetown.edu/wilsong/IR/WD3.html
https://www.kaggle.com/datasets/heeraldedhia/stop-words-in-28-languages

Page 3-21Multimedia Retrieval ģ 2024

ĭInstead of manually maintaining stop word lists, a more pragmatic
approach is based on ZipfĦslaw . Let ὔbe the total number of term
occurrences (tokens) in the collection and ὓbe the number of distinct
terms in the vocabulary. We already used the term frequency ὸὪὸ to
denote the number of occurrences of term ὸ. Now, let us order all terms
by decreasing term frequencies and assign ὶὥὲὯὸto term ὸbased on
that order. The central theorem of ZipĦs law is that the probability ὴὶ
of randomly selecting the term ὸwith ὶὥὲὯὸ ὶfrom the collection is
ὧȾὶwith a constant ὧthat only depends on ὓas shown on the right side.

ĭThe sum of all ὴὶequals ρand plugging-in the ὴὶ ὧȾὶfor all terms
results in a closed formula to estimate ὧbased on the number of terms ὓ.
For example, in a collection with ὓ υȟπππdifferent terms, ὧ πȢρρ,
while in a collection with ὓ ρππȟπππ, ὧ πȢπψ.

ĭThe bottom right figure displays the Zipf distribution (blue line). As
explained earlier, the most frequent words (above the upper cut-off line)
hold minimal significance since they appear in nearly every text. The least
frequent words (below the lower cut-off) are discriminative but unlikely
to appear in queries. The range of meaningful words falls between the
lower and upper cut-off points.

ĭInitially, the idea was to establish cut-off thresholds and exclude words
beyond those limits. This would save storage space and enhance search
speed. Nowadays, the common practice is to retain all terms, including
stop words, but consider the terms' discriminating power (see the red line
in the figure) to determine their weight during relevance assessment.

ĭConsider the search for "it" which is a stop word. If we were to eliminate
this term, we would lose the ability to search for IT books or the book "IT"
by Stephen King. A query like "the cat" would still search for both terms in
documents but would assign significantly higher weight to occurrences of
"cat" to determine relevance. rank

fr
e
q
u
e
n
cy

u
p

p
e

r
cu

t-
o
ff

lo
w

e
r

cu
t-

o
ff

Significant words

discriminating power

ὴ , term ὸwith ὶὥὲὯὸ ὶ

ὧis a constant depending only on ὓ

ρ ὴ
ὧ

ὶ
ὧɇ

ρ

ὶ

ὧ
ρ

В
ρ
ὶ

ρ

πȢυχχςÌÎὓ

ὓ 5ô00010ô00050ô000100ô000

ὧ 0.11 0.10 0.09 0.08

Page 3-22Multimedia Retrieval ģ 2024

ĭIn their 1975 paper, Salton, Wong, and Yang took a different approach by
exploring methods to quantify the discriminatory power of terms. Let's
consider a collection with documents Ὀand the similarities between
them given by π ίὭάὈȟὈ ρ. We examine the collection twice,
once with the term ὸin documents and once with it removed, to analyze
the impact of the term's presence on similarities. Removing a valuable
term from the collection causes documents to become more similar to
each other. This is because the valuable term helped to distinguish
documents, resulting in lower similarities between them.

ģLet ÔὪὈȟὸ represent the term frequency of term ὸin document Ὀ

ģWe determine the centroid document ὅby aggregating all ὓterms
with their average frequency ὸὪὅȟὸ across the ὔdocuments

ģThen, we define the density of the collection as the sum of all
similarities between documents and their centroid ὅ:

ģFinally, we compute the density ὗ for the collection without the term
ὸ, and define the discrimination power of term ὸas: Ὠὴὸ ὗ ὗ

o Ὠὴ(ὸ) is large: if we remove the term ὸfrom the collection, similarities
to the centroid increase. In other words, the term ὸdifferentiates
the collection and is hence a significant term

o Ὠὴ(ὸ) is negative: if term is present, documents are more similar to
the centroid. This can happen, for instance, if a word occurs very
frequently in all documents and thus dominates the similarity score

ģSorting terms by their decreasing Ὠὴὸ-value assigns a discrimination
rank to each term ὸ. The figure on the right illustrates the average
ranks (ώ-axis) for terms occurring in 1, 2, 3, ..., up to 138 documents.

Observation : Terms that appear in very few or
numerous documents receive a high
discrimination rank. However, terms occurring
in 9-12 documents have the smallest
discrimination ranks. These terms add
significantly to the description of documents in
the collection.

source: Salton, Wong, Yang (1975)

ὗ ίὭάὈȟὅ ὸὪὅȟὸ
ρ

ὔ
ɇ ὸὪὈȟὸ forᶅὮ

All terms that occur
in x=13 out of the
450 documents.

y-value is average
discrimination rank
over these terms

Page 3-23Multimedia Retrieval ģ 2024 3.2.4 Step 4: Summarize

ĭKaren SpärckJones (1972) introduced a statistical interpretation for term discrimination called inverse document
frequency (idf) which has evolved into the standard method for term weighting in relevance assessment. The
document frequency ὨὪὸ indicates how many documents contain the term ὸat least once. Let ὔbe the collection's
document count. The inverse document frequency ὭὨὪὸ is expressed as:

Note that there exist many variants of the ὭὨὪ-formula, but all share the same structure as shown above.

ĭWe can utilize ὭὨὪto assign weights to components in both query and document feature vectors. As a simplification,
let us assume that a term only occurs once in a query. Furthermore, we can estimate the probability that a term ὸis
part of the query to be proportional to ὨὪὸȾὔ(we need to normalize by the sum over all terms to obtain probability
values). Finally, the components of the weighted document vector for Ὀare given by ὭὨὪὸɇὸὪὈȟὸ

ĭComparing vectors in vector space retrieval relies on the inner vector product. We multiply query and document
components and aggregate these values. Consequently, the term's discrimination power approximately equals
ὭὨὪὸ ɇὸὪὈȟὸɇὴὸover all queries and documents. This value predicts a term's contribution to the relevance
assessment (here for the inner vector product), or in other words, how useful the term is to describe the content and
to distinguish between relevant and non-relevant documents.

ὭὨὪὸ ÌÏÇ
ὔ ρ

ὨὪὸ ρ
ÌÏÇὔ ρ ÌÏÇὨὪὸ ρ

ĭThe lower right graph depicts ὭὨὪ-weights (blue) and
discrimination power (red) based on document frequency ὨὪ
with ὔ ρȟπππdocuments:

ģTerms with low document frequencies (left side) have high
ὭὨὪ-weights but are scarcely present in queries, leading to
low discrimination power

ģOn the right side, terms with high document frequency have
both low weights and discrimination power

ģTerms around ὨὪ ρπππȢρɇὔexhibit the highest
discrimination power

Page 3-24Multimedia Retrieval ģ 2024

3.3 Text Retrieval Models

3.3 Text Retrieval Models

ĭIn the upcoming sections, we explore various retrieval models, examining their pros and cons. While we focus on the
key methods, it's important to note that there are numerous extensions in literature. Throughout this chapter, we'll
employ the following notations:

Notation Value Range Description

ὈȟȣȟὈ Collection of ὔdocuments

Ὀ Representation of a document with ρ Ὥ ὔ

ὸȟȣȟὸ Collection of ὓterms

ὸ Representation of a term with ρ Ὦ ὓ

▀ πȟρ , ᴓ , or ᴙ Feature description of document Ὀwith the Ὦ-the dimensiondescribing document with
regard to term ὸ

Ἃ πȟρ , ᴓ , or ᴙ Term-document matrix with ὥȟ ὸὪὈȟὸ , that is rows denote termsand columns

denote documents. For instance, the Ὥ-th column is ὥȡȟ ▀.

ὸὪὈȟὸ ᴓ Term frequency of term ὸin document Ὀ, i.e.,number of occurrences of term ὸin

document Ὀ

ὨὪὸ ᴓ Document frequency of term ὸin the collection , i.e., number of documents in that

contain term ὸat least once

ὭὨὪὸ ᴙ Inverse document frequency of term ὸgiven by

ὭὨὪὸ ÌÏÇὔ ρ ÌÏÇὨὪὸ ρ

ὗ Representation of a query

▲ πȟρ , ᴓ , or ᴙ Feature description of query ὗwith the Ὦ-the dimensiondescribing query with regard to
term ὸ

ίὭάὗȟὈ πȟρ Similarity between query ὗand document Ὀ. πmeans dissimilar, ρmeans identical

Page 3-25Multimedia Retrieval ģ 2024

3.3.1 Standard Boolean Model

3.3.1 Standard Boolean Model

ĭThe original Boolean models treated documents and queries as sets of words, aiming to find documents containing all
query terms. Later, Boolean expression enhanced queries and allowed for more complex search scenarios. A key
advantage was the ability to decide for each document whether it is relevant and in the result, independently of the
rest of the collection. As such, the Standard Boolean Model functions as a filtering predicate selecting relevant items
rather than assessing their relevance. Initially, Boolean retrieval focused on data retrieval, lacking the capacity to
rank documents by importance. We labeled these as "Retrieval-only" engines.

ĭBoolean expressions consist of two atomic predicates and two methods for merging them into expressions. The
atomic predicates are: 1) presence of a term ('must be present') and 2) absence of a term ('must not be present').
These atomic predicates are then combined using the AND and OR operators to create the query expression.

ĭFollowing the rules for Boolean expressions, we can transform the query expression into a disjunction normal form:

ĭQuery evaluation can be approached in two ways: 1) individually assess the predicate for every document, and 2)
employ set operations to derive the result set from the entire collection:

1) For each document being examined, calculate the values for all †ȟbased on the presence or absence of query
terms in the document, considering whether the term 'must be present' or 'must not be present'. If the evaluation
of the disjunctive normal form results in a true value, the document is marked as relevant

Å ὗ ὸ Term ὸmust be present

Å ὗ ὸ Term ὸmust not be present

Å ὗ ὗ ὗ᷉ Sub-query ή or sub-query ή fullfilled

Å ὗ ὗ ὗ᷈ Both sub-query ή and ή fullfilled

ὗ †ȟ Ễ᷈ ᷈†ȟ Ễ᷉ ᷉ †ȟ Ễ᷈ ᷈†ȟ †ȟ

with †ȟ ὸ ȟ or †ȟ ὸ ȟ (ὮὰȟὯ is the mapping to the index of the term used in the query)

Page 3-26Multimedia Retrieval ģ 2024 3.3.1 Standard Boolean Model

2) To enhance query evaluation speed, we only need to focus on documents that either contain the query term
('must be present') or don't contain it ('must not be present'). Consequently, for each atomic predicate, we can
create sets ȟ that include precisely the documents that satisfy the atomic predicate:

Following the same structure of the disjunctive normal-form of the query, we use set intersections and unions to
compute the final set of relevant documents:

Later in this chapter, we will introduce the inverted file method, we applies this evaluation scheme to provide
fast response times.

ĭAdvantages: Simple model with clear query semantics. Easy to implement and user-friendly. Fast evaluation with sets
enables quick searches, even for large data sets. Boolean expressions offer precise control for including or excluding
documents, influencing result size. This model can explain why a document was considered relevant. Easy to extend
with other filtering criteria over metadata of documents (e.g., language = ĥEnglishĦ)

ĭDisadvantages: Limited control over result sizeĤusers may get too few or too many results. Larger result sets lack
ranking, requiring manual browsing. If the set of relevant documents is small, the method does not show ĥpartial
matchesĦ, i.e., documents that fulfill some of the atomic predicates but not all. Although the query language is simple,
users may find it hard to express a complex information need as a combination of ANDs and ORs. However, to
improve the definition of ĥwhat is relevantĦ, users require more complex queries. All terms have the same weight,
hence, stop words contribute equally to the result as the more significant terms. The Boolean model resembles data
retrieval more than information retrieval. We will consider superior models with ranking that offer similar simplicity
and performance.

ᴗ ȟ

ὈȿὸὪὈȟὸ ȟ ρ if†ȟ ὸ ȟ

ὈȿὸὪὈȟὸ ȟ π if†ȟ ὸ ȟ

ȟ

ὈȿὸὪὈȟὸ ȟ ρ if†ȟ ὸ ȟ

ὈȿὸὪὈȟὸ ȟ π if†ȟ ὸ ȟ

Page 3-27Multimedia Retrieval ģ 2024

3.3.2 Extended Boolean Model

3.3.2 Extended Boolean Model

ĭIn 1983, Salton et. al. extended the Boolean model to overcome the drawbacks discussed previously:

ģintroduce scores for ranking, considering weights for terms and term occurrences for atomic predicates

ģsupport partial matches, i.e., positive scores for documents that do not fulfill all atomic predicates

ĭThe Extended Boolean Model adopts a bag-of-words approach, assigning normalized vectors (▀) to documents using
term occurrences and inverse document frequency (ὭὨὪ). Normalization ensures values within the vector components
range between 0 and 1:

ĭHowever, the query remains a Boolean expression as in the standard model:

ĭRather than 'true' and 'false', atomic predicates yield a similarity score between 0 and 1, determined by the vector
component and the 'must be present' or 'must not be present' predicate:

Ὠȟ ÍÉÎρȟ
ὸὪὈȟὸ ɇὭὨὪὸ

Ὦᶅȡρ Ὦ ὓ with ÍÁØὸὪὈȟὸ ɇὭὨὪὸ (orsomeothervalue)

ὗ †ȟ Ễ᷈ ᷈†ȟ Ễ᷉ ᷉ †ȟ Ễ᷈ ᷈†ȟ †ȟ

with †ȟ ὸ ȟ or †ȟ ὸ ȟ ὮὰȟὯ is the mapping to the index of the term used in the query

ίὭά†ȟȟὈ
Ὠȟ ȟ if†ȟ ὸ ȟ

ρ Ὠȟ ȟ if†ȟ ὸ ȟ

Page 3-28Multimedia Retrieval ģ 2024 3.3.2 Extended Boolean Model

ĭUsing the similarity scores for atomic predicates, we can establish how scores are merged for the AND and OR
operators in Boolean expressions. Several common methods exist, a selection of which is provided below:

ģFuzzy Algebraic: only works for two operands

ģFuzzy Set: generalization to ὑsub-queries is straight forward

ģSoft Boolean Operator: generalization to ὑsub-queries is straight forward

ģP-Norm-Model: distances (p-norm) in the query (sub-)vector space

ĭAdvantages: simple model with clear query semantics as with standard Boolean model. User-friendly and easy to
implement. While query evaluation is heuristic, it offers solid performance. With the inverted file method, similarity
values can be efficiently computed. Unlike the standard Boolean model, it provides ranked lists and partial matches,
allowing control over result size. Terms are treated differently based on term occurrence and discrimination power.

ĭDisadvantages: Heuristic similarity scores lack clear theoretical explanation. Users might struggle to express
complex information needs using the simple query language. Retrieval quality is decent, but other methods with
similar computational complexity yield better outcomes.

ίὭάὗ ὗ᷈ȟὈ ίὭάὗȟὈ ɇίὭάὗȟὈ
ίὭάὗ ὗ᷉ȟὈ ίὭάὗȟὈ ίὭάὗȟὈ ίὭάὗȟὈ ɇίὭάὗȟὈ

ίὭάὗ ὗ᷈ȟὈ ÍÉÎίὭάὗȟὈ ȟίὭάὗȟὈ
ίὭάὗ ὗ᷉ȟὈ ÍÁØίὭάὗȟὈ ȟίὭάὗȟὈ

ίὭάὗ ὗ᷈ȟὈ ρ ɇÍÉÎίὭάὗȟὈ ȟίὭάὗȟὈ ɇÍÁØίὭάὗȟὈ ȟίὭάὗȟὈ π πȢυ
ίὭάὗ ὗ᷉ȟὈ ρ ɇÍÉÎίὭάὗȟὈ ȟίὭάὗȟὈ ɇÍÁØίὭάὗȟὈ ȟίὭάὗȟὈ πȢυ ρ

ίὭά ὗ ȟὈ ρ
В ρ ίὭάὗȟὈ

ὑ
withρ ὴ Њ

ίὭά ὗ ȟὈ
В ίὭάὗȟὈ

ὑ

Page 3-29Multimedia Retrieval ģ 2024

3.3.3 Vector Space Retrieval

3.3.3 Vector Space Retrieval

ĭThe initial version of the vector space retrieval model was introduced in the SMART retrieval system by Salton et al. It
remains the most widely used classical retrieval model, and we will explore advanced extensions and
implementations in this chapter for state-of-the-art retrieval performance.

ĭUnlike Boolean methods, the vector space retrieval model treats documents and queries as vectors in a high-
dimensional feature space. It employs vector-based similarity metrics for ranking. A document Ὀ is represented as a
vector ▀, utilizing idf-weighted term frequencies. Unlike the extended Boolean models, we refrain from normalizing
the term frequencies.

ĭAll document representations can be merged into the term-document matrix Ἃ. Each column in Ἃcorresponds to a
document, and each row represents a term in the vocabulary. Hence, matrix element ὥȟ Ὠȟ, following the
convention of addressing matrix elements by rows and then columns.

ĭWhile we illustrate the method in this chapter using the term-document matrix and outline matrix-vector operations
for score computation, practical implementations do not store or utilize matrix calculations due to the matrix's
sparsity, where many elements are 0 as documents usually have only a few terms. We will explore more efficient
evaluation techniques in the subsequent parts of this chapter.

Ὠȟ ὸὪὈȟὸ ɇὭὨὪὸ Ὦᶅȡρ Ὦ ὓ

▀

Ὠȟ
ể
Ὠȟ

Ἃ

Ὠȟ Ễ Ὠȟ Ễ Ὠȟ
ể Ễ ể Ễ ể
Ὠȟ Ễ Ὠȟ Ễ Ὠȟ
ể Ễ ể Ễ ể
Ὠȟ Ễ Ὠȟ Ễ Ὠȟ

term ὸ

document Ὀ

Page 3-30Multimedia Retrieval ģ 2024

ĭQueries are depicted as sparse vectors, denoted as ▲. Unlike Boolean expressions, a query is treated as a mini-
document or search prompt, following identical processing steps and vocabulary use as documents. This results in
term frequencies in queries, yielding a component ή through the following method:

ĭVarious methods exist to compare document vectors with query vectors. In this context, we will discuss the most
prominent ones:

ģThe inner vector product uses the dot-product between the query and document vector. When applied to the
entire collection, we multiply the term-document matrix by the query vector and then rank documents based on
decreasing similarity values. It is important to note that similarity here is not confined to a range between 0 and 1,
and literature often refers to it as retrieval status value (RSV):

The formula shows that only query terms impact the similarity score, with terms absent in the query yielding a
value of 0 for ήɇὨȟ, irrespective of their frequency in documents. In contrast, documents with larger Ὠȟvalues
for query terms, that is more term occurrences, receive higher ranks. Notably, significant terms with higher ὭὨὪ
values have more influence, and this influence is amplified due to ὭὨὪweighting in both queries and documents.
Finally, we observer the ĥpartial-matchĦ capability of the model. If a document shares at least one term with the
query, then the score is positive.

ģThe cosine measurecalculates the angle between document and query vectors. It implies that documents need to
contain query terms for high scores. Absence of query terms widens the angle between the vectors, leading to
lower scores.

ή ὸὪὗȟὸ ɇὭὨὪὸ Ὦᶅȡρ Ὦ ὓ

ίὭάὗȟὈ ▲ɇ▀ ήɇὨȟ ▼░□ὗȟ
ίὭάὗȟὈ

ể
ίὭάὗȟὈ

Ἃ▲

ίὭάὗȟὈ
▲ɇ▀

▲ ɇ▀

В ήɇὨȟ

В ήɇВ Ὠȟ

3.3.3 Vector Space Retrieval

Page 3-31Multimedia Retrieval ģ 2024 3.3.3 Vector Space Retrieval

Similar to the inner vector product, scores for all documents can be calculated through matrix-vector
multiplications. For this, we normalize the query vector by its size and introduce a diagonal matrix Ἐwith inverse
document lengths to dynamically normalize document vectors.

Alternatively, we could normalize document and query vectors during the extraction step and save normalized
versions. This makes the inner vector product and the cosine measure equivalent since vectors have a length of 1.
Additionally, similar to the inner vector product, partial matching capability is achieved, and terms absent from the
query do not affect the search order. However, the cosine measure is less affected by term occurrences compared
to the inner vector product due to normalization.

ĭFor a simplified visualization of vector space retrieval, documents are projected into the smaller query vector space
spanned by the query terms, while other dimensions have no effect on search order:

ģUsing the inner vector product, a hyperplane through the origin is established with the query vector as its normal.
Documents farther from this plane are considered more relevant

ģOn the other hand, the cosine measure creates hyper-cones with the query vector as their axis. Higher cosine
values correspond to smaller angles of a hyper-cone embedding the document

ģDocuments lacking query terms are placed at the origin, yielding a value of 0 with both measures. This allows us to
disregard such documents and focus on those containing at least one query term. This leads to efficient retrieval
methods explored later using inverted files.

ģAn issue arises when query terms are similar (e.g., 'house' and 'villa'), as they might not affect results unless pre-
processing merges them. This limitation is common in classical retrieval techniques, often addressed by
automatically expanding queries with related terms.

▼░□ὗȟ
ίὭάὗȟὈ

ể
ίὭάὗȟὈ

ἘἋ▲ withἘɴ ᴙ

ρ

▀
Ễ π

ể Ệ ể

π Ễ
ρ

▀

and▲
▲

▲

Page 3-32Multimedia Retrieval ģ 2024 3.3.3 Vector Space Retrieval

ĭExample: Let's examine a simple collection of three documents to understand the method:

ģWe extract terms, find document frequencies and inverse document frequencies. The document and query are
represented as vectors (ὔ σ, ὓ ρρ) as follows:

Ὀ Shipment of gold damaged in a fire

Ὀ Delivery of silver arrived in a silver truck

Ὀ Shipment of gold arrived in a truck

ὗ gold silver truck

▒ Term ὸ ▀█◄▒ ░▀█◄▒ ▀ ▀ ▀ ▲

1 a 3 0

2 arrived 2 .176 .176 .176

3 damaged 1 .477 .477

4 delivery 1 .477 .477

5 fire 1 .477 .477

6 gold 2 .176 .176 .176 .176

7 in 3 0

8 of 3 0

9 silver 1 .477 .954 .477

10 shipment 2 .176 .176 .176

11 truck 2 .176 .176 .176 .176

Ἃ
To simplify, we use: ὭὨὪὸ ÌÏÇὔ ÌÏÇὨὪὸ

ἻἱἵἝȟ
Ȣπσρ
Ȣτψφ
Ȣπφς

with inner
vector product

Ὀ Ὀ Ὀ

Page 3-33Multimedia Retrieval ģ 2024 3.3.3 Vector Space Retrieval

ĭAdvantages: Extremely simple and intuitive query model. Term weights have a good impact on the scores and
differentiate between query terms, e.g., reducing the impact of stop words in the query. Easy to implement and highly
efficient in calculation. Outperforms Boolean models and can rival top retrieval methods. Naturally supports partial
match queries, and documents do not have to include all query terms for high similarity values.

ĭDisadvantages: heuristic similarity scores with little intuition why they work well (no theoretic background for the
model). The similarity measures are not robust and can be biased by authors (spamming of terms). If documents are of
different lengths, scores can vary significantly due to the higher term occurrences in larger documents. Main
assumption of retrieval model is independence of terms which may not hold true in typical scenarios (see synonyms
and homonyms).

Page 3-34Multimedia Retrieval ģ 2024

3.3.4 Probabilistic Retrieval

3.3.4 Probabilistic Retrieval

ĭThe primary criticism of the existing models lies in their heuristic nature. While they perform well, their correctness
lacks a solid foundation. Probabilistic retrieval provides a formal approach based on probabilities. ὖὙȿὈ is the
probability that a document Ὀ is relevant for a query ὗ, and ὖὔὙὈ ρ ὖὙὈ is the probability that it's not
relevant. The similarity value between query ὗand document Ὀ is then defined as:

ĭThe Binary Independence Model (BIR) is a straightforward approach grounded in several key assumptions for
calculating the mentioned conditional probabilities. These assumptions are as follows:

1. Term frequency does not matter (utilizing a set-of-words document model)
2. Term independence (consistent with previous models)
3. Terms absent from the query do not influence ranking (if a term is absent from the query, itĦs

assumed to be equally distributed among relevant and non-relevant documents)

ĭGiven these assumptions, our next step is to derive a closed formula for the similarity scores. To begin, we apply
BayesĦ theorem to the conditional probabilities above:

These new probabilities can be interpreted as follows: ὖὙ and ὖὔὙrepresent the probabilities that a randomly
selected document is relevant and not relevant, respectively. ὖὈȿὙ and ὖὈȿὔὙare the probabilities that
document Ὀbelongs to the set of relevant and non-relevant documents, respectively.

ίὭάὗȟὈ
ὖὙȿὈ

ὖὔὙὈ

ὖὙȿὈ

ρ ὖὙȿὈ

ίὭάὗȟὈ
ὖὙȿὈ

ὖὔὙὈ

ὖὈὙɇὖὙ

ὖὈὔὙɇὖὔὙ

Page 3-35Multimedia Retrieval ģ 2024 3.3.4 Probabilistic Retrieval

ĭNow, leveraging the assumption of binary document vectors and term independence:

ĭLet's use a compact notation for the conditional probabilities in the formula above. Define:

ὶis the probability of a relevant document having the term ὸ, and ὲ is the probability of a non-relevant document
having the term ὸ. Using this notation, we can express the similarity value in simpler terms:

It is important to observe that there is no need to calculate ὖὙ and ὖὔὙas they are solely determined by the
query and do not affect the document ranking as they linearly scale the similarity values. Therefore, the simplified
lower formula produces the same document ranking as the original upper formula.

ὖὈὙ ὖὨὙ ὖὨȟὙ

ᶪȡ ȟ

ὖὨȟ ρὙ ɇ

ᶪȡ ȟ

ὖὨȟ πὙ

ὖὈὔὙ ὖὨὔὙ ὖὨȟὔὙ

ᶪȡ ȟ

ὖὨȟ ρὔὙ ɇ

ᶪȡ ȟ

ὖὨȟ πὔὙ

Assumption 1:
Documents are
binary vectors

Assumption 2: Terms
are independent

Assumption 1: Documents
are binary vectors

ίὭάὗȟὈ
ὖὙ

ὖὔὙ
ɇ

ᶪȡ ȟ

ὶ

ὲ
ɇ

ᶪȡ ȟ

ρ ὶ

ρ ὲ

ίὭάὗȟὈ ͯ

ᶪȡ ȟ

ὶ

ὲ
ɇ

ᶪȡ ȟ

ρ ὶ

ρ ὲ

ὶ ὖὨȟ ρὙ ὲ ὖὨȟ ρȿὔὙ

Page 3-36Multimedia Retrieval ģ 2024 3.3.4 Probabilistic Retrieval

ĭWe conclude by applying the third assumption: if term ὸis absent in the query, we assume ὶ ὲ, i.e., non-query
terms occur with equal probability in relevant and non-relevant documents. As a result, when ή π, the ratios ὶȾὲ
and ρ ὶȾρ ὲ become 1, and can be omitted from the calculations:

We remove the condition Ὠȟ ρfrom the second product and need to adjust in the first product:

Next, we remove the second product, which solely depends on the query, and linearly scales the similarity values:

Finally, we arrive at a simple similarity function as a sum of ὧ-values. It is important to note that we only need to
calculate ὧfor query terms, which as with other models so far greatly boost query evaluation with inverted files:

ίὭάὗȟὈ ͯ

ᶪȡ ȟ

ὶ

ὲ
ɇ

ᶪȡ ȟ

ρ ὶ

ρ ὲ
ᶪȡ ȟ ȟ

ὶ

ὲ
ɇ

ᶪȡ ȟ ȟ

ρ ὶ

ρ ὲ

ίὭάὗȟὈ ͯ

ᶪȡ ȟ ȟ

ὶɇρ ὲ

ὲɇρ ὶ
ɇ

ᶪȡ

ρ ὶ

ρ ὲ

ίὭάὗȟὈ ͯ

ᶪȡ ȟ ȟ

ὶɇρ ὲ

ὲɇρ ὶ

ίὭάὗȟὈ ͯ

ᶪȡ ȟ ȟ

ὧ withὧ ÌÏÇ
ὶɇρ ὲ

ὲɇρ ὶ

Assumption 3: non-query
terms do not impact result

Page 3-37Multimedia Retrieval ģ 2024 3.3.4 Probabilistic Retrieval

ĭTo calculate the ὧ-values, the BIR model starts with initial estimates for a first result list, and then refines these
estimates based on user feedback to enhance the results. With ongoing user input on relevant and non-relevant
documents in the outcomes, we can iteratively adjust the estimates and offer better outcomes.

ģWe introduced ὶand ὲas the probabilities that a relevant and non-relevant document contains the term ὸ,
respectively. With the user's relevance assessment, we now possess subsets of relevant and non-relevant
documents, which allow us to estimate these probabilities by counting the occurrences of term ὸin these subsets

ģInitial Estimates: In the absence of feedback, we assume that query terms are more likely to appear in relevant
documents, and in non-relevant documents they follow their document frequency. The following estimates are
used initially to compute the ὧ-values (ὲ includes smoothing)

ģEstimates with Feedback: in each iteration, we ask the user to rate the ὑretrieved documents and annotate them
with relevant (R) and non-relevant (NR). Let ὒbe the number of documents that the user marked as relevant.
Further let Ὧbe the number of retrieved documents that contain the term ὸ(that is the document frequency of ὸ
over the set of retrieved documents), and let ὰbe the number of retrieved and relevant documents that contain the
term ὸ(that is the document frequency of ὸover the set of retrieved and relevant documents). With that, we can
estimate new values for ὶand ὲby counting:

We employ the values 0.5 and 1 in the formula above to avoid numerical problems (0-divisions). When no feedback
is given, with ὒ ὰ π, we can set ὑ ὔand Ὧ ὨὪὸ to justify the initial estimates.

ģThe more user feedback we gather, the more accurate the estimates for ὶand ὲbecome. However, users might be
reluctant to provide feedback.

ὶ πȢυȟ ὲ
ὨὪὸ πȢυ

ὔ ρ
Ὦᶅȡή ρ

ὶ
ὰ πȢυ

ὒ ρ
ȟ ὲ

Ὧ ὰ πȢυ

ὑ ὒ ρ
Ὦᶅȡή ρ

Page 3-38Multimedia Retrieval ģ 2024 3.3.4 Probabilistic Retrieval

ĭAdvantages: The BIR model establishes similarity values on a probabilistic basis through basic assumptions.
Document ranking depends on the likelihood of being relevant for the query. Only query terms are necessary for
similarity calculations, and the inverted file method offers efficient evaluation. The model performs well, especially
after some feedback iterations. It also accommodates partial match queries, where not all query terms need to appear
in relevant documents.

ĭDisadvantages: The basic assumptions of the BIR model may not always be valid. As mentioned in the vector space
model, term independence is not universally applicable. More complex probabilistic models address term
dependence, but they can bring extra computational complexity. Additionally, the document ranking in BIR doesn't
consider term frequencies or the discrimination power of terms. Finally, not all users are willing to assist the system
with feedback to improve the search results.

Page 3-39Multimedia Retrieval ģ 2024

3.3.5 Okapi Best Match 25 (BM25)

ĭThe Okapi BM25 ranking function was developed at LondonĦs City University and is rooted in Karen SpärckJones'
probabilistic framework from the 1970s and 1980s. It is notably applied in Lucene, the engine behind Solr,
Elasticsearch, and OpenSearchĤthree widely used systems for observability, security analytics, and full-text search.
BM25 builds on the vector space model as discussed before enhancing it with a probabilistic approach to enhance
relevance evaluation.

ĭSome limitations in the previously discussed models stem from heuristic approaches to identify relevant documents.
Researchers developed better frameworks for relevance assessment, driven by key observations:

1. Query Term Significance: the presence or absence of query terms is crucial for relevance assessment

2. Partial Matches: not all relevant documents contain every query term

3. Document Length: longer documents have more terms, but shorter relevant ones should score well too

4. Term Specificity: rare words often carry more meaning than common ones

5. Term Saturation: while term frequency matters, overly frequent terms should not dominate

6. Fine Tuning: flexibility to adjust ranking based on search context

7. Efficiency: efficient retrieval and relevance assessment are essential

8. User Feedback:if available, integration of user feedback for improved search quality

9. Term Proximity: closeness of query terms in a document may indicate higher semantic relevance

10. Term Dependence: recognizing term dependencies, like matching query 'animalsĦ to 'cats' or 'dogsĦ in documents

ĭBM25 addresses these observations or provides ways to consider them. We will cover Efficiency in the upcoming
section on indexing structures and explore Term Proximity and Term Dependence in the next chapter, where we
delve into natural language processing methods.

3.3.5 Okapi Best Match 25 (BM25)

Page 3-40Multimedia Retrieval ģ 2024

ģInitially disregarding document length, we can
saturate term frequencies as follows:

ģTypically, Ὧᶰρȟςwith Lucene using Ὧ ρȢς

ģAs depicted in the figure on the right, the
updated values ὸὪsaturate relatively swiftly to
the value 2.2 with Ὧ=1.2, whereas unsaturated

ὸὪand ὸὪvalues increase without limit

ģIn essence, Ὧserves as a hyperparameter that
enables adjustment of the impact of term
occurrences on the scoring

ģNote: Lucene uses ὸὪȾὸὪὯ omitting the
scaling factor Ὧ ρ in the numerator

3.3.5 Okapi Best Match 25 (BM25)

ĭTerm frequencies play a crucial role in determining document relevance. Typically, we assume that a document's
relevance is linked to the frequency of query term occurrences within it. This notion lead to the creation of the ὸὪɇ
ὭὨὪvector component description. Nonetheless:

ģA document with the search term 'cat' occurring a hundred times is certainly relevant, but it should not be
considered twice as relevant as a document with 50 occurrences of 'cat'. In essence, the linear factor ὸὪ
exaggerates the relevance. It also makes the method vulnerable to spamming attacks

ģShorter documents have fewer occurrences of terms compared to much longer documents. However, they can be
equally or even more relevant. Yet, the ὸὪɇὭὨὪscheme tends to favor longer documents with higher term
frequencies. Very long documents covering a broad range of topics may appear relevant due to their numerous
occurrences but users may find it difficult to easily extract the relevant pieces

ĭA simple adjustment like using ὸὪinstead of ὸὪdoes not provide significant improvement. We require a function

that levels off after a certain occurrence threshold. With ὸὪwe could still influence scoring with excessive
spamming of potential query terms.

ὸὪ
ὸὪɇὯ ρ

ὸὪὯ
(k+1) scales values but

does not impact ranking

Page 3-41Multimedia Retrieval ģ 2024

ĭNow, let's examine document length. Lengthier documents include more terms and should saturate at a slower rate
than shorter ones that might not have as many terms. The cosine measure tackled this by normalizing vectors by their
length, and then utilizing the inner vector product to determine the angle between the vectors, which remains
unaffected by document length. However, BM25 takes a different approach. It employs a summation across all query
terms, similar to the inner vector product, while modifying the core formula to account for document length:

with ὦ πȢχυ(adjustable), Ὀ the length of document Ὀ, and ὥὨὰthe average length of documents in the collection

ģIf Ὀ is smaller than ὥὨὰ(short document), then ρ ὦ ὦ ρand values ὸὪ Ὀ saturate faster

ģIf Ὀ is large (long document), then ρ ὦ ὦ ρand values ὸὪ Ὀ saturate slower

ɀὦɴ πȟρ is a new hyperparameter that steers
the impact of document length. Higher values
prefer shorter documents

ģIn the plot to the right, we compare ὸὪ
(graph in the middle) with ὸὪ Ὀ of a
short document (graph at the top) and
with ὸὪ Ὀ of a long document (graph
at the bottom)

ģThe difference between shorter and longer
documents is significant at lower
frequencies but soon diminishes as
values saturate to ςȢςfor Ὧ ρȢς

ɀὥὨὰdoes not have to be the accurate average
length of documents. Rather, we can consider it
as another hyperparameter to define what
ĥlongĦ / ĥshortĦ means

3.3.5 Okapi Best Match 25 (BM25)

ὸὪ Ὀ
ὸὪɇὯ ρ

ὸὪὯɇρ ὦ ὦ
Ὀ
ὥὨὰ

ὥὨὰis the average
document length

л

лΦр

м

мΦр

н

нΦр

о

0 2 4 6 8 10 12 14 16 18 20

term frequencytf

TF, k=1.2 TF, k=1.2, b=0.75, short TF, k=1.2, b=0.75, long

Page 3-42Multimedia Retrieval ģ 2024

ĭWe previously discussed ὭὨὪ-weights without providing a rationale for using that specific formula. BM25 approaches
term weighting probabilistically. Previously, we derived a term weighting function using the BIR-model:

ģWe introduced ὶand ὲas the probabilities of the term ὸoccurring in relevant and non-relevant documents based
on user-provided relevance feedback. The calculation of ὶtakes into account the number of relevant documents
(ὰ) out of the ὒretrieved ones that contain the query term, while ὲconsiders the number of non-relevant
documents (Ὧ ὰ) out of the ὑ ὒretrieved ones that contain the query term.

ģThe BIR model summed up ὧvalues for the binary document representation. However, ὧvalues can also serve as
weights for terms in the vector space model. We achieve this by incorporating ὶand ὲ into the ὧformula:

ģWhen user feedback is absent, ὒand ὰare 0, and we assume that all documents are non-relevant (until proven
otherwise) and assign ὑ ὔ(number of documents) and Ὧ ὨὪὸ (documents containing the term). Substituting
these values into the ὧformula results in:

ģThese ὧvalues are then used by the BM25 model to refine the initial ὭὨὪ-values we discussed earlier. Note that for
terms ὸthat appear in over 50% of the documents, the logarithm yields a negative value.

ὧ ÌÏÇ
ɇ

ɇ
ὶ

Ȣ
ὲ

Ȣ
Ὦᶅȡή ρ

ὧ ÌÏÇ
ɇ

ɇ
ÌÏÇ

Ȣ
ɇ

Ȣ

Ȣ
ɇ

Ȣ
ÌÏÇ

Ȣ
ɇ

Ȣ

Ȣ
ɇ

Ȣ ÌÏÇ
Ȣ

Ȣ
ɇ

Ȣ

Ȣ

ὧ ÌÏÇ
Ȣ

Ȣ
ɇ

Ȣ

Ȣ
ÌÏÇ

Ȣ

Ȣ

ὭὨὪ ὸ ÌÏÇ
ὔ ὨὪὸ πȢυ

ὨὪὸ πȢυ

3.3.5 Okapi Best Match 25 (BM25)

Page 3-43Multimedia Retrieval ģ 2024

ģLet us compare the original ὭὨὪ-function
(IDF+1) with this new one. The graph on the
right displays them against the document
frequency in a collection of 1000 documents.

ģAdditionally, we included the ὭὨὪ-function used
by Lucene, which incorporates a '+1' term in the
logarithm to avoid negative ὭὨὪ-values:

This new ὭὨὪ-function, however, yields almost
the same values as the original IDF+1 method

ģAlternatively, we can avoid negative ὭὨὪ-values
by assigning a small positive ὭὨὪvalue to very
frequent terms (mostly stop words)

3.3.5 Okapi Best Match 25 (BM25)

ĭFinally, BM25 calculates a score for a query ὗand a document Ὀby summing up the adjusted ὸὪ-ὭὨὪvalues across all
query terms ή:

ģUnlike the vector space retrieval model, the ὭὨὪ-values are applied only once and query term frequency is not
considered. Later in this chapter, we will examine Lucene's scoring function, which expands the above formula with
extra components, including query term frequencies and additional term and document weighting.

ģIn this fundamental formulation, BM25 encompasses three hyperparameters (Ὧ, ὦ, ὥὨὰ) that allow fine-tuning the
scoring function to match the requirements of the search context.

ίὭά ὗȟὈ ÌÏÇ
ὔ ὨὪὸ πȢυ

ὨὪὸ πȢυ
ɇ

ὸὪὈȟὸ ɇὯ ρ

ὸὪὈȟὸ Ὧɇρ ὦ ὦ
Ὀ
ὥὨὰ

Blue graph (IDF+1) and
orange graph (IDF lucene)

are almost equal

ὭὨὪ ὸ ÌÏÇρ
Ȣ

Ȣ

ÌÏÇ
Ȣ

Page 3-44Multimedia Retrieval ģ 2024

Observation How BM25 addresses it Remarks

Query Term
Significance

The vector space retrieval model scores relevance based solely on query
terms. More query terms in a document result in higher scores

Because of assumptions about term independence, query terms might not
align with semantically relevant terms in the document

Partial
Matches

The vector space retrieval model supports partial matches. It ranks
partial matches based on the importance of the matched terms,
determined by term weights

As above

Document
Length

Term saturation varies based on document length; longer documents
need a higher number of term occurrences compared to shorter ones

Long documents still face the challenge of ignoring query term positions.
Whether query terms appear together in a paragraph is not considered.
An effective solution is to divide documents into smaller sections,
addressing this concern

Term
Specificity

Resolved through the enhanced IDF-based weighting of the relevance
scoring function

Specificity varies with context. For instance, consider the query 'car
jaguar' where both terms are relatively common. However, in the context
of cars, 'jaguar' is much less common than in a broader context

Term
Saturation

Implemented using a saturation function on term frequencies which
tackles problems related to keyword spamming and prevents excessively
frequent terms, like stop words, from dominating the scoring

It is crucial to balance term specificity and term saturation to achieve the
best possible outcomes in a search context

Fine Tuning Offers various hyperparameters for tuning the ranking according to
specific search scenarios; default settings are effective in many cases

Refer to discussions on training machine learning methods while
validating hyperparameters

Efficiency The scoring function relies solely on query terms. Given that queries often
have less than 5 terms, inverted files ensure high performance

When employing embeddings and vector search, we exchange efficiency
for improved semantic relevance evaluation

User
Feedback

IDF weights of terms can be fine-tuned using relevance feedback, as
demonstrated in the BIR model. Even if the implementation lacks direct
support for relevance feedback, we can still modify term weights to adjust
scoring based on the feedback

A simple yet effective approach to integrate feedback is through
automatic query expansion. Using relevance feedback, additional terms
are included that appear frequently in relevant documents but are less
common in non-relevant ones

Term
Proximity

BM25's relevance scoring lacks direct support for term proximity since it
lacks access to term locations within documents

An important scenario involves bi-grams and tri-grams like 'New York' or
'Salt Lake City.' We can enhance our pre-processing to detect common n-
grams, which we will study into in the next chapter

Term
Dependence

BM25's relevance scoring lacks direct support for term dependence since
it treats terms as independent of each other

Common problems involve spelling errors or synonymous forms that
convey the same meaning. We will study more advanced approaches in
the next chapter

3.3.5 Okapi Best Match 25 (BM25)

Page 3-45Multimedia Retrieval ģ 2024

3.4 Indexing Structures

ĭIn all traditional retrieval models discussed so far, we noticed that the scoring functions rely only on the query terms.
While this does not capture semantic similarity like 'cat' vs. 'animal', it's a practical trade-off for faster query
processing, as we explain in this section.

ĭLet us assume that we have ὔdocuments, a vocabulary of ὓterms, documents with an average ὑdistinct terms, and
queries with an average of 5 distinct terms. Documents are modeled as sparse, ὓ-dimensional vectors, using bag-of-
words or set-of-words methods. A basic storage approach would need ὔɇὓentries. In the set-of-words model, an
entry uses 1 bit, while a bag-of-words model takes 4, 8, 16, or 32 bits for term frequencies or ὸὪɇὭὨὪvalues. For
instance, BM25 employs term saturation. Instead of storing full-precision term frequencies (16/32 bits), compression
via 4 or 8-bit quantization is possible. This works because high frequencies around 100 yield similar ὸὪ-values,
minimizing the impact of quantization errors on the search order.

ĭRetrieval using this simple storage approach scales linearly with collection and vocabulary size as we scan through all
the data. Since the vectors are sparse with only ὑȾὓnon-zero components, we mostly read 0-values that have no
impact on relevance assessments. An improvement is to store a sparse representation, keeping an average of ὑterms
per document. This totals ὔɇὑentries, each holding a term ID for set-of-words, and term ID with term
frequencies/ὸὪɇὭὨὪfor bag-of-words. Term identifier size varies, consuming 16 to 64 bits based on vocabulary size
choice and precision for term frequencies/ὸὪɇὭὨὪ.

ĭAlthough storage consumption is much lower, we still have to search through all data to identify the best matches.
During this process, most data that we read is not considered by the scoring functions as out of the K average terms
stored per documents only the query terms can influence relevance assessment.

ĭLet's revisit the term-document matrix in vector space retrieval. The concept of the inverted files method, also called
inverted index, is to store rows with data about which documents hold the term linked to those rows, rather than
storing columns with the terms used by a document. Using sparse row encoding retains ὔɇὑentries, but replacing
term IDs with document IDs. However, the major enhancement is during search: since only query terms impact
scoring, we only read rows corresponding to query terms to produce the answer. If we have ὔɇὑȾὓdocuments per
term on average and ὒquery terms, we read ὔɇὑɇὒȾὓentries, improving search by ὒȾὓ. For instance, with ὒ υ
query terms and a vocabulary size of ὓ ρȟπππȟπππ, we cut search time by υȾρȟπππȟπππ(assuming average query
term distribution)

3.4 Indexing Structures

Page 3-46Multimedia Retrieval ģ 2024

3.4.1 Inverted Files for Boolean Retrieval Models

ĭKeeping this fundamental concept in mind, let's start with the Boolean retrieval model. The inverted index consists of
the vocabulary (ὓterms), and for each term, a list of postings contains all documents that include the term. For the
set-of-words model, term frequencies are not necessary, and the Boolean model does not require document
frequencies or ὭὨὪ-values. The inverted index further contains a document table with additional metadata:

ģAs we add new documents to the table, we continue including the document ID in the postings of terms found in the
document. If documents are added sequentially, the postings are arranged based on the order of document
insertion, which, in our simple example, corresponds to increasing document IDs. For certain implementations,
preserving this order is crucial for faster retrieval.

ID Name URL Date Į more data

1 Paris http://xyz.com/Paris.html 2005-01-04 Į

2 Geneva http://xyz.com/Geneva.html 2005-03-08 Į

3 Milano http://xyz.com/Milano.html 2005-04-23 Į

4 New York http://xyz.com/NewYork.html 2005-05-30 Į

Į Į

N Tokyo http://xyz.com/Tokio.html 2023-05-19 Į

ID Term Postings [Doc-ID]

1 dog [1, 3, 4, 6, 9, 10, 13, 21, 22, 23, 29, 30, 39]

2 cat [4, 5, 12, 13, 14, 15, 20, 22, 30, 34, 37]

3 horse [6, 10, 11, 14]

4 rabbit [12, 15, 35]

é

N bird [2, 3, 8, 15, 26, 35, 36]

3.4.1 Inverted Files for Boolean Retrieval Models

Page 3-47Multimedia Retrieval ģ 2024

ĭThe basic implementation stores postings as sets of
document IDs within a vocabulary using terms as keys.
For instance, index['cat'] contains the set of IDs of
documents that contain the term ĥcatĦ at least once.

ģFor query evaluation, we adhere to three rules:

o expr1 AND expr2: translates to an intersection of
the sets from sub-expressions expr1 and expr2

o expr1 OR expr2: translates to a union of the sets
from sub-expressions expr1 and expr2

o expr1 AND NOT(expr2): translates to a sub-
traction of the set of expr2 from the set of expr1

Generalization to AND/OR over multiple sub-
expressions are straightforward

ģHowever, we cannot evaluate OR-queries when one
sub-expression is of the form NOT(expr). While it's
technically possible to construct NOT(expr) by using
all documents except those returned by expr, this
approach becomes inefficient for large collections

ģIn AND-queries, NOT(expr)-parts need to be re-
ordered to the end to apply set subtraction.
Additionally, at least one element of the AND-query
must not be in the form NOT(expr)

ģIndeed, while these limitations may be viewed as
constraints in our implementation, they have minimal
impact on practical scenarios. Queries like "cat OR
NOT(dog)" do not align with typical search intentions
as they essentially select all documents except those
with dog but not cat, i.e., it can be rephrased as
"NOT(dog AND NOT cat)".

ÃÁÔ ˮ ÉÎÄÅØǁʎÃÁÔƦǂ
Ɖ [4, 5, 12, 13, 14, 15, 20, 22, 30, 34]

ÄÏÇ ˮ ÉÎÄÅØǁʎÄÏÇƦǂ
Ɖ [1, 3, 4, 6, 9, 10, 13, 21, 22, 23, 29, 30]

ÈÏÒÓÅ ˮ ÉÎÄÅØǁʎÈÏÒÓÅƦǂ
Ɖ [6, 10, 11, 14]

ÂÉÒÄ ˮ ÉÎÄÅØǁʎÂÉÒÄƦǂ
Ɖ [2, 3, 8, 15, 26, 35, 36]

cat AND dog
cat & dog
Ɖ [4, 13, 22, 30]

horse OR bird
horse | bird
Ɖ [2, 3, 6, 8, 10, 11, 14, 15, 26, 35, 36]

cat AND NOT(dog)
cat - dog
Ɖ [5, 12, 14, 15, 20, 34]

(cat AND dog) OR (horse AND cat AND NOT(bird))
(cat & dog) | (horse & cat - bird)
Ɖ [4, 13, 14, 22, 30]

(cat OR dog) AND (horse OR bird)
(cat | dog) & (horse | bird)
Ɖ [3, 6, 10, 14, 15]

(cat OR dog) AND NOT(horse OR bird)
(cat | dog) - (horse | bird)
Ɖ [1, 4, 5, 9, 12, 13, 20, 21, 22, 23, 29, 30, 34]

Page 3-48Multimedia Retrieval ģ 2024

ĭThe set-based evaluation from before does not scale well with the number of documents. In cases with millions to
billions of postings for a term, we want to fetch data from an external storage device (which is also a good idea for
persistence). But instead of reading all postings into main memory, we read them as streams sorted by the document
IDs. Take the postings of cat and dog as an example:

ģTo evaluate a query like "cat AND dog" we retrieve the initial entry for each termĤ1 for cat and 3 for dog. If they
match, the corresponding document fulfills the condition. If not, we proceed by reading the next entry for the term
with the smallest document ID. In our example, we proceed to the next cat posting, which is 4. Since it does not
match, we then advance to the postings of the term 'dog,' which currently has the smallest value. The subsequent
dog posting is also 4, matching the cat posting. Thus, we locate our first document and return it.

For the next result, we continue fetching subsequent postings for both terms and repeat the process. Eventually,
we identify 10 as the second answer. Then, we fetch the next posting for both terms. However, as cat's postings are
exhausted, we conclude the evaluation and halt iteration (even though dog still has postings, the exhaustion of cat
postings indicates that any remaining document cannot match). The diagram below illustrates this approach:

ģThe OR-operator is implemented similarly; however, the iteration returns each time the smallest entry of sub-
expressions. In the provided example, the OR-operator would start by returning 1, then advance cat and return 3,
progress dog and return 4, move both cat and dog and return 8, advance cat and return 10, move again both cat and
dog, and finally return 12. The evaluation concludes once all postings are consumed.

term postings

cat [1, 4, 8, 10]

dog [3, 4, 10, 12]

step cat (next)
dog
(next)

action

1 1 3 no match, progress cat

2 4 3 no match, progress dog

3 4 4 match, return 4 as result, and progress both cat and dog

4 8 10 no match, progress cat

5 10 10 match, return 10 as result, and progress both cat and dog

6 - 12 stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

3.4.1 Inverted Files for Boolean Retrieval Models

Page 3-49Multimedia Retrieval ģ 2024

ģThe evaluation of "cat AND NOT(dog)" evaluation follows the same pattern as the AND flow, but the outcomes
differ (matching occurs when cat posting is not equal to dog posting):

ģGeneralizing to multiple operands is simple. However, the same limitations as in set-based implementations apply,
and here it becomes clearer why supporting queries like "cat OR NOT(dog)" is not ideal. In our implementation, for
the NOT(dog) operand, we would need to list all documents except those in dog's postings. Since document
frequencies of terms can be low, enumerating NOT(dog) could involve millions or billions of document IDs,
substantially slowing retrieval. On the other side, queries like "cat OR NOT(dog)" are not intuitive.

ģWe can use the same method for any mix of AND and OR operators nested within one another, as each evaluation
method mentioned above produces sorted document IDs. Similar to single term searches, we can handle NOT
operators when they are within an AND expression that contains at least one sub-expression without a NOT at the
highest level (a nested NOT further down in the sub-expression is not an issue).

ĭWe omit here a detailed discussion for the Extended Boolean Retrieval model. The approach is similar with the
models to follow, that is, we first fetch all candidate documents (union of postings over all query terms) and then
evaluate foe each document the overall score using one of the score combining functions.

step cat (next)
dog
(next)

action

1 1 3 match, return 1 as result, and progress cat

2 4 3 match but cat is not smallest, so we progress dog

3 4 4 no match as both have the same value, so we progress both cat and dog

4 8 10 no match, return 8 as result, and progress cat

5 10 10 no match as both have the same value, so we progress both cat and dog

6 - 12 stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

3.4.1 Inverted Files for Boolean Retrieval Models

Page 3-50Multimedia Retrieval ģ 2024

3.4.2 Inverted Files for the BIR model

ĭThe Binary Independence Retrieval (BIR) model, Vector Space retrieval, Extended Boolean retrieval, and BM25
models exhibit several similarities when evaluated using inverted indexes. Conceptually, they adopt a retriever-
ranker approach as previously explained:

By utilizing inverted files, the retriever component retrieves the union of postings for the query terms. This yields a
candidate list for the filter & ranker, which then employs the model's designated scoring function for each candidate
document to generate the ranked list.

ĭImplementations frequently combine retriever/filter/ranker components for enhanced performance. We initially
study the fundamental versions: document -at-a-time and term -at-a-time using the BIR model, owing to its
uncomplicated scoring function (sum of ὧ). Subsequently, we expand this to the vector space and BM25 models. The
Extended Boolean model is omitted due to its diminished relevance in todayĦs search contexts.

ģThe document -at-a-time method retrieves documents consecutively through streaming like for the Boolean OR-
operand approach. At each step, we obtain the document with the smallest doc ID from the sorted postings of each
query term, and pass it along with its query terms to the scoring function. The ranker maintains a list of the best k
documents encountered and maintains this list upon processing all candidates. The "top-k" mechanism minimizes
storage needs, but still enables users to browse through several pages.

ģThe term -at-a-time method goes through query terms one after the other. For each term, it updates the document
list and uses the scoring function to adjust their scores based on that term's presence. At the end, documents are
arranged by their overall score, forming the ranked list. Unlike document-at-a-time, this method cannot maintain a
top-k list to reduce storage. However, it might suffer from long candidate lists if common terms with long postings
are in the query. An optimization is to skip frequent terms during evaluation that are unlikely to change the ranking
in a significant way.

3.4.2 Inverted Files for the BIR model

Retriever

query

1. doc 1
2. doc 2
3. doc 3
4. Į

index

(Filter &) Ranker

rank model

Page 3-51Multimedia Retrieval ģ 2024

ĭThe Python code on the right shows a simplified version
for the document -at-a-time retrieval technique for the
BIR model. The search_DAATfunction takes a query
string, a desired number of results (k), and feedback
data collected on documents.

ģWe start by turning the query string into a set of
words using a provided analyzer

ģUsing feedback, we compute ὧ-weights and trim
terms. For instance, we might keep only the top-n
weights from a larger set of query terms

ģThe primary loop resembles the Or-implementation
of the Boolean model. We sort the postings of each
query term by document IDs. We iterate through the
postings (index[term]) in a stream based manner
(iters), selecting the smallest ID across the next
elements (nexts) in the stream as a new candidate
document id

ģIf we have user feedback, we can skip 'non-relevant'
documents. Otherwise, if the document is relevant or
there's no feedback, we calculate the score by
summing ὧ-values (term_weights [j][1]), pairing it
with the document's smallest ID, and adding it to the
topk object. This object uses a heap to maintain
(doc_id , score) tuples, ordered by score for
efficient access to top-k results (no need for explicit
sorting needed)

ģIn the main loop's final step, we fetch the subsequent
postings for each term where the smallest ID was at
the stream's front (nexts)

def search_DAAT(query , k, feedback):
query_vector = analyzer.set_of_words(query)

filter terms and obtain c_j - weights
term_weights = query_weights(query_vector, feedback)

get iterators for each term and fetch first posting
iters = [iter (index[term]) for (term, _) in term_weights]
nexts = [next (iter , None) for iter in iters]

keep track of all retrieved documents
topk = TopKList(k)

while not all (e is None for e in nexts):
get smallest value from nexts, ignoring None
smallest = min(nexts, key = lambda x: x or math.inf)

use feedback, omit if assessed and not relevant
if not feedback.is_assessed(smallest) or \

feedback.is_relevant(smallest):
get score and add it to topk
score = 0
for j in range (len (nexts)):

if nexts[j] == smallest:
score += term_weights[j][1]

topk.add(smallest, score)

fetch next items if entry equals smallest
for i, e in enumerate (nexts):

if e is smallest:
nexts[i] = next (iters[i], None)

finished, return topk for result iteration
return topk

Page 3-52Multimedia Retrieval ģ 2024

ĭNow, let's explore the term -at-a-time approach for the
BIR model on the right side. The search_TAAT function
takes a query string, a desired number of results (k), and
feedback data collected on documents.

ģWe start by turning the query string into a set of
words using a provided analyzer.

ģUsing feedback, we compute ὧ-weights and trim
terms. For instance, we might keep only the top-n
weights from a larger set of query terms

ģThe main loop runs through each query term (sorted
by their weights in query_weights) and all postings
(index[term]). It keeps track of a score for each
seen document (dictionary scores)

ģIf we have user feedback, we can skip 'non-relevant'
documents. Otherwise, if the document is relevant or
there's no feedback, we add the ὧ-value of the
current term (weight) to the scores dictionary. The
update line also establishes new entries for
previously unseen documents

ģOnce the main loop concludes, the scores dictionary
contains a value for each document that has at least
one query term. Instead of directly sorting scores ,
we take a similar approach as with DAAT. We utilize
the TopKList and include all document IDs and their
corresponding scores

def search_TAAT(query , k, feedback):
query_vector = analyzer.set_of_words(query)

filter terms and obtain c_j - weights
term_weights = query_weights(query_vector, feedback)
scores = defaultdict(int)

iterate over terms and fetch postings
for (term, weight) in term_weights:

for doc_id in index[term]:
use feedback, omit if assessed and not relevant
if feedback.is_assessed(doc_id) and \

not feedback.is_relevant(doc_id):
continue

add weight to score of document
scores[doc_id] += weight

avoid full sort and use the heap in TopKList
topk = TopKList(k)
for doc_id, score in scores.items():

topk.add(doc_id, score)

finished, return topk for result iteration
return topk

Page 3-53Multimedia Retrieval ģ 2024

ĭDiscussion: DAAT vs. TAAT

ģBoth methods have similar complexity in terms of the number of read postings. They both focus on documents that
have at least one query term and a non-zero score

ģBoth approaches can efficiently filter out previously marked non-relevant documents to prevent their
reappearance in future results

ģThe TAAT implementation is shorter and more concise but has a drawbackĤthe scores dictionary. If query term
postings are lengthy, this dictionary can become sizable

ģOn the other hand, the DAAT approach computes scores in a single step for documents and adds them to a heap
within the TopKList object. This heap not only provides efficient access in sorted order but can also be pruned
occasionally if it becomes too large

ĭIncluding Predicates in Evaluation: We can expand both methods to search for documents with predicates like "star
wars" and "year < 2000". The assessment of these queries depends on how we can evaluate the condition:

1. Document attributes (metadata) in the predicate are stored in an index with an efficient evaluation plan. For
instance, with the condition "year < 2000," we can use index lookup to find document IDs meeting the predicate.
This index might be a B-tree or an inverted list
ģThe optimal approach for text retrieval and predicate assessment is to first obtain all document IDs satisfying

the predicate and then feed this selection (as an inverted list) to the search function
ģInside the search function, we remove all candidates not included in the predicate selection. In the code, this

adjustment aligns with where we check for non-relevant documents in the feedback
ģApart from predicate evaluation, there is no additional complexity in the search algorithm

2. If there is no index support for the condition, or the evaluation requires a full scan through all document data:
ģSince calculating the subset of documents satisfying the predicate is not efficient, we must assess the

predicate individually when we return (in Python yield) results using the TopKList object
ģThe heap within TopKList produces a stream sorted by decreasing score. Before delivering the object to the

caller, we inspect the document's predicate (accessing metadata randomly). If the predicate is not met, we skip
the document and move to the next one from the heap

ģIn the best case (a less selective predicate), we evaluate the predicate for all documents returned as results,
and a few omitted by the predicate. In the worst case (a highly selective predicate), we have to assess the
predicate for all documents in the heap (still better than evaluating it over all documents)

3.4.2 Inverted Files for the BIR model

Page 3-54Multimedia Retrieval ģ 2024

3.4.3 Inverted Files for the Vector Space model

ĭIn terms of the algorithms, both the BIR model and the Vector Space model are conceptually the same. The DAAT and
TAAT implementations work similarly with these modifications:

ģPostings now comprise tuples with document IDs and term frequencies, sorted by document ID

ģQueries change into a bag-of-words model, including terms and their frequencies for the query

ģWe need access to a vocabulary containing document frequencies. As an optimization, we can save required idf-
weights alongside postings in the inverted files (to avoid random vocabulary accesses)

ģA similarity function that calculates scores based on the query vector and a document vector subset including
query terms and their frequencies.

ģFor cosine similarity, we additionally require the document vector's length (=▀)

ģFor BM25, we also need the document length (number of term occurrences ȿὈȿ), an average document length (ὥὨὰ),
and parameters Ὧand ὦfor the calculation

ĭThe inner vector product can compute all scores using the data in the inverted files (index in the implementation),
but both the cosine measure and the BM25 similarity function need an extra lookup for document-related data
(document length, norm of document vector). This can notably raise retrieval costs, demanding extra optimizations
for consistent performance. To prevent such lookups, we can normalize document vectors at index build time.

If the normalization parameters (ὭὨὪ, Ὧ, ὦ, Ὀ, ὥὨὰ) changes then we need to rebuild the index. Setting ή ὭὨὪὸ for
the BM25, all three measures reduce to a dot-product between normalized document and query vector

3.4.3 Inverted Files for the Vector Space model

ίὭά ὗȟὈ В Ὠ ɇή with Ὠ
ɇ ȟ

▀
and ή

ɇ ȟ

▲

ίὭά ὗȟὈ В ὭὨὪὸ ɇὨ with Ὠ
ȟ ɇ

ȟ ɇ
and ÉÄÆÔ ÌÏÇ

Ȣ

Ȣ

Page 3-55Multimedia Retrieval ģ 2024

3.4.4 Inverted Files Implementation with SQL

ĭWe can build traditional text retrieval using a database
with inverted lists, created through database index
structures. The code on the right outlines the steps for
carrying out Boolean and vector space retrieval.

1. We generate tables for documents, vocabulary , and
posting s, along with a temporary table for the query
of a search. The last setup creates an index over the
posting table and term s. This builds a B-tree structure
with document IDs and term frequencies in leaf nodes
for swift retrieval in subsequent searches

2. Before re-building the collection, we delete all data
from all tables

3. Next, we go through each document in the collection.
For each document, we add an entry to the document
table, form a bag-of-words representation of the
document, and insert tuples (term, docId , tf) into
the posting table.

4. We count the number of documents for the calculation
of idf-weights. In the code on the right, we employ the
standard formula, although we could choose any
variant that fits the search scenario (for Boolean
searches, idf and tf values are not used). Lastly, we
count the document frequency and calculate idf-
weights for each term by grouping the posting table
by term s and inserting the outcomes into the
vocabulary table.

3.4.4 Inverted Files Implementation with SQL

-- 1. create schema for inverted index
-- document table can have additional attributes
-- auto incremented doc IDs depends on database product
CREATETABLEdocument(id SERIAL PRIMARY KEY,

title TEXT, year INTEGER)
CREATETABLEvocabulary (term TEXT, df INTEGER, idf REAL)
CREATETABLEposting (term TEXT, docId INTEGER, tf INTEGER)
CREATE TEMPORARY TABLEquery(term TEXT, tf INTEGER)
CREATEINDEX inverted_list ONposting(term)

-- 2. rebuild index from documents
-- delete all existing data
DELETEFROMposting
DELETEFROMvocabulary
DELETEFROMdocument

-- 3. for all documents in collection (outside of database)
-- fetch id after next insert (database dependent)
INSERT INTO document(title, year) VALUES(:title, : year)

-- create a bag - of - word representation and insert
INSERT INTO posting(term, docId, tf) VALUES(:term, :id, :tf)

-- 4. build vocabulary (table vocabulary)
-- fetch number of documents -- > ndocs
SELECTcount (*) AS count FROMdocument

-- insert terms from posting table into vocabulary table
INSERT INTO vocabulary(term, df, idf)

SELECTterm,
count (*),
ln(1. 0 * (:ndocs + 1) / (count (*) + 1))

FROMposting
GROUP BYterm

