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3.1 Introduction

T Text retrieval originated in the 1950s and 1960s through pioneering research by Gerard Salton, KareSparckJones,
and others. It became popular due to its wide range of applications, simplicity, and usénendly interface. As
discussed earlier, text retrieval is less affected by the semantic gap compared to other media types (although this will
be further discussed in upcoming chapters). Users input text queries against unstructured documents, and the
systems can easily match the query with the document, as they share the same representation. Additionally, textual
metadata enables any media type to be searchable using the same approach.

-

This allowed the relatively basic computer systems back then to offer efficient and effective search for expert users.
As early computers had limitations in terms of storage and compute, models progressed from simple Boolean
matching to more complex vector space and probabilistic models as technology improved. The first generation
primarily focused on "Retriever-only" models.

Retriever A doc1
A doc2

_— S —
Al

g Boolean Retrieval Systemshold a significant advantage as they can determine document relevance while scanning
the data, without the need for post-processing to sort and rank documents. Additional filters, such as publication
date or author, can be easily integrated into the Boolean model. This builds a robust foundation still observed in
today's systems like when searching for files on a local drive

g The Boolean Model uses set theory and Boolean algebra. Documents are represented as a set of terms, without
considering the number of occurrences. The query is formulated as a Boolean expression using operators like AND
and OR to combine term match atomic queries. If a document satisfies the Boolean expression (and other filter
conditions on its metadata), it is included in the result set; otherwise, it is excluded

g Boolean models do not use scoring or ranking, so they can return results as soon as they find the first matching
document while scanning the data (consider the example of to searching through a local hard drive). In addition,
they can utilize a simple index structure callednverted file which makes the search process very efficient by
considering only a small fraction of the data. This method is still used in modern algorithms today.
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T As collections grew larger, the Boolean model needed an extension for better result organization and exploration.
When there are hundreds of hits, users want a more efficient way to browse through search results. A post
processing step was introduced, enabling quenindependent filtering and sorting, such as sorting by publication date
or filtering for a specific language. Unlike the retriever step, users can add or remove filters and change sorting while
exploring the results and without re-submitting the search. In other words, this postprocessing does not impact the
set of relevant documents and is often implemented in the interface directly:

Retriever Filter & Sort 1. doc1
query — L, — ——~ L, 2 doc2
criteria 4. |

-

The above method works well for scenarios where exploration is mostly focused on metadata, as in shop or library
searches. However, a key drawback is that sorting does not consider how well an object fits the query. Early
extensions of the Boolean model Extended Boolean Model) addressed this limitation by studying the impact of the
query terms' presence in documents and their relevance assessment. For example, consider the query "cat AND dog"
and the three documents:

1) "A cat walked down the street."”
2) "The dog chased the cat."
3) "The cat played with the dog when another cat and dog approached them."

Documents 2) and 3) meet the condition "cat AND dogl,
appears partially relevant to the query. Furthermore, document 3) contains the query terms more frequently and
seems to be a better fit for the query, but the Boolean expression classifies documents 2) and 3) the same. The
Extended Boolean Model, changes the foundation model in two ways:

g It allows for partial matches to the query (like Document 1) but assigns them lower relevance scores
g It considers how often query terms appear in documents when calculating relevance scores

Using these relevance scores, we can sort the document collection and present results even if not all conditions are
met. In other words, instead of using "hard" conditions, we apply penalties for not meeting the condition.
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I Inthe 1970s, classicaMector Space and Probabilistic Retrieval models emerged. Both methods established a
relevance model for documentquery matching. In the vector space model, documents and queries are represented as
high-dimensional vectors, and heuristic methods compare vectors to obtain a notion for relevance. Probabilistic
retrieval models assume that documents are generated randomly from a probabilistic model, and relevance is
determined by the probability of a document being relevant to the query. Newer models likeBM25 combine vector
space and probabilistic retrieval techniques.

Retriever (Filter & Ranker 1. doc1
query —————» S | S 2. doc2
rank model 3. doc3

4. |

Extended Boolean Model, Vector Space Retrieval, and Probabilistic Retrieval follow a similar approach: a retriever
gathers a larger set of candidate documents based on query terms, and a ranking model assesses the relevance to
produce a sorted result list. Further filter conditions can be applied to explore the result collection, such as language
filtering or year of publication.

-

In this chapter, we delve into classical text retrieval models in detail:

g We begin by exploring document descriptions and performing simple linguistic operations to reduce words to
terms, forming a vocabulary for search

g Next, we study classical models like the Standard and Extended Boolean Model, Vector Space Retrieval Model,
Probabilistic Model, and the modern BM25 model used in popular software packages

g We then examine indexing methods, notably inverted file, and a simple implementation using a relational database
to accelerate the search process

g Finally, we conclude the chapter by discussing Apache Lucene, a popular software packages that offer stafethe-
art text retrieval for various platforms

-

In the chapters to follow this one, we will explore: 1) natural language processing and advanced techniques for
generating vectors from text representations, 2) web retrieval as a unique search challenge, and 3) modern-Al
supported classification and search methods.
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3.2 Fundamentals
Offline Phase

RDEAENE

s T , ;‘,Q
[E=n Insert >3 )
\.\/.;(9
new
document
feature
extraction
docID = doc10

dog- word 10, word 25
cat- word 13
home- word 2, word 27

Multimedia Retrieval § 2024

@ index

—(

—(

—(

—(

Many search systems, like searching through files on a
local drive, scan through all the data for each query.
However, this approach is not efficient for large text
collections. Instead, the search is divided into two parts:
an offline indexing phase (depicted on the left) and an
online querying phase (see next page).

The offline phase extracts meaningful features from
text documents and stores them, along with metadata,
in an index for future query use. These features provide
a concise representation of the document's content and
are typically represented by high-dimensional vectors.

During the offline mode, the following steps take place:

a)add a new document (or find one by scanning/
crawling)

b) each addition triggers feature extraction and updates
search indexes

Cc) extract features that best describe the content,
analyze context, and include highetlevel features

d) pass the features to an index that accelerates
searches for queries

The main challenge lies in extracting concise
representations from the documents. In this chapter,
we will use simple methods to create vector
representations. In the chapters to follow this one, we
will explore more advanced techniques.
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T In the online mode, users can search for documents
using the indexed data from the offline phase. The
query is analyzed similarly to the documents with @

Online

additional processing to correct spelling mistakes or

include synonyms for a broader search. Retrieval -

involves comparing features. If two documents have !‘7

similar features, they are considered similar in content. —

Thus, a document is considered a good match to a query 1 @

If its features are close to those of the query. doc10 query
result | | doca transformation

docl

] Dogs at |hon

-

In the online mode, the following steps take place:

1) user enters a query (or speech/handwriting
recognition)

2) we extract features from the query, similar to the @ -
process for documents, and transform the query as Q= {dog, dogs,
needed (e.g., correcting spelling mistakes) relevance ranking hound,

3)we use the query features to search the index for sim(Q,docl) = ~—— | home}
documents with similar features sim(Q,doc4) = retrieval

4) we rank the documents based on their retrieval sim(Q,doc10) =

status value (RSV) and return the bestmatching
documents

2
4
.6

-

The primary challenge is relevance ranking. The goal is
to accurately assess a document's relevance based inverted file:

solely on its feature representation, and given the dog- doc3,doc4,docl0
features of the query. In subsequent c_hapte_rs, we will index | cat- docl0
explore_more sophlstlcat_ed m_ethods, mcludln_g @ home- docl,doc7,docl0
generative Al. However, in this chapter, we will use

simple yet efficient and effective methods that are
suitable for many use cases.
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T In the rest of this chapter, we explore the fundamental steps to extract features from source documents ("offline
phase"), as mentioned earlier. The overall process is detailed in the picture below. We will discuss indexing in a later
section, focusing here on four fundamental steps during feature extraction: 1) extract, 2) split, 3) tokenize, and 4)
summarize. The outcome includes a vocabulary containing all terms found in the documents, which is also used for
query analysis. Additionally, we obtain for each document chunk out of the splitting step a feature representation

that we can store in an index along with metadata from the source document and split ranges (start and end
coordinates in the source document).

metadata

~ Index

HTML 7

in the enemy's country. | |

In the year 1878 | took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeonsin the army. Having completed
my studies there, | was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon The regiment was
stationed in India at the time, and before
| could join it, the second Afghan war had
broken out. On landing at Bombay, |
learned that my corps had advanced
through the passesand was already deep
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In the year 1878 | took my degree of

Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeonsin the army. Having completed
my studies there, | was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
| could join it, the second Afghan war had
broken out. On landing at Bombay, |
learned that my corps had advanced
through the passesand was already deep
in the enemy's country. | |
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3.2.1 Step 1: Extract (with the example of HTML)

I Text documents are available in different formats such as HTML, PDF, EPUB,
metadata, or plain text. The first step involves extracting meta information
and the sequence of characters that form the text stream without control
sequences and formatting information present in the source document. This
may include structural analysis of the document, encoding adjustments, and
identifying relevant information for feature extraction. In some cases, we may
have to apply text extraction from images.

-

Consider a simple example in HTML with the following snippet representing a '
web page's structure. The initial task is to identify the useful bits of HTML 7
information within it. The header typically holds rich meta information, while

the body contains the main text parts. Although HTML follows a weHdefined

standard, extracting information (known as scraping) requires analyzing the

data structure used for the pages. In contrast, a web search engine considers

everything present on the page.

<html>
<head>
<titte> MMIRZ 2023 </title>
<meta name"keywords" In the year 1878 | took my degree of
content ="multimedia, retrieval, course" > DEir @ MEEies o i WversLy o
London, and proceeded to Netley to go
</head> : _ _ through the course prescribed for
Body: Contains the main Header: Contains meta surgeons in the army. Having completed
<body> content enriched with information about the my studies there, | was duly attached to
markups. The document's document. We can utilize this K‘Sesi;gt:t gSrrg;r:beTrrlmaenC:egFirLfglrlsrst:
flow is not always pbwous information to add relevant S i Pl s e dre., ains el
o and may appear differently metadata for the document I could join it, the second Afghan war had
y on screen than in the file. (and its chunks). broken out. On landing at Bombay, |
</html!> learned that my corps had advanced
through the passesand was already deep
o . . . . . in the enemy's country . | |
I At this point, we must decide for a character encoding that we will use for the

terms and the index, and convert the source text. UTF8/16/32 are widely
used but can limit the ability to support different languages.
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TLetHAs use the example of HTML to illustrate some aspe
g URI of page both metadata and content (may serve concise key words for retrieval)
https://dmi.unibas.ch/de/studium/computer - science - informatik/lehrangebot - hs23/lecture - multimedia - retrieval/

g Title of document : both metadata and content (may serve concise key words for retrieval)
<titte> Multimedia Retrieval - Homepage/title>

g Meta information in header section: (enriched information provided by author)

<meta name"keywords" content ="MMIR, information, retrieval" >
<meta name="description" content =y 4 EEO xEI 1 AEATCA UTI OO 1 EEAAY

g As we discussed in the metadata section, we must be cautious about its reliability. It might include false information
or describe aspects differently from what we observed in other documents. Nevertheless, in many cases, the brief
nature of metadata allows us to assign high weights to the text parts.

-

Web pages contain links. How do we handle them effectively? Links describe relationships between documents and
can enhance the current document's description. More importantly, they also describe the referenced document.
Since web page authors often use concise anchor texts, the keywords in anchor texts serve as an excellent source of
additional terms for the referenced document. Usually, the link text is associated with both the embedding and linked
documents. However, we typically give much higher weight to keywords for the referenced document. It is essential
to consider the approach's effectiveness, especially when dealing with click baits (promising more than the
referenced documents reveal) or navigational hints like "click here" or "back to the main page". These keywords add
no additional content for the referenced document.

-

The body includes all text blocks and uses tags to control rendering. The page's flow may not exactly match the order
in the HTML file, but it's usually a good enough approximation. Certain tags offer valuable additional information on
the following text pieces. For example, we can assign higher weights to term occurrences in headlines, bold text, or
text with emphasized rendering on the page.

-

HTML includes escape sequences for special characters that need to be translated into the target encoding format.

&nbsp; -> space & uuml; -> U
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The illustration below shows how anchor texts (and their surroundings) provide relevant terms for describing target
pages (and images). We emphasized the need for caution with human metadata. However, anchor texts come from
diverse sources, simplifying the identification of useful terms across all mentions and filtering out "outliers" with
obviously incorrect information. In a subsequent chapter, we will delve into using the link network to assess a page's
importance and (objective) relevance through PageRank.
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3.2.2 Step 2: Split

T Most traditional retrieval methods are optimized for smaller documents. This
Is because they assign a single term vector to represent the entire document.

In the year 1878 | took my degree of

For instance, a 3page document and a 1000page novel are both described Doctor of Medicine of the University of
: : London, and proceeded to Netley to go
USIng a Slngle vector. through the course prescribed for
£ H H H surgeonsin the army. Having completed
g In cases where the document is small, returning the entire document to ) SRS T, | Cesey SEree (s
users is acceptable as they can easily find the relevant location within it. the Fifth ggrr;he%r:bir:]aenﬁegﬁ%seﬂriﬁrswgz
However, with larger documents like novels, it becomes essential to stationed in India at the time, and before

H e . : e 1 R v | Id join it, th dAfgh had
provide addltlon_al mformatlon on the specific passage's chatlon._ Splitting broken out. On landing at Bombay. |
the documents into smaller pieces allows for a more precise retrieval at the it e iy o Wil e

. . . . rou € passesandwas alrea ee

expense of having more data entries in the collection. inthe enemy’s country. || Y

g Another reason is that many traditional retrieval models do not include
support for proximity metrics in their relevance assessment. For example, a
guery like "cats AND dogs" could retrieve a novel containing the term

"cats" only on the first page and "dogs" only on the last page. Splitting
documents into smaller chunks enforces proximity between query terms.
For instance, if we split the novel by chapter, the novel and its chapters are
no longer relevant for the query as none of the chapters contain both "cats"
and "dogs".

Pl

In the year 1878 | took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go

There is no onesize-fits all solution for splitting documents. In general, itis a

-

trade -off between more and smaller but semantically coherent parts of the trough the course prescribed for
. . surgeons in the army. Having complete

documents, and additional costs for storage and retrieval: my studies there, | was duly attached to

. . iy . the Fifth Northumberland Fusiliers as

g For instance, splitting a novel by sentences may create too many entries Assistant Surgeon The regiment was
P i H P P stationed in India at the time, and before

that negatively impacts performance given a library with thousands of T could join It the second Afghan war had

books. Sentences may also be too narrow for finding meaningful matches broken out. On landing at Bombay, |
. learned that my corps had advanced
for more complex queries

Fhrough the passesand was already deep
g On the other side, a search engine for citations in religious texts may split - e enemyscounty. 1
documents at the sentence or verse level to create thousands of smaller
parts that can be individually retrieved with searches
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T Method 1: Splitting the text into fixed -sized chunks

-

g

The document is divided into chunks with a constant

number of tokens, such as words or characters. This

approach is straightforward and has even sizes for all
document chunks simplifying normalization

At the chunk boundaries, we may encounter hal
sentences and splits of passages that belong together
such as a paragraph in a document

In the example on the right, the chunks are split after
every 50 tokens. The number of tokens used for
splitting is a hyperparameter and requires training to
achieve optimal results in the given search context

Method 2: Splitting the text with NLP techniques

g

Using NLP methods, the text is first divided into
sentences. Then, several sentences are combined
until a minimum number of tokens is reached

At chunk boundaries, we no longer observe half
sentences (unless sentence segmentation was
incorrect), but we might still split passages that
belong together, such as a paragraph in a document

In the example on the right, we first split the text into
sentences and then combine them until each chunk
contains at least 50 tokens. As mentioned before, the
number of tokens used for splitting is a
hyperparameter that requires training to achieve
optimal results in the given search context.

Chunks sizes can now vary in length and variations
depend on the length of sentences.

Multimedia Retrieval § 2024

In the year 1878 | took my degree of Doctor of Medicine of the University of London, and
proceeded to Netley to go through the course prescribed for surgeons in the army. Having
completed my studies there, | wasduly attached to the Fifth Northumberland Fusiliers as

Assistant Surgeon The regiment was stationed in India at the time, and before | could join it, the
secondAfghan war had broken out. On landing at Bombay, | learned that my corps had advanced
through the passesand wasalready deepin the

e n e mgotihgy. | followed, however, with many other officers who were in the same ituation
asmyself, and succeededin reaching Candaharin safety, where | found my regiment, and at once
entered upon my new duties. The campaignbrought honours and promotion

to many, but for me it had nothing but misfortune and disaster. | was removed from my brigade
and attached to the Berkshires, with whom | served at the fatal battle of Maiwand. There | was
struck on the shoulder by a Jezailbullet, which

shattered the bone and grazed the subclavian artery . | should have fallen into the hands of the
murderous Ghazishad it not been for the devotion and courage shown by Murray, my orderly,
who threw me acrossa pack-horse, and succeededin bringing me safely to

the British lines. Worn with pain,and weak from the prolonged hardshipswhich | had undergone,
| was removed, with a great train of wounded sufferers, to the base hospital at Peshawar. Here |
rallied, and had already improved sofar asto

!

In the year 1878 | took my degree of Doctor of Medicine of the University of London, and proceeded
to Netley to gothrough the course prescribed for surgeonsin the army. Having completed my studies
there, | wasduly attached to the Fifth Northumberland Fusiliers asAssistant Surgeon

The regiment was stationed in India at the time, and before | could join it, the second Afghan war had
broken out. On landing at Bombay, | learned that my corps had advancedthrough the passesandwas
already deepinthe e n e mopufitsy .

| followed, however, with many other officers who were in the samesituation asmyself,and succeeded
in reaching Candaharin safety, where | found my regiment, and at once entered upon my new duties.
The campaignbrought honours and promotion to many, but for meit had nothing but misfortune and
disaster.

| was removed from my brigade and attached to the Berkshires, with whom | served at the fatal battle
of Maiwand. There | was struck on the shoulder by a Jezailbullet, which shattered the bone and grazed
the subclavianartery . | should have fallen into the hands of the murderous Ghazishad it not been for
the devotion and courage shown by Murray, my orderly, who threw me across a pack-horse, and
succeededin bringing me safely to the British lines.

Worn with pain,and weak from the prolonged hardshipswhich | had undergone,| wasremoved, with a
great train of wounded sufferers, to the base hospital at Peshawar. Here | rallied, and had already
improved so far asto be able to walk about the wards, and even to bask a little upon the verandah,
when | wasstruck down by enteric fever, that curse of our Indian possessions

For months my life was despaired of, and when at last | cameto myself and becameconvalescent,| was
so weak and emaciated that a medical board determined that not a day should be lost in sendingme
backto England | was dispatched,accordingly,in the troopship T Or o nanddamdedamonth later on
Portsmouth jetty, with my health irretrievably ruined, but with permission from a paternal
government to spendthe next nine months in attempting to improve it.

!
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1T Method 3: Metadata or structural information

g If the document contains metadata or structural
markers for paragraphs, sections, chapters, or pages,
we can use these markers as chunk boundaries. With
plain text, we can also look for paragraphs often
marked with a newline character or an empty line

g Chunks now are contextually coherent like a full
paragraph in a document. But we have considerable
differences in the number of tokens per chunk that
require normalization during the ranking process (see
BM25 later for an example)

g In the example on the right, we split at the end of a
paragraph. Especially in novels with spoken
sentences, it sometimes is not so obvious where a
paragraph ends

-

Method 4: Semantic splitting

g The text is initially divided into smaller parts, such as
sentences. By using machine learning techniques,
sentences with similar topics and concepts are
grouped or clustered together

g Chunks are contextually coherent and may
encompass multiple passages and paragraphs from
the source document. But it may also split paragraphs
or sections if topics change

g As mentioned before, we encounter chunks with
significantly different numbers of tokens

g In the example on the right, we merged sentences
that semantically belong together
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In the year 1878 | took my degree of Doctor of Medicine of the University of London, and
proceeded to Netley to go through the course prescribed for surgeons in the army. Having
completed my studies there, | was duly attached to the Fifth Northumberland Fusiliers as Assistant
Surgeon The regiment was stationed in India at the time, and before | could join it, the second
Afghan war had broken out. On landing at Bombay, | learned that my corps had advancedthrough
the passes,and was already deep in the e n e mgothgy . | followed, however, with many other
officers who were in the same situation as myself, and succeededin reaching Candahar in safety,
where | found my regiment, and at once entered upon my new duties.

The campaignbrought honours and promotion to many, but for me it had nothing but misfortune
and disaster. | wasremoved from my brigade and attached to the Berkshires, with whom | served at
the fatal battle of Maiwand. There | was struck on the shoulder by a Jezail bullet, which shattered
the bone and grazed the subclavian artery . | should have fallen into the hands of the murderous
Ghazishadit not beenfor the devotion and courage shown by Murray, my orderly, who threw me
acrossapack-horse, and succeededin bringing me safely to the British lines.

Worn with pain, and weak from the prolonged hardships which | had undergone, | was removed,
with a great train of wounded sufferers, to the base hospital at Peshawar. Here | rallied, and had
already improved so far asto be able to walk about the wards, and even to bask a little upon the
verandah, when | was struck down by enteric fever, that curse of our Indian possessions For
months my life was despaired of, and when at last | cameto myself and becameconvalescent,| was
soweak and emaciatedthat a medical board determined that not a day should be lost in sendingme
backto England | was dispatched,accordingly, in the troopship T Or o nanelande# amonth later
on Portsmouth jetty, with my health irretrievably ruined, but with permission from a paternal
government to spendthe next nine months in attempting to improve it.

!

In the year 1878 | took my degree of Doctor of Medicine of the University of London, and proceeded
to Netley to gothrough the course prescribed for surgeonsin the army. Having completed my studies
there, | wasduly attached to the Fifth Northumberland Fusiliers asAssistant Surgeon

The regiment was stationed in India at the time, and before | could join it, the second Afghan war had
broken out. On landing at Bombay, | learned that my corps had advancedthrough the passesand was
already deepin the e n e mgoumisy . | followed, however, with many other officers who were in the
samesituation as myself, and succeededin reaching Candaharin safety, where | found my regiment,
and at once entered upon my new duties. The campaignbrought honours and promotion to many, but
for meit had nothing but misfortune and disaster. | wasremoved from my brigade and attached to the
Berkshires, with whom | served at the fatal battle of Maiwand. There | was struck on the shoulder by a
Jezail bullet, which shattered the bone and grazedthe subclavianartery . | should have fallen into the
hands of the murderous Ghazishad it not been for the devotion and courage shown by Murray, my
orderly, who threw me acrossa pack-horse, and succeededin bringing me safely to the British lines.
Worn with pain,andweak from the prolonged hardshipswhich | had undergone, | wasremoved, with a
great train of wounded sufferers, to the basehospital at Peshawar.

Here | rallied, and had already improved sofar asto be able to walk about the wards,and evento baska
little upon the verandah,when | was struck down by enteric fever, that curse of our Indian possessions
For months my life was despaired of, and when at last | cameto myself and becameconvalescent,l was
so weak and emaciated that a medical board determined that not a day should be lost in sending me

backto England | was dispatched, accordingly, in the troopship T Or o njt es , T

!
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3.2.3 Step 3: Tokenize

T Atoken is formed by a sequence of characters. Typically, we use complete
words to create tokens, but there are other options which we will explore
later in this course. Here's a brief overview:

g Characters and fragments of words can be used to form tokens. For
example, breaking the character stream into tokens of 3 characters would
turn "street" into "str" and " eet". This method is frequently employed by
large language models to maintain a small and constaisized vocabulary
while still being able to encode previously unseen words

g Words are the primary approach used in classical text retrieval. However,
we require additional definitions for special characters, numbers, and
abbreviations. In certain languages, word boundaries may not always be
evident (e.g., Japanese and Chinese). The most significant challenge arises
from variations in word forms. For instance, "cat" and "cats" are
semantically related, but they are different tokens.Stemmingis a linguistic
method to merge such tokens, enabling better control over vocabulary size
and term matching

g N-grams and phrasesare composite tokens where multiple words that

consistently appear together form a single token. Examples include "San

Francisco," "Salt Lake City," "Prime Minister," or "Thai food." While you can

Al

In the year 1878 | took my degree of

Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeonsin the army. Having completed
my studies there, | was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
| could join it, the second Afghan war had
broken out. On landing at Bombay, |
learned that my corps had advanced
through the passesand was already deep
in the enemy's country . | |

-
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manually add such phrases to the vocabulary, we will explore automated
methods to detect meaningful phrases or rgrams in the collection in the
next chapter of this course

In this chapter, we use words as the foundation for studying classical text
retrieval methods. In the following chapters, we will delve deeper into
tokenization and explore various linguistic transformations, along with newer
approaches such as embeddings commonly used in generative Al applications.

3.2.3 Step 3: Tokenize

(IN) (THE) (YEAR) (1878)) (TOOK) (MY)

(DEGREE) (OF) (DOCTOR) (OF) (MEDICINE) (OF) (L I
(THE) (UNIVERSITY) (OF) ‘(LO
(PROCEEDED) (TONETLEY) (TO) (GO)

(THROUGH) (THE) (COURSE) (PRESCRIBED) | F 2L
(FOR) (SURGEONS) (IN) (THe)

(HAVING) (COMPLETED) (MY) (STUDIES) ( (ngg
(THERE) (h,#H) (1) (WAS DU
(THE) (FIFTH) (NORTHUMBERLAND) AN )

(FUSILIERS) (AS) (ASSI STAl\h'I)
(THE) (REGIMENT) (WAS) (STATIONED) (IN) € :
(I NDI A) (AT) (THE) (TI (T

(COULD) (JOIN) (I1T) (h|S E‘é\g{
(AFGHAN) ( WAR) (HAD) (BROKE
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T Lemmatization and linguistic transformation are essential for matching query terms with document terms, even if
they have different inflections or spellings (e.g., Colour" vs. "color"). Depending on the scenario, one or several of the
following methods can be used:

g A common step is stemming. In most languages, words appear in various inflected forms based on time, case, or
gender. Examples:

English: go, goes, went, going, house, houses, master,
German:  gehen, gehst, ging, gegangen Haus,Hauser, Meister, Meisters

As evident from the examples, the inflected forms differ significantly but essentially convey the same meaning. The
concept of stemming is to reduce tokens to a common stem and utilize this stem instead. In some languages, like
German, stemming is difficult due to its numerous irregular forms and the use of strong inflectionsd&hen" Y

"ging"). In English, Porter defined a very simple algorithm to compute neastems as explained on the next pages

g Additionally, some languages permit compound words which can result in words of arbitrary length:

German (law in MecklenburgVorpommern, 1999-2013): Rinderkennzeichnungsind
Rindfleischetikettierungsuberwachungsaufgabentbertragungsgesetz
(cattle marking and beef labeling supervision duties delegation law)

Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde
(atomic nuclear energy reactor generator condenser turbine cogwheel stage)

In many cases, we aim to break down such compounds to improve the likelihood of matching against query terms.
Otherwise, we might never find that German cattle law with a query like "RindKennzeichnung" However, breaking
a compound may also alter the true meaning of tokens:

German: Gartenhaus A Garten, Haus  (ok, not too far away from the true meaning)
German: Wolkenkratzer A Wolke, Kratzer (no, this is completely wrong)
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T For English, the Porter Algorithm finds a nearstem of words. This stem is not linguistically correct but it often
reduces words with the same linguistic stem to the same neastem. The algorithm is highly efficient, and various
extensions have been proposed over the years. In this context, we focus on Porter's original version from 1980:

g Porter definesvas a I vocall if

g itisanA,E, 1,0, U i N
gitisaYand the preceding charYaBY er i s not a Ivocalll (e

g All other characters are consonants ¢)
Let Cbe a sequence of consonants, and l&tbe a sequence of vocals
g Each word follows the following pattern:

[CI(VC) "V] mis the measure of the word

~ (O~

g further:

Z *0: stem ends withcvc; second consonant must not be W, X or ¥WIL, -HOP)
Z *d: stem with double consonant {TT,-SS)
Z *v* . stem contains a vocal

g The rules on the next pages establish mappings for words using the forms mentioned above. The variatvis
utilized to prevent over-stemming of short words. Due to limited space, only a few rules are presented here. For a
complete set of rules, please refer to one of the many implementations of the Porter algorithm or consult the
original paper: Porter, M.F.: An Algorithm for Suffix StrippingProgram, Vol. 14, No. 3, 1980

g There are 5 main steps with several suisteps within each. Each (suf)step includes a list of ordered rules to match
the endings of terms. Only the first rule that matches is applied, and the algorithm proceeds to the next (sybtep.
Most sub-steps have only a few rules (less than 10) and not more than 20 rules. The JavaScript implementation
comprises around 200 lines of code.

T In subsequent chapters of this course, we will explore more advanced methods
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b)

Rule Examples
Step 1
SSES ->SS caresses -> caress
IES -> | ponies -> poni
SS ->SS caress -> caress
S -> cats -> cat
(m>0) EED ->EE feed -> feed
(*v*) ED -> plastered -> plaster
(*v*) ING -> motoring -> motor
(*v*) Y - > pony -> poni
Step 2
(m>0) ATIONAL ->ATE relational -> relate
(m>0) TIONAL ->TION conditional -> condition
(m>0) ENCI ->ENCE valenci -> valence
(m>0) IZER -> IZE digitizer -> digitize
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Rule Examples

Step 3
(m>0) ICATE ->|C triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
Step 4
(m>1) and (* S or *T)ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> platonism -> platon
Step 5
a) (m>1) E -> rate -> rate
(m=1) and (not* OE -> cease -> ceas
b) (m>1land *D and *L) - > single letter controll -> control
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3.2.4 Step 4: Summarize

T During summarization, we create concise representations for documents,
usually in the form of a highdimensional feature vector where components
represent terms and their occurrences in the documents. To achieve this, we
maintain a vocabulary and assign each term a dimension in the feature space.

To control vocabulary size, we discussed linguistic transformations in the
previous action. During summarization, we also evaluate the importance of
terms and their ability to describe the content of documents in the collection.
Theinverse document frequency (IDF) is a widely used method to measure
the significance of terms. Additionally, we look at stop word elimination as a
simpler method of discrimination.

-

-

Once terms are extracted, classical retrieval methods generally use one of
two methods to build the feature vector. Let’'O be a document,0 be the size
of the vocabulary. Then,Q N a is its feature representation, andQp,
represents the term 0 in the vocabulary. Additionally, we used "@ D to
denote the number of occurrences of termo in documentO.

g Theset-of-words model is a basic representation that only considers
whether a term is present or not. It disregards the order of terms, their
number of occurrences, and proximity between terms. The feature vector is
binary where dimension’(ndicates the presence of termo

p 0[@M) =

Qr -
" n o) m

orQ {osdqom) m

g Thebag-of-words model is a more common representation and differs
from the set-of-words by preserving term frequencies:

Qo @)
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-

Classical retrieval models treat terms as independent regardless of how close they are « "N« <lhe

syntactically or semantically. For example, "cat" and "cats" are considered different terms. This 2 G oo
implies that a query for "cats" will not match documents containing only “cat". To make them o o oo
match, we need to reduce these forms to the same term as shown with the stemming algorithm  to 99%  2.58%
during tokenization. The same principle applies to spelling mistakes or variations, either in the for 5 oo
document or in the query: ‘colour” does not match with "color". that e o

I Controlling the vocabulary size is not primarily a storage or performance concern as we will See  win ot o700
with the indexing methods for classical retrieval. Usually, a vocabulary can include millions of 5 S
terms. However, most documents consist of only a few hundred or thousand terms, depending it 92%  0.69%
on how we split them. Consequently, the feature vectors are densely populated with nozero o ot 0608
values. Using theinverted file method, we store only the nonzero values and during retrieval, rom o e
we only consider documents that contain a query term. o Th 0

T However, we notice many terms that are grammatically necessary but do not contribute was SR
significantly to the content description. For example, the article "the" in English is one of the this 83%  0.35%
most frequent terms in English texts but does not provide relevant information to describe the are o o
content. Since almost all English texts contain this article, a search with "the" would retrieve all m*gy’ B Q3
documents making it unable to differentiate between relevant and nonrelevant ones. he % 0.70%

T Apart from "the," there are other common stop words, as shown in the table on the right with said o6 00
the 50 most frequent terms in a collection’O of around 20,000 documents. The second column about  75%  0.27%
shows the document frequencyQ "® which is the number of documents containing the termo o L e s
shown as a percentage of all documents. The last column shows the term frequency®fcross heir Ton Al
all documents in the collectionO, presented as a percentage of the total number of terms i@ had 70% - 029%
(source:https://faculty.georgetown.edu/wilsong/IR/WD3.html ) all 69%  0.20%

g The top-50 terms already account for onethird of all terms in the collection, yet they do not S,
significantly contribute to the document description (wasting storage space) o oo oo

g All terms appear in more than 60% of the documents, making them unable to distinguish N obe oAl
between relevant and nonrelevant documents, as they match with most documents were 6% - 0.22%

I Stop word lists for most languages are readily available, for example: can oo Q2O
https://www.kaggle.com/datasets/heeraldedhia/stop -words-in-28-languages there  64%  0.18%
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-

Instead of manually maintaining stop word lists, a more pragmatic . 0O o e
approach is based orZ i plawkIsetd be the total number of term N - —— termowithi 0N i
occurrences (tokens) in the collection and) be the number of distinct
terms in the vocabulary. We already used the term frequency "Q to
denote the number of occurrences of termo. Now, let us order all terms
by decreasing term frequencies and assigh @ ¢ Qo term obased on D A
that order. The central theorrmim of

of randomly selecting the termowith i &5@0 1 from the collection is

o¥i with a constant wthat only depends ond as shown on the right side. . P P

ois a constant depending only or

—1 g4
2
—lo

The sum of alli i equalsp and pluggingin the n i oXi for all terms @ B P ™ XX db
results in a closed formula to estimatewbased on the number of terms) . |

For example, in a collection with0 _ Uﬁj Tdifferent terms, @ T p 5

while in a collection withd  p mhwm,™ T8 Y

-

-

The bottom right figure displays the Zipf distribution (blue line). As
explained earlier, the most frequent words (above the upper cutoff line)
hold minimal significance since they appear in nearly every text. The least
frequent words (below the lower cut-off) are discriminative but unlikely

to appear in queries. The range of meaningful words falls between the
lower and upper cut-off points.

»
»

frequency
upper cut-off

lower cut-off

-

Initially, the idea was to establish cutoff thresholds and exclude words
beyond those limits. This would save storage space and enhance search
speed. Nowadays, the common practice is to retain all terms, including
stop words, but consider the terms' discriminating power (see the red line
in the figure) to determine their weight during relevance assessment.

discriminating power

-

Consider the search for "it" which is a stop word. If we were to eliminate

this term, we would lose the ability to search for IT books or the book "IT"
by Stephen King. A query like "the cat" would still search for both terms in
documents but would assign significantly higher weight to occurrences of l— significant words — | S ——
"cat" to determine relevance.
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T In their 1975 paper, Salton, Wong, and Yang took a different approach by P average Term
exploring methods to quantify the discriminatory power of terms. Let's s000}-
consider a collection with documentsO and the similarities between o
them given byt | ‘Q&HO) p. We examine the collection twice, Mediors Collection
once with the term 6in documents and once with it removed, to analyze e T
the impact of the term's presence on similarities. Removing a valuable
term from the collection causes documents to become more similar to
each other. This is because the valuable term helped to distinguish

documents, resulting in lower similarities between them.
g LetO DM represent the term frequency of term 6 in documentO

g We determine the centroid document 6 by aggregating alld terms
with their average frequency 0 "Qhd across thel documents

. 2000

g Then, we define the density of the collection as the sum of all
similarities between documents and their centroid6: / All terms that occur

4000}

3000

in x=13 out of the
450 documents.

4 L e o . g p C o - 100k 4 y-value is average
U | Q@ h)) 0] (ﬁ h)) = ¢ 0 "'®ho f olrQ / discrimination rank
U \-\ /°\ /Q'“ over these terms
500}

g Finally, we compute the density0d for the collection without the term L L
)] H H H H H ] / )] i i s 5 11' 9| |I1 |15 |5£:6 |9-Izoz;_135;o_';a;9_l;“9_|“= ocument
0, and define the discrimination power of termoas:'Qo) L U oA T2 PR BRERIne R we Frequency

3845 75 terms erms
o ‘X (0 is large: if we remove the termbfrom the collection, similarities o -
to the centroid increase. In other words, the termodifferentiates
the collection and is hence a significant term Observation : Terms that appear in very few or
0 ‘(0 is negative: if term is present, documents are more similar to numerous documents receive a high

the centroid. This can happen, for instance, if a word occurs very SR FIrly, [AotEuel (Er s oeeiirig
in 9-12 documents have the smallest

frequently in all documents and thus dominates the similarity score ST EeT e, e (Erms 61k

g Sorting terms by their decreasingQ o -value assigns a discrimination significantly to the description of documents in
rank to each termo. The figure on the right illustrates the average the collection.
ranks (w-axis) for terms occurring in 1, 2, 3, ..., up to 138 documents. source: Salton, Wong, Yang (1975)
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Karen SparckJones (1972) introduced a statistical interpretation for term discrimination called inverse document
frequency (idf) which has evolved into the standard method for term weighting in relevance assessment. The
document frequency Q "® indicates how many documents contain the ternbat least once. Leth be the collection's
document count. The inverse document frequencyQQ&is expressed as:

QAR | "'T;pr L o 1i@® p

-

Note that there exist many variants of the QQfédmula, but all share the same structure as shown above.

We can utilize ' QQt@assign weights to components in both query and document feature vectors. As a simplification,
let us assume that a term only occurs once in a query. Furthermore, we can estimate the probability that a terbis
part of the query to be proportional to ‘Q"® ¥0 (we need to normalize by the sum over all terms to obtain probability
values). Finally, the components of the weighted document vector foD are given by’ Q Qg0 "® o

-

-

Comparing vectors in vector space retrieval relies on the inner vector product. We multiply query and document
components and aggregate these values. Consequently, the term's discrimination power approximately equals
QA ¢o @ ¢n o over all queries and documents. This value predicts a term's contribution to the relevance
assessment (here for the inner vector product), or in other words, how useful the term is to describe the content and
to distinguish between relevant and nonrelevant documents.

-

The lower right graph depicts QQvigeights (blue) and discrimination power  ——idf-weights
discrimination power (red) based on document frequencyQ "Q
with O pht Tt documents:

g Terms with low document frequencies (left side) have high
‘@Qweights but are scarcely present in queries, leading to
low discrimination power

g On the right side, terms with high document frequency have
both low weights and discrimination power

g Terms aroundQ™Q p 1t 1T T ¢0 exhibit the highest
discrimination power 0 200 400 600 800 1000

document frequency df
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3.3 Text Retrieval Models

T In the upcoming sections, we explore various retrieval models, examining their pros and cons. While we focus on the
key methods, it's important to note that there are numerous extensions in literature. Throughout this chapter, we'll
employ the following notations:

Value Range

W {O B ho } Collection of & documents
(0] Representation of a document withp  "Q 0
1 {68 M } Collection of U terms
0 Representation of a term withp  Q 0
p ,= ,ord Feature description of document’O with the "@he dimension describing document with
regard to term O
A Tip ) ,ors Term-document matrix with &y 0 "@D , that is rows denote termsand columns
denote documents. For instance, thé€th column is .
o} (@Fb) S Term frequency of term 0 in document O, i.e.humber of occurrencesof term 0 in
document O
Q (D) S} Document frequency of term 0 in the collection M, i.e., number of documents iM that
contain term 0 at least once
K9101e 0] A Inverse document frequency of termo given by
dE) 1i& p 1i(e®) p)
0 Representation of a query
A p ,= ,ord Feature description of query 0 with the "@he dimension describing query with regard to
term o
[ "Qaho) Tip Similarity between query 0 and documentO . tmeans dissimilar, p means identical
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3.3.1 Standard Boolean Model

T

-

-

-

The original Boolean models treated documents and queries asets of words, aiming to find documents containing all
query terms. Later, Boolean expression enhanced queries and allowed for more complex search scenarios. A key
advantage was the ability to decide for each document whether it is relevant and in the result, independently of the
rest of the collection. As such, theStandard Boolean Model functions as a filtering predicate selecting relevant items
rather than assessing their relevance. Initially, Boolean retrieval focused on data retrieval, lacking the capacity to
rank documents by importance. We labeled these as "Retrievabnly” engines.

Boolean expressions consist of two atomic predicates and two methods for merging them into expressions. The
atomic predicates are: 1) presence of a term (‘must be present') and 2) absence of a term ('must not be present').
These atomic predicates are then combined using the ANENnd OR operators to create the query expression.

A0 o Term d must be present

A 0 0 Term 0 must not be present

A0 070 Sub-query 1] or sub-query 1} fullfilled
A0 070 Both sub-query j and i fullfilled

Following the rules for Boolean expressions, we can transform the query expression into a disjunction normal form:

with T 0 f ortp 0 j ("OhQ is the mapping to the index of the term used in the query)

Query evaluation can be approached in two ways: 1) individually assess the predicate for every document, and 2)
employ set operations to derive the result set from the entire collection:
1) For each document being examined, calculate the values for dfl; based on the presence or absence of query

terms in the document, considering whether the term 'must be present’' or 'must not be present'. If the evaluation
of the disjunctive normal form results in a true value, the document is marked as relevant
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2) To enhance query evaluation speed, we only need to focus on documents that either contain the query term
('must be present’) or don't contain it (‘'must not be present’). Consequently, for each atomic predicate, we can
create sets\ j; that include precisely the documents that satisfy the atomic predicate:

{0 so @

{0 so @M

p} i fr 0§
W i fp 0 f

i)
i)

Following the same structure of the disjunctive normalform of the query, we use set intersections and unions to
compute the final set of relevant documents:

{0 50 @
{0 50 @

) p} ity 0 g
) moi 0§

3¢

v '\lﬁ

3¢

Later in this chapter, we will introduce the inverted file method, we applies this evaluation scheme to provide
fast response times.

T Advantages: Simple model with clear query semantics. Easy to implement and usdriendly. Fast evaluation with sets
enables quick searches, even for large data sets. Boolean expressions offer precise control for including or excluding
documents, influencing result size. This model can explain why a document was considered relevant. Easy to extend

with other filtering criteria over metadata of docume
T Disadvantages: Limited control over result sizeHusers may get too few or too many results. Larger result sets lack

ranking, requiring manual browsi ng. Il f the set of rel

matches#H, 1 .e., documents that fulfill some of the at

users may find it hard to express a complex information need as a combination of ANDs and ORs. However, to

i mprove the definition of hwhat is relevantH®H, wusers r

hence, stop words contribute equally to the result as the more significant terms. The Boolean model resembles data
retrieval more than information retrieval. We will consider superior models with ranking that offer similar simplicity
and performance.
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3.3.2 Extended Boolean Model
T In 1983, Salton et. al. extended the Boolean model to overcome the drawbacks discussed previously:

g introduce scores for ranking, considering weights for terms and term occurrences for atomic predicates

g support partial matches, i.e., positive scores for documents that do not fulfill all atomic predicates

The Extended Boolean Model adopts a bagf-words approach, assigning normalized vectors® ) to documents using
term occurrences and inverse document frequency Q'Q."Normalization ensures values within the vector components
range between 0 and 1:

-

Qi Eépﬁé (@m|)¢'sz's(a)> I'gp QO wi th iA@)(@ﬁb)gm’Qa;) ( osro moet hveal ue)

However, the query remains a Boolean expression as in the standard model:

-

with t; O j orty 0 OhQ is the mapping to the index of the term used in the query

3¢

-

Rather than 'true’ and ‘false’, atomic predicates yield a similarity score between 0 and 1, determined by the vector
component and the 'must be present' or 'must not be present' predicate:

Qr &
P QO j

¢
o -
¢

N i ¥
i "Qdiy hO i

h O R
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T Using the similarity scores for atomic predicates, we can establish how scores are merged for the ANIDd OR
operators in Boolean expressions. Several common methods exist, a selection of which is provided below:

g Fuzzy Algebraic: only works for two operands
a6 " GRo) fadfoye wafo)
i Q@a " v hO) | Qaho) i Qaho) i Qaho)di Qa hO)

g Fuzzy Set:generalization to U sub-queries is straight forward
(a6 - G fo) [ ET 'E fo)i " fo)
i ‘a0 ho) [ A@ 'Qa Ho)h "Qa ho)

g Soft Boolean Operator: generalization to U sub-queries is straight forward

6T 0F0) (o )¢ Ef Q@ FO)i '8 FO)) | ¢ AR GG O G FO)} m | mw
i Q@ "0 h0) (p 1)¢l E{f ‘A6 hO)H Qa6 HO)} T ¢l A QG FO)H "da MO)} m 1 p

g P-Norm-Model: distances (pnorm) in the query (sub)vector space

- B [ "Qa ho

i"ﬂé l')HO) p \/ (p qu )) wi tphn H
.. B i "Qa ro

i"ﬂét’)ﬁO)\/l% )

I Advantages: simple model with clear query semantics as with standard Boolean model. Usdriendly and easy to
iImplement. While query evaluation is heuristic, it offers solid performance. With the inverted file method, similarity
values can be efficiently computed. Unlike the standard Boolean model, it provides ranked lists and partial matches,
allowing control over result size. Terms are treated differently based on term occurrence and discrimination power.

I Disadvantages: Heuristic similarity scores lack clear theoretical explanation. Users might struggle to express
complex information needs using the simple query language. Retrieval quality is decent, but other methods with
similar computational complexity yield better outcomes.
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3.3.3 Vector Space Retrieval

T The initial version of the vector space retrieval model was introduced in the SMART retrieval system by Salton et al. It
remains the most widely used classical retrieval model, and we will explore advanced extensions and
implementations in this chapter for state-of-the-art retrieval performance.

Unlike Boolean methods, the vector space retrieval model treats documents and queries as vectors in a high
dimensional feature space. It employs vectotbased similarity metrics for ranking. A documentO is represented as a
vector ® | utilizing idf-weighted term frequencies. Unlike the extended Boolean models, we refrain from normalizing
the term frequencies.

Qr, o@m)gQaa) ' QO

-

-

All document representations can be merged into the termdocument matrix ‘A Each column inAcorresponds to a
document, and each row represents a term in the vocabulary. Hence, matrix elemedi; 'Qf, following the

convention of addressing matrix elements by rows and then columns.

document O S
Qr E E'Qﬁ E Q]
Qp | g E &8 E &1
. é A Qs E Qi E Qp |- > term O
Qf, 1T & E & E &
Q5 E iQﬁ "E Q -

While we illustrate the method in this chapter using the term-document matrix and outline matrix-vector operations
for score computation, practical implementations do not store or utilize matrix calculations due to the matrix's
sparsity, where many elements are 0 as documents usually have only a few terms. We will explore more efficient
evaluation techniques in the subsequent parts of this chapter.

-
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Queries are depicted as sparse vectors, denoted aa Unlike Boolean expressions, a query is treated as a mini
document or search prompt, following identical processing steps and vocabulary use as documents. This results in
term frequencies in queries, yielding a component] through the following method:

N @h)gadE) g Qb

-

Various methods exist to compare document vectors with query vectors. In this context, we will discuss the most
prominent ones:

g Theinner vector product uses the dotproduct between the query and document vector. When applied to the
entire collection, we multiply the term-document matrix by the query vector and then rank documents based on
decreasing similarity values. It is important to note that similarity here is not confined to a range between 0 and 1,
and literature often refers to it as retrieval status value (RSV):

N ) i"QEhFO)
[ Q@ro) agM n #Qx v @M) € A A
(" FO )

The formula shows that only query terms impact the similarity score, with terms absent in the query yielding a

value of 0 forr] €Qp, irrespective of their frequency in documents. In contrast, documents with largeiQy, values

for query terms, that is more term occurrences, receive higher ranks. Notably, significant terms with highe2'Q "Q
values have more influence, and this influence is amplified due tQQARighting in both queries and documents.
Finally, we obmatukH thpabphityabf the model . |l f a d
guery, then the score is positive.

g Thecosine measurecalculates the angle between document and query vectors. It implies that documents need to
contain query terms for high scores. Absence of query terms widens the angle between the vectors, leading to
lower scores.

e Nm B N #0
| ATO) T F nefe
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Similar to the inner vector product, scores for all documents can be calculated through matrixector
multiplications. For this, we normalize the query vector by its size and introduce a diagonal matriEwith inverse
document lengths to dynamically normalize document vectors.

. _._p E Tt
- "QEOhO ) =1 A
v 3 EAA  wi tHY 5 & E & anda —
"GO O ) e P I 4l
T}

Alternatively, we could normalize document and query vectors during the extraction step and save normalized
versions. This makes the inner vector product and the cosine measure equivalent since vectors have a length of 1.
Additionally, similar to the inner vector product, partial matching capability is achieved, and terms absent from the
query do not affect the search order. However, the cosine measure is less affected by term occurrences compared
to the inner vector product due to normalization.

T For a simplified visualization of vector space retrieval, documents are projected into the smaller query vector space
spanned by the query terms, while other dimensions have no effect on search order:
g Using the inner vector product, a hyperplane through the origin is established with the query vector as its normal.
Documents farther from this plane are considered more relevant
g On the other hand, the cosine measure creates hypecones with the query vector as their axis. Higher cosine
values correspond to smaller angles of a hypecone embedding the document

g Documents lacking query terms are placed at the origin, yielding a value of 0 with both measures. This allows us to
disregard such documents and focus on those containing at least one query term. This leads to efficient retrieval
methods explored later using inverted files.

g An issue arises when query terms are similar (e.g., 'house' and 'villa'), as they might not affect results unless pre
processing merges them. This limitation is common in classical retrieval techniques, often addressed by
automatically expanding queries with related terms.
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I Example:Let's examine a simple collection of three documents to understand the method:
O  Shipment ofgold damaged in a fire
(0] Delivery of silver arrived in asilver truck

O  Shipment ofgold arrived in atruck

V] gold silver truck

g We extract terms, find document frequencies and inverse document frequencies. The document and query are
represented as vectors) o,0 p pas follows:

" - " " BN .
0

a

1 , £ with inner
3 damaged 1 ATT ATT
4  delivery 1 ATT 477 I 8t o
5 fire 1 477 477 | (EM) g{(“;
6 gold 2 176 176 176 176
7 in 3 0 @
8 of 3 0
9 silver 1 AT7 .954 AT7 , , ,
) O O ©
10 shipment 2 176 176 176
11 truck 2 176 176 176 176

!

To simplify, we use!QQ&) 1 1(@Q 11 (Q@’)) A
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Advantages: Extremely simple and intuitive query model. Term weights have a good impact on the scores and
differentiate between query terms, e.g., reducing the impact of stop words in the query. Easy to implement and highly
efficient in calculation. Outperforms Boolean models and can rival top retrieval methods. Naturally supports partial
match queries, and documents do not have to include all query terms for high similarity values.

Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic background for the
model). The similarity measures are not robust and can be biased by authors (spamming of terms). If documents are of
different lengths, scores can vary significantly due to the higher term occurrences in larger documents. Main

assumption of retrieval model is independence of terms which may not hold true in typical scenarios (see synonyms
and homonyms).

-
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3.3.4 Probabilistic Retrieval

T

-

-

The primary criticism of the existing models lies in their heuristic nature. While they perform well, their correctness
lacks a solid foundation. Probabilistic retrieval provides a formal approach based on probabilities) 'YSO is the
probability that a document ‘O is relevant for a query0, and0(0 'YO p 0(Y]O)is the probability that it's not
relevant. The similarity value between queryd and documentO is then defined as:

o 0 'Y 0 'Y
000 YO p 0 YO

The Binary Independence Model (BIR) is a straightforward approach grounded in several key assumptions for
calculating the mentioned conditional probabilities. These assumptions are as follows:

1. Term frequency does not matter (utilizing a setof-words document model)

2. Term independence (consistent with previous models)

3. Terms absent from the query do not influence ranki
assumed to be equally distributed among relevant and notrelevant documents)

Given these assumptions, our next step is to derive a closed formula for the similarity scores. To begin, we apply
BayesH® theorem to the conditional probabilities above

0 YO 0(O[Y) g0 'Y

| OM0) FENGT ToBY) 80 0y

These new probabilities can be interpreted as followsD Y anG 0 'Y represent the probabilities that a randomly
selected document is relevant and not relevant, respectivelyd ‘OsY and0 O 'Y are the probabilities that
document O belongs to the set of relevant and norrelevant documents, respectively.
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Assumption 1:
Documents are

Now, leveraging the assumption of binary document vectors and term independence:

Assumption 2: Terms
are independent

Assumption 1: Documents
are binary vectors

binary vectors

0(OY) 0(Q[Y) 0(Qr|Y) 0(Qr  p|Y) & 0(Qr  mY)
|

bd n d h

5(016°Y)  D(QIBY) 0(Qr[0°Y) 0(Qr  p|0Y) ¢ 0(Qr  TOY)
e N

T Let's use a compact notation for the conditional probabilities in the formula above. Define:

i o(Qr plY) ¢ 0Qp pdY

i is the probability of a relevant document having the termo, and¢ is the probability of a non-relevant document
having the term 0. Using this notation, we can express the similarity value in simpler terms:

C qG o) 0 'Y i p i
| AT — B
00Y¢ s¢ p £
b4 p ¢
| QG T0)x i p i
L é¢ p &£
b4 h b'd h

It is important to observe that there is no need to calculated ('Y) and 0 (0 Y as they are solely determined by the
query and do not affect the document ranking as they linearly scale the similarity values. Therefore, the simplified
lower formula produces the same document ranking as the original upper formula.
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T We conclude by applying the third assumption: if termo is absent in the query, we assume € , i.e., norquery
terms occur with equal probability in relevant and nonrelevant documents. As a result, whem] T the ratiosi 7¢
and p | Tp ¢ becomel, and can be omitted from the calculations:

Assumption 3: nonquery
terms do not impact result

- o i
i "Qaho)x é—¢ ;
bd n b d b'dr h b'dr h

We remove the condition Q;;  p from the second product and need to adjust in the first product:

‘|¢pé¢ p i
1daﬁﬁ€¢plldop£

[ "q6FO)x

Next, we remove the second product, which solely depends on the query, and linearly scales the similarity values:

1 gp ¢

i "Qaho)x ﬁ S o

Finally, we arrive at a simple similarity function as a sum ab-values. It is important to note that we only need to
calculate w for query terms, which as with other models so far greatly boost query evaluation with inverted files:
. . oLl Bp €

[ "Qaho)x W wi tch 1 1=

bdr N e#p
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T To calculate the®-values, the BIR model starts with initial estimates for a first result list, and then refines these
estimates based on user feedback to enhance the results. With ongoing user input on relevant and noelevant
documents in the outcomes, we can iteratively adjust the estimates and offer better outcomes.

g We introducedi and¢ as the probabilities that a relevant and nonrrelevant document contains the termo,

respectively. With the user's relevance assessment, we now possess subsets of relevant and nahevant
documents, which allow us to estimate these probabilities by counting the occurrences of terr in these subsets

¢ Initial Estimates: In the absence of feedback, we assume that query terms are more likely to appear in relevant
documents, and in nonrelevant documents they follow their document frequency. The following estimates are
used initially to compute the w-values € includes smoothing)
.. Q) ™
0

i mh £ = I'an p

g Estimates with Feedback:in each iteration, we ask the user to rate tha) retrieved documents and annotate them
with relevant (R) and nonrelevant (NR). Letd be the number of documents that the user marked as relevant.
Further let ‘Qbe the number of retrieved documents that contain the termo (that is the document frequency ofo

over the set of retrieved documents), and letx be the number of retrieved and relevant documents that contain the
term O (that is the document frequency ofd over the set of retrieved and relevant documents). With that, we can
estimate new values fori and€& by counting:

¢ ™. . 0 4 mw e
5o S H5 B o a e

We employ the values 0.5 and 1 in the formula above to avoid numerical problems-(fivisions). When no feedback
isgiven,withh & mwecansed 0and'Q 'Q"® to justify the initial estimates.

g The more user feedback we gather, the more accurate the estimates forand& become. However, users might be
reluctant to provide feedback.
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Advantages: The BIR model establishes similarity values on a probabilistic basis through basic assumptions.
Document ranking depends on the likelihood of being relevant for the query. Only query terms are necessary for
similarity calculations, and the inverted file method offers efficient evaluation. The model performs well, especially
after some feedback iterations. It also accommodates partial match queries, where not all query terms need to appear
in relevant documents.

-

Disadvantages: The basic assumptions of the BIR model may not always be valid. As mentioned in the vector space
model, term independence is not universally applicable. More complex probabilistic models address term
dependence, but they can bring extra computational complexity. Additionally, the document ranking in BIR doesn't
consider term frequencies or the discrimination power of terms. Finally, not all users are willing to assist the system
with feedback to improve the search results.
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3.3.5 Okapi Best Match 25 (BM25)

T The Okapi BM25 ranking function was devel op egarckloned ond
probabilistic framework from the 1970s and 1980s. It is notably applied in Lucene, the engine behin8olr,
Elasticsearch, and OpenSearcHthree widely used systems for observability, security analytics, and fulkext search.
BM25 builds on the vector space model as discussed before enhancing it with a probabilistic approach to enhance
relevance evaluation.

T Some limitations in the previously discussed models stem from heuristic approaches to identify relevant documents.
Researchers developed better frameworks for relevance assessment, driven by key observations:

1. Query Term Significance: the presence or absence of query terms is crucial for relevance assessment

2. Partial Matches: not all relevant documents contain every query term

3. Document Length: longer documents have more terms, but shorter relevant ones should score well too

4. Term Specificity: rare words often carry more meaning than common ones

5. Term Saturation: while term frequency matters, overly frequent terms should not dominate

6. Fine Tuning:flexibility to adjust ranking based on search context

7. Efficiency: efficient retrieval and relevance assessment are essential

8. User Feedback:if available, integration of user feedback for improved search quality

9. Term Proximity: closeness of query terms in a document may indicate higher semantic relevance

10.Term Dependence:r ecogni zing term dependenci es, | i ke matchin

BM25 addresses these observations or provides ways to consider them. We will covétfficiency in the upcoming
section on indexing structures and exploreTerm Proximity and Term Dependencein the next chapter, where we
delve into natural language processing methods.

-
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I Term frequencies play a crucial role in determining document relevance. Typically, we assume that a document's
relevance is linked to the frequency of query term occurrences within it. This notion lead to the creation of the '@
‘QQu€rtor component description. Nonetheless:

g A document with the search term 'cat' occurring a hundred times is certainly relevant, but it should not be
considered twice as relevant as a document with 50 occurrences of 'cat’. In essence, the linear factorQ
exaggerates the relevance. It also makes the method vulnerable to spamming attacks

g Shorter documents have fewer occurrences of terms compared to much longer documents. However, they can be
equally or even more relevant. Yet, thed "@Q'Qs€heme tends to favor longer documents with higher term
frequencies. Very long documents covering a broad range of topics may appear relevant due to their numerous
occurrences but users may find it difficult to easily extract the relevant pieces

-

A simple adjustment like using\/c‘)—’iﬁstead of & "@es not provide significant improvement. We require a function
that levels off after a certain occurrence threshold. With /0 ®e could still influence scoring with excessive
spamming of potential query terms.
g Initially disregarding document length, we can

saturate term frequencies as follows:

(\) 1@ ’?‘Q p TF SQRT TF TF, K=1

N

(k+1) scales values but

0Q 5 00 does not impact ranking

g Typically,"O [phc] with Lucene usingQ pg

g As depicted in the figure on the right, the
updated vaIuesb"Q saturate relatively swiftly to
the value 2.2 with ‘1.2, whereas unsaturated
o "&nd,/o ‘Walues increase without limit

g In essence,(serves as a hyperparameter that

enables adjustment of the impact of term 1
occurrences on the scoring o

g Note: Lucene use® XX "Q"Q omitting the
scaling factor 'Q p in the numerator

0 2 4 6 8 10 12 14 16 18 20
term frequency tf
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T Now, let's examine document length. Lengthier documents include more terms and should saturate at a slower rate
than shorter ones that might not have as many terms. The cosine measure tackled this by normalizing vectors by their
length, and then utilizing the inner vector product to determine the angle between the vectors, which remains
unaffected by document length. However, BM25 takes a different approach. It employs a summation across all query
terms, similar to the inner vector product, while modifying the core formula to account for document length:

0 'RQ
0Q 0O e P uXXis the average

o "0 T%<p & |O| document length

with & T Yadjustable),|O| the length of documentO, andc ‘Qtire average length of documents in the collection

g If |'O| is smaller thanw ‘QYshort document), then(p &) wu) p and valuesd'Q O saturate faster

g If |Q| is large (long document), ther(p &) d)u) pand valuesd'Q 'O saturate slower
Zz N Tip is a new hyperparameter that steers
the impact of document length. Higher values
prefer shorter documents TFksl2 ——T Fk=12,b=0.7 5s hor &—T Fk=1.2,b=0.7 5l ong

g In the plot to the right, we compareG'Q
(graph in the middle) with6'Q O of a
short document (graph at the top) and

HP

with 6Q O of a long document (graph H
at the bottom)
g The difference between shorter and longer e

documents is significant at lower
frequencies but soon diminishes as
values saturate toc& for Q pg o

Z @ Qdines not have to be the accurate average
length of documents. Rather, we can considerit 7 , , 5 . o 1 14 1e 18 a0
as another hyperparameter to define what term frefguency
hlongf® / hshortH means
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T We previously discussedQQvigeights without providing a rationale for using that specific formula. BM25 approaches
term weighting probabilistically. Previously, we derived a term weighting function using the BIRmodel:

% i'ré% — g —° '@y p

g We introducedi and¢ as the probabilities of the term 0 occurring in relevant and nonrelevant documents based
on user-provided relevance feedback. The calculation of takes into account the number of relevant documents
(&) out of the 0 retrieved ones that contain the query term, while¢ considers the number of nonrelevant
documents (Q &) outof thew O retrieved ones that contain the query term.

g The BIR model summed upo values for the binary document representation. However,o values can also serve as
weights for terms in the vector space model. We achieve this by incorporating and € into the w formula:

8¢< 8) 8 8

... ¢ 8 8

wll%ll(g 8) L] e 8||<(; — § 8)
ped

g When user feedback is absent)) and & are 0, and we assume that all documents are nerelevant (until proven
otherwise) and assignd 0 (number of documents) andQ 'Q"® (documents containing the term). Substituting
these values into thew formula results in:

6 1i(e—5¢ ) et

g Thesew values are then used by the BM25 model to refine the initialQ QuBlues we discussed earlier. Note that for
terms 0 that appear in over 50% of the documents, the logarithm yields a negative value.

00 (o) i.l.ﬁgQ%()b)n&na)
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g Let us compare the originalQQfi@hction IDF#1 IDF BM25 IDF Lucene
(IDF+1) with this new one. The graph on the
right displays them against the document

frequency in a collection of 1000 documents. =
o ] Y ) ue graph (IDF+1) and
g Additionally, we included the "Q'Qfighction used orange graph (IDFlucene)
by Lucene, which incorporates a '+1' term in the i llmeelt g
logarithm to avoid negative "‘QQv@lues: V
_— 8
'Q"Q (‘) | I ( ) 0 100 200 300 400 500 600 760 800 900 1000
[ ({;7)
() 8
This new QQfidhction, however, yields almost
the same values as the original IDF+1 method dooument frequency df

g Alternatively, we can avoid negative QQv@lues
by assigning a small positivéQ'Qv&lue to very
frequent terms (mostly stop words)

T Finally, BM25 calculates a score for a querp and a documentO by summing up the adjustedd “@'Q/8lues across all
query terms 1 :

"|'<Q Q) n&)d o [@)gQ p

(@ (DF0) | 7| e— ,
ToB) ™ o) e o dd),

g Unlike the vector space retrieval model, theQQv@lues are applied only once and query term frequency is not
considered. Later in this chapter, we will examine Lucene's scoring function, which expands the above formula with
extra components, including query term frequencies and additional term and document weighting.

g In this fundamental formulation, BM25 encompasses three hyperparameters®Qa & Q) that allow fine-tuning the
scoring function to match the requirements of the search context.
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Multimedia Retrieval § 2024

The vector space retrieval model scores relevance based solely on query
terms. More query terms in a document result in higher scores

The vector space retrieval model supports partial matches. It ranks
partial matches based on the importance of the matched terms,
determined by term weights

Term saturation varies based on document length; longer documents
need a higher number of term occurrences compared to shorter ones

Resolved through the enhanced IDFbased weighting of the relevance
scoring function

Implemented using a saturation function on term frequencies which
tackles problems related to keyword spamming and prevents excessively
frequent terms, like stop words, from dominating the scoring

Offers various hyperparameters for tuning the ranking according to
specific search scenarios; default settings are effective in many cases

The scoring function relies solely on query terms. Given that queries often

have less than 5 terms, inverted files ensure high performance

IDF weights of terms can be finetuned using relevance feedback, as
demonstrated in the BIR model. Even if the implementation lacks direct

support for relevance feedback, we can still modify term weights to adjust

scoring based on the feedback

BM25's relevance scoring lacks direct support for term proximity since it
lacks access to term locations within documents

BM25's relevance scoring lacks direct support for term dependence since
it treats terms as independent of each other

3.3.5 Okapi Best Match 25 (BM25)

Because of assumptions about term independence, query terms might not
align with semantically relevant terms in the document

As above

Long documents still face the challenge of ignoring query term positions.
Whether query terms appear together in a paragraph is not considered.
An effective solution is to divide documents into smaller sections,
addressing this concern

Specificity varies with context. For instance, consider the query ‘car
jaguar' where both terms are relatively common. However, in the context
of cars, 'jaguar' is much less common than in a broader context

It is crucial to balance term specificity and term saturation to achieve the
best possible outcomes in a search context

Refer to discussions on training machine learning methods while
validating hyperparameters

When employing embeddings and vector search, we exchange efficiency
for improved semantic relevance evaluation

A simple yet effective approach to integrate feedback is through
automatic query expansion. Using relevance feedback, additional terms
are included that appear frequently in relevant documents but are less
common in nonrelevant ones

An important scenario involves birgrams and trigrams like ‘New York' or
'Salt Lake City.' We can enhance our prprocessing to detect common R
grams, which we will study into in the next chapter

Common problems involve spelling errors or synonymous forms that

convey the same meaning. We will study more advanced approaches in
the next chapter
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3.4 Indexing Structures

T

-

-

-

-

In all traditional retrieval models discussed so far, we noticed that the scoring functions rely only on the query terms.
While this does not capture semantic similarity like ‘cat’ vs. 'animal’, it's a practical tradeoff for faster query
processing, as we explain in this section.

Let us assume that we havé® documents, a vocabulary ofd terms, documents with an average) distinct terms, and
gueries with an average of 5 distinct terms. Documents are modeled as sparsg,-dimensional vectors, using bagof-
words or set-of-words methods. A basic storage approach would need ¢0 entries. In the setof-words model, an
entry uses 1 bit, while a bagof-words model takes 4, 8, 16, or 32 bits for term frequencies oo "@Q'Qv&lues. For
instance, BM25 employs term saturation. Instead of storing fullprecision term frequencies (16/32 bits), compression
via 4 or 8-bit quantization is possible. This works because high frequencies around 100 yield simil&Q-values,
minimizing the impact of quantization errors on the search order.

Retrieval using this simple storage approach scales linearly with collection and vocabulary size as we scan through all
the data. Since the vectors are sparse with onlp 70 non-zero components, we mostly read @values that have no
impact on relevance assessments. An improvement is to store a sparse representation, keeping an averag® aérms
per document. This totalsO @0 entries, each holding a term ID for setof-words, and term ID with term

frequencies/o "@Q Ot bag-of-words. Term identifier size varies, consuming 16 to 64 bits based on vocabulary size
choice and precision for term frequenciesb "QQ "Q

Although storage consumption is much lower, we still have to search through all data to identify the best matches.
During this process, most data that we read is not considered by the scoring functions as out of the K average terms
stored per documents only the query terms can influence relevance assessment.

Let's revisit the term-document matrix in vector space retrieval. The concept of thanverted files method, also called
inverted index, is to store rows with data about which documents hold the term linked to those rows, rather than
storing columns with the terms used by a document. Using sparse row encoding retairis g0 entries, but replacing
term IDs with document IDs. However, the major enhancement is during search: since only query terms impact
scoring, we only read rows corresponding to query terms to produce the answer. If we haue g0 0 documents per
term on average andd query terms, we read0 g0 g0F0 entries, improving search by0Z0 . For instance, withb v
query terms and a vocabulary size ob  pht Tthi 11, mve cut search time by phrt mthi 1T @ssuming average query
term distribution)
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3.4.1 Inverted Files for Boolean Retrieval Models

T Keeping this fundamental concept in mind, let's start with the Boolean retrieval model. The inverted index consists of
the vocabulary (0 terms), and for each term, a list of postings contains all documents that include the term. For the
set-of-words model, term frequencies are not necessary, and the Boolean model does not require document
frequencies or QQvAlues. The inverted index further contains a document table with additional metadata:

1, Pars http://xyz.com/Paris.html 2005-01-04 )
2 Geneva http://xyz.com/Geneva.html 2005-03-08 |
3 Milano http://xyz.com/Milano.html 2005-04-23 |
4 New York  http://xyz.com/NewYork.html 2005-05-30 |
l l
N Tokyo hitp://xyz.com/Tokio.html 2023-05-19 |
1 dog (13, 4,6,9, 10, 13, 21, 22, 23, 29, 30, 39]

2 cat [4,5, 12, 13, 14, 15, 20, 22, 30, 34, 37]

3 horse [6, 10, 11, 14]

4 rabbit [12, 15, 35]

é

N bird [2, 3, 8, 15, 26, 35, 36]

g As we add new documents to the table, we continue including the document ID in the postings of terms found in the
document. If documents are added sequentially, the postings are arranged based on the order of document
insertion, which, in our simple example, corresponds to increasing document IDs. For certain implementations,
preserving this order is crucial for faster retrieval.
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T The basic implementation stores postings as sets of
document IDs within a vocabulary using terms as keys.
For instance,index|'cat’] contains the set of IDs of
documents that contain

g For query evaluation, we adhere to three rules:

0 exprl AND expr2: translates to an intersection of
the sets from sub-expressions exprl and expr2

0 exprl OR expr2: translates to a union of the sets
from sub-expressions exprl and expr2

0 exprl AND NOT(expr2): translates to a sub
traction of the set of expr2 from the set of exprl

Generalization to AND/OR over multiple sub-
expressions are straightforward

g However, we cannot evaluate ORqueries when one
sub-expression is of the form NOT(expr). While it's
technically possible to construct NOT(expr) by using
all documents except those returned by expr, this
approach becomes inefficient for large collections

g In AND-queries, NOT(expr)parts need to be re
ordered to the end to apply set subtraction.
Additionally, at least one element of the ANDquery
must not be in the form NOT (expr)

g Indeed, while these limitations may be viewed as
constraints in our implementation, they have minimal
Impact on practical scenarios. Queries like "cat OR
NOT(dog)" do not align with typical search intentions
as they essentially select all documents except those
with dog but not cat, i.e., it can be rephrased as
"NOT(dog AND NOT cat)".
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t he

AAO 7 ET AAoIl AAAORH%
P[4, 5,12, 13, 14, 15, 20, 22, 30, 34]

Al ¢c » ETAAQGI AAT CR%*
P[1,3,4,6,9, 10, 13, 21, 22, 23, 29, 30]

ET OOA " ETAAQGIAEI OOAR#
D [6, 10, 11, 14]
AEOA " EI AAgGI AAEOARH#

P2, 3, 8, 15, 26, 35, 36]

cat & dog
P[4, 13, 22, 30]

horse | bird
b[2,3,6,8,10, 11, 14, 15, 26, 35, 36]

cat - dog
b [5, 12, 14, 15, 20, 34]

(cat & dog) | (horse & cat
b [4, 13, 14, 22, 30]

- bird)

(cat | dog) & (horse | bird)
P [3, 6, 10, 14, 15]

(cat | dog) - (horse | bird)
D[l1,4,5,9, 12, 13, 20, 21, 22, 23, 29, 30, 34]
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1 The setbased evaluation from before does not scale well with the number of documents. In cases with millions to
billions of postings for a term, we want to fetch data from an external storage device (which is also a good idea for

persistence). But instead of reading all postings into main memory, we read them as streams sorted by the document
IDs. Take the postings of cat and dog as an example:

cat [1, 4, 8, 10]
dog [3, 4, 10, 12]

g To evaluate a query like'cat AND dog" we retrieve the initial entry for each term A 1 for cat and 3 for dog. If they
match, the corresponding document fulfills the condition. If not, we proceed by reading the next entry for the term
with the smallest document ID. In our example, we proceed to the next cat posting, which4s Since it does not
match, we then advance to the postings of the term 'dog," which currently has the smallest value. The subsequent
dog posting is alsa4, matching the cat posting. Thus, we locate our first document and return it.

For the next result, we continue fetching subsequent postings for both terms and repeat the process. Eventually,
we identify 10 as the second answer. Then, we fetch the next posting for both terms. However, as cat's postings are
exhausted, we conclude the evaluation and halt iteration (even though dog still has postings, the exhaustion of cat
postings indicates that any remaining document cannot match). The diagram below illustrates this approach:

no match, progress cat

2 4 3 no match, progress dog

3 4 4 match, return 4 as result, and progress both cat and dog

4 8 10 no match, progress cat

5 10 10 match, return 10 as result, and progress both cat and dog

6 - 12 stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

g The OR-operator is implemented similarly; however, the iteration returns each time the smallest entry of sub
expressions. In the provided example, the ORperator would start by returning 1, then advance cat and returrs,
progress dog and return4, move both cat and dog and returr8, advance cat and returnLO, move again both cat and
dog, and finally return12. The evaluation concludes once all postings are consumed.
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g The evaluation of"cat AND NOT(dog)" evaluation follows the same pattern as the AND flow, but the outcomes
differ (matching occurs when cat posting is not equal to dog posting):

a b W N

6

4
4
8

10

3
4
10
10
12

match, return 1 as result, and progress cat

match but cat is not smallest, so we progress dog

no match as both have the same value, so we progress both cat and dog
no match, return 8 as result, and progress cat

no match as both have the same value, so we progress both cat and dog

stop iteration as all cat postings are visited; remaining postings in dog cannot fulfill predicate

g Generalizing to multiple operands is simple. However, the same limitations as in séased implementations apply,
and here it becomes clearer why supporting queries like "cat OR NOT(dog)" is not ideal. In our implementation, for
the NOT(dog) operand, we would need to list all documents except those in dog's postings. Since document
frequencies of terms can be low, enumerating NOT(dog) could involve millions or billions of document IDs,
substantially slowing retrieval. On the other side, queries like "cat OR NOT(dog)" are not intuitive.

g We can use the same method for any mix of ANBnd OR operators nested within one another, as each evaluation
method mentioned above produces sorted document IDs. Similar to single term searches, we can handle NOT
operators when they are within an AND expression that contains at least one sulexpression without a NOT at the
highest level (a nested NOT further down in the sukexpression is not an issue).

T We omit here a detailed discussion for the Extended Boolean Retrieval model. The approach is similar with the
models to follow, that is, we first fetch all candidate documents (union of postings over all query terms) and then
evaluate foe each document the overall score using one of the score combining functions.
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3.4.2 Inverted Files for the BIR model

T The Binary Independence Retrieval (BIR) model, Vector Space retrieval, Extended Boolean retrieval, and BM25
models exhibit several similarities when evaluated using inverted indexes. Conceptually, they adopt a retriever
ranker approach as previously explained:

Retriever (Filter & Ranker 1. doc1
query —_—> e V— 2 doc 2
rank model 3 doc 3

4.

By utilizing inverted files, the retriever component retrieves the union of postings for the query terms. This yields a
candidate list for the filter & ranker, which then employs the model's designated scoring function for each candidate
document to generate the ranked list.

-

Implementations frequently combine retriever/filter/ranker components for enhanced performance. We initially

study the fundamental versions:document-at-a-time and term -at-a-time using the BIR model, owing to its
uncomplicated scoring function (sum ofo). Subsequently, we expand this to the vector space and BM25 models. The
Extended Bool ean model I's omitted due to its di minish

g Thedocument-at-a-time method retrieves documents consecutively through streaming like for the Boolean OR
operand approach. At each step, we obtain the document with the smallest doc ID from the sorted postings of each
query term, and pass it along with its query terms to the scoring function. The ranker maintains a list of the best k
documents encountered and maintains this list upon processing all candidates. The "tdg' mechanism minimizes
storage needs, but still enables users to browse through several pages.

g Theterm -at-a-time method goes through query terms one after the other. For each term, it updates the document
list and uses the scoring function to adjust their scores based on that term's presence. At the end, documents are
arranged by their overall score, forming the ranked list. Unlike documeniat-a-time, this method cannot maintain a
top-k list to reduce storage. However, it might suffer from long candidate lists if common terms with long postings
are in the query. An optimization is to skip frequent terms during evaluation that are unlikely to change the ranking
in a significant way.
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T The Python code on the right shows a simplified version

for the document-at-a-time retrieval technique for the
BIR model. Thesearch_DAATfunction takes a query
string, a desired number of results ), and feedback
data collected on documents.

g We start by turning the query string into a set of
words using a provided analyzer

g Using feedback, we computao-weights and trim

terms. For instance, we might keep only the tom
weights from a larger set of query terms

g The primary loop resembles the Orimplementation
of the Boolean model. We sort the postings of each
query term by document IDs. We iterate through the
postings (ndex[term] ) in a stream based manner
(iters ), selecting the smallest ID across the next
elements (hexts ) in the stream as a new candidate
document id

g If we have user feedback, we can skip 'nerelevant'
documents. Otherwise, if the document is relevant or
there's no feedback, we calculate thescore by
summing®-values term_weights [j][1] ), pairing it
with the document's smallest ID, and adding it to the
topk object. This object uses a heap to maintain
(doc_id , score) tuples, ordered byscore for
efficient access to topk results (no need for explicit
sorting needed)

g In the main loop's final step, we fetch the subsequent
postings for each term where the smallest ID was at
the stream's front (nexts )
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def search DAAT(query, k, feedback ):

query_vector = analyzer.set_of words(query)
# filter terms and obtain c_j - weights
term_weights = query_weights(query_vector, feedback)

# get iterators for each term and fetch first posting
iters = [iter (index[term]) for (term,_) in term_weights]
nexts = [next (iter , Nong for iter in iters]

# keep track of all retrieved documents
topk = TopKList(k)

while not all (e is None for e in nexts):
# get smallest value from nexts, ignoring None
smallest = min(nexts, key = lambda x:x or math.inf )

# use feedback, omit if assessed and not relevant
if not feedback.is_assessed(smallest) or \
feedback.is_relevant(smallest):
# get score and add it to topk
score =0
for j in range (len (nexts)):
if nexts[ j] == smallest:
score += term_weights[ ][ 1]
topk.add(smallest, score)

# fetch next items if entry equals smallest
for i,e in enumerate (nexts):
if e is smallest:
nextsli] = next (itersi], None

# finished, return topk for result iteration
return  topk
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T Now, let's explore theterm -at-a-time approach for the
BIR model on the right side. Thesearch_TAAT function
takes a query string, a desired number of resultsk)), and
feedback data collected on documents.

g We start by turning the query string into a set of
words using a provided analyzer.

g Using feedback, we computao-weights and trim

terms. For instance, we might keep only the tom
weights from a larger set of query terms

g The main loop runs through each query term (sorted
by their weights in query_weights ) and all postings
(index[term] ). It keeps track of a score for each
seen document (dictionaryscores )

g If we have user feedback, we can skip 'nerelevant'
documents. Otherwise, if the document is relevant or
there's no feedback, we add theo-value of the
current term (weight ) to the scores dictionary. The
update line also establishes new entries for
previously unseen documents

g Once the main loop concludes, thescores dictionary
contains a value for each document that has at least
one query term. Instead of directly sortingscores ,
we take a similar approach as with DAAT. We utilize
the TopKList and include all document IDs and their
corresponding scores
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def search TAAT(query, k, feedback ):

query_vector = analyzer.set_of words(query)
# filter terms and obtain c_j - weights
term_weights = query_weights(query_vector, feedback)

scores = defaultdict(int)

# iterate over terms and fetch postings
for (term, weight) in term_weights:
for doc_id in index[term]:
# use feedback, omit if assessed and not relevant
if feedback.is_assessed(doc id) and \
not feedback.is_relevant(doc_id):
continue
# add weight to score of document
scores[doc_id] += weight

# avoid full sort and use the heap in TopKList

topk = TopKList(k)

for doc_id, score in scores.items():
topk.add(doc_id, score)

# finished, return topk for result iteration
return topk

Page 3-52



1 Discussion: DAAT vs. TAAT

g Both methods have similar complexity in terms of the number of read postings. They both focus on documents that
have at least one query term and a noizero score

g Both approaches can efficiently filter out previously marked norrelevant documents to prevent their
reappearance in future results

g The TAAT implementation is shorter and more concise but has a drawbatkhe scores dictionary. If query term
postings are lengthy, this dictionary can become sizable

g On the other hand, the DAAT approach computes scores in a single step for documents and adds them to a heap
within the TopKList object. This heap not only provides efficient access in sorted order but can also be pruned
occasionally if it becomes too large

T Including Predicates in Evaluation: We can expand both methods to search for documents with predicates like "star
wars" and "year < 2000". The assessment of these queries depends on how we can evaluate the condition:

1. Document attributes (metadata) in the predicate are stored in an index with an efficient evaluation plan. For
instance, with the condition "year < 2000," we can use index lookup to find document IDs meeting the predicate.
This index might be a Btree or an inverted list
g The optimal approach for text retrieval and predicate assessment is to first obtain all document IDs satisfying
the predicate and then feed this selection (as an inverted list) to the search function

g Inside the search function, we remove all candidates not included in the predicate selection. In the code, this
adjustment aligns with where we check for norrelevant documents in the feedback

g Apart from predicate evaluation, there is no additional complexity in the search algorithm

2. If there is no index support for the condition, or the evaluation requires a full scan through all document data:

g Since calculating the subset of documents satisfying the predicate is not efficient, we must assess the
predicate individually when we return (in Pythonyield ) results using theTopKList object

g The heap withinTopKList produces a stream sorted by decreasing score. Before delivering the object to the
caller, we inspect the document's predicate (accessing metadata randomly). If the predicate is not met, we skip
the document and move to the next one from the heap

g In the best case (a less selective predicate), we evaluate the predicate for all documents returned as results,
and a few omitted by the predicate. In the worst case (a highly selective predicate), we have to assess the
predicate for all documents in the heap (still better than evaluating it over all documents)
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3.4.3 Inverted Files for the Vector Space model

T Interms of the algorithms, both the BIR model and the Vector Space model are conceptually the same. The DAAT and
TAAT implementations work similarly with these modifications:

g Postings now comprise tuples with document IDs and term frequencies, sorted by document ID
g Queries change into a bagpf-words model, including terms and their frequencies for the query

g We need access to a vocabulary containing document frequencies. As an optimization, we can save requiidfd
weights alongside postings in the inverted files (to avoid random vocabulary accesses)

g A similarity function that calculates scores based on the query vector and a document vector subset including
query terms and their frequencies.

g For cosine similarity, we additionally require the document vector's length (™)

g For BM25, we also need the document length (number of term occurrencegdg), an average document lengthdd Q,a
and parameters ‘Qand wfor the calculation

-

The inner vector product can compute all scores using the data in the inverted filesndex in the implementation),
but both the cosine measure and the BM25 similarity function need an extra lookup for documentelated data
(document length, norm of document vector). This can notably raise retrieval costs, demanding extra optimizations
for consistent performance. To prevent such lookups, we can normalize document vectors at index build time.

(& (GF) B Q¢ with o — gl and 1 —E L0

(h)g )
(h) f
If the normalization parameters (Q'Q"Qa 0], & 'Q @éhanges then we need to rebuild the index. Setting  "QQ& for
the BM25, all three measures reduce to a defproduct between normalized document and query vector

ry  and EACE | 'r(%(()):)

i 6Q (0HO) B QU ¢Q with Q
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3.4.4 Inverted Files Implementation with SQL

T We can build traditional text retrieval using a database
with inverted lists, created through database index
structures. The code on the right outlines the steps for
carrying out Boolean and vector space retrieval.

1. We generate tables fordocuments,vocabulary , and
posting s, along with a temporary table for thequery
of a search. The last setup creates an index over the
posting table andterms. This builds a Bree structure
with document IDs and term frequencies in leaf nodes
for swift retrieval in subsequent searches

2. Before re-building the collection, we delete all data
from all tables

3. Next, we go through each document in the collection.
For each document, we add an entry to thelocument
table, form a bagof-words representation of the
document, and insert tuples(term, docld, tf ) into
the posting table.

4. We count the number of documents for the calculation
of idf-weights. In the code on the right, we employ the
standard formula, although we could choose any
variant that fits the search scenario (for Boolean
searches,idf andtf values are not used). Lastly, we
count the document frequency and calculateidf-
weights for each term by grouping theposting table
by term s and inserting the outcomes into the
vocabulary table.
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3.4.4 Inverted Files Implementation with SQL

-- 1. create schema for inverted index
-- document table can have additional attributes
- auto incremented doc IDs depends on database product
CREATETABLE document(id SERIAL PRIMARY KEY
title  TEXT year INTEGER

CREATETABLEvocabulary (term TEXTdf INTEGERidf REAL
CREATETABLEposting (term TEXTdocld INTEGERtf INTEGER
CREAE TEMPORARYABLE query(term  TEXTtf  INTEGER
CREATHNDEX inverted_list ON posting(term)

-- 2. rebuild index from documents

- delete all existing data

DELETEFROMposting

DELETEFROMvocabulary

DELETEFROMlJocument

-- 3. for all documents in collection (outside of database)

- fetch id after next insert (database dependent)

INSERT INTO document(title, year) VALUES(:title, : year)

- create a bag - of - word representation and insert
INSERT INTO posting(term, docld, tf) VALUESGterm, :id, :tf)

-- 4. build vocabulary (table vocabulary)
- fetch number of documents -- > ndocs
SELECTcount (*) AS count FROMlocument

- insert terms from posting table into vocabulary table
INSERT INTO vocabulary(term, df, idf)
SELECTterm,
count (%),
In( 1.0 * (tndocs + 1) / (count(*) + 1))
FROMposting
GROUP BYerm
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