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Linear Systems of Equations

Introduction
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Linear Systems of Equations: Example

• Consider an open economy with two very basic industries:

goods and services.

• To produce e1 of their products (⇝ internal demand),

– the goods industry must spend e0.40 on goods and e0.20 on

services

– the services industry must spend e0.30 on goods and e0.30 on

services

• Assume also that during a period of one week, the economy has an

external demand of e75,000 in goods and e50,000 in services.

• Question: How much should each sector produce to meet both

internal and external demand?
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Formulating the equations

• Let x1 be the Euro value of goods produced

and x2 the Euro value of services produced.

• The total Euro value of goods consumed is 0.4x1 + 0.3x2︸ ︷︷ ︸
internal

+ 75000︸ ︷︷ ︸
external

.

• The total Euro value of services consumed is 0.2x1 + 0.3x2 + 50000.

• If we assume that production equals consumption, then we get

x1 = 0.4x1 + 0.3x2 + 75000

x2 = 0.2x1 + 0.3x2 + 50000
⇔
[

0.6 −0.3

−0.2 0.7

] [
x1

x2

]
=

[
75000

50000

]

• The solution is x1 = 187500, x2 = 125000. Can be checked easily...
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Formal solution

• Main inside: triangular systems can be easily solved by substitution

⇝ transform system to (upper) triangular.

• Do all operations on augmented matrix
[
A b

]
.[

0.6 −0.3 75000

−0.2 0.7 50000

]
⇒
[
0.6 −0.3 75000

−0.6 2.1 150000

]
⇒
[
0.6 −0.3 75000

0 1.8 225000

]
⇒ 1.8x2 = 225000 ⇒ x2 = 125000 ⇒ x1 = 187500.

• Elimination step: subtract a multiple of eq. 2 from eq. 1.

⇝ Gaussian elimination
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Formal solution

Instead of substituting, we could have continued with the elimination:[
0.6 −0.3 75000

0 1.8 225000

]
⇒
[
3.6 −1.8 450000

0 1.8 225000

]
⇒
[
3.6 0 675000

0 1.8 225000

]
⇝ Gauss-Jordan elimination
Geometric interpretation: have transformed original equations into a

new space in which they are aligned with the coordinate axis:
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Row and column view
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0.6x1 − 0.3x2 = 7.5

−0.2x1 + 0.7x2 = 5
⇔
[

0.6 −0.3

−0.2 0.7

] [
x1

x2

]
=

[
7.5

5

]

Column view (right):

[
0.6

−0.2

]
x1 +

[
−0.3

0.7

]
x2 =

[
7.5

5

]
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Some examples and concepts

The solution set for two equations in three variables is usually a line.

This is an example of an underdetermined system.
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Chapter 1

Linear Systems of Equations

Linear Algebra I

Definition: The vector space Rn consists of all column vectors v

with n real components.
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Vector spaces and subspaces

A subspace of a vector space is a nonempty subset that satisfies the

Requirements for a vector space:
“Linear combinations stay in the subspace”
(i) If we add any vectors x and y in the subspace,

x+ y is in the subspace.

(ii) If we multiply any vector x in the subspace by any scalar c,
cx is in the subspace.

Rule (ii) with c = 0 ⇝ Every subspace contains the zero vector.

The smallest subspace Z contains only the zero vector.

Why? Rules (i) and (ii) are satisfied:

0+ 0 is in this one-point space, and so are all multiples c0.

The largest subspace is the whole of the original space.
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The column space of a matrix
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Column view (right):

[
0.6

−0.2

]
x1 +

[
−0.3

0.7

]
x2 =

[
7.5

5

]
The column space C(A) contains all linear combinations of the columns

of Am×n ⇝ subspace of Rm.

The system Ax = b is solvable iff b is in the column space of A.
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Nullspace

A system with right-hand side b = 0 always allows the solution x = 0,

but there may be infinitely many other solutions.

The solutions to Ax = 0 form the nullspace of A.

The nullspace N(A) of a matrix A consists of all vectors x such that

Ax = 0. It is a subspace of Rn:

(i) If Ax = 0 and Ax′ = 0, then A(x+ x′) = 0.

(ii) If Ax = 0 then A(cx) = cAx = 0.

For an invertible matrix A:

• N(A) contains only x = 0 (multiply Ax = 0 by A−1).

• The column space is the whole space.
(Ax = b has a solution for every b)

• The columns of A are independent.
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Nullspace

Singular matrix example:

A =

[
1 2

3 6

]
.

Consider Ax = 0: Any pair that fulfills x1 + 2x2 = 0 is a solution.

This line is the one-dimensional nullspace N(A).

Choose one point on this line as a “special” solution

⇝ all points on the line are multiples.

Let xp be a particular solution and xn ∈ N(A):

The solutions to all linear equations have the form x = xp+xn.

Proof: Axp = b and Axn = 0 produce A(xp + xn) = b.
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Inconsistent equations and linear dependency

The equations 3x+ 2y = 6 and 3x+ 2y = 12 are inconsistent:
b is not in the C(A) ⇝ no solution exists!

x− 2y = −1, 3x+ 5y = 8, and 4x+ 3y = 7 are linearly dependent:
b ∈ C(A) ⇝ solution exists, but two equations are sufficient.
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Linear Dependence

A sequence of vectors {v1,v2, . . . ,vk} from a vector space V is said to

be linearly dependent, if there exist scalars a1, a2, . . . , ak, not all zero,
such that

a1v1 + a2v2 + · · ·+ akvk = 0.

Linear dependence:
Not all of the scalars are zero ⇝ at least one is non-zero (say a1):

v1 =
−a2
a1

v2 + · · ·+ −ak
a1

vk.

Thus, v1 is a linear combination of the remaining vectors.
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Linear Dependence Example

Matrix form: Ax = b1 −2

3 5

4 3

[x
y

]
=

−1

8

7


Row vectors of A are linearly dependent[

1

−2

]
+

[
3

5

]
−
[
4

3

]
=

[
0

0

]
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Linear Independence

The vectors {v1,v2, . . . ,vk} are linearly independent if the equation

a1v1 + a2v2 + · · ·+ akvk = 0

can only be satisfied by ai = 0 for i = 1, . . . , k.

• This implies that no vector in the set can be represented as a
linear combination of the remaining vectors in the set.

• In other words: A set of vectors is linearly independent if the only

representations of 0 as a linear combination of the vectors is the

trivial representation in which all scalars ai are zero.

• Any set of k > m vectors in Rm must be linearly dependent.
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Span and Basis

A set of vectors spans a space if their linear combinations fill the space.

Special case: the columns of a matrix A span its column space C(A).

They might be independent ⇝ basis of C(A).

A basis for a vector space is a sequence of vectors such that:

(i) the basis vectors are linearly independent, and

(ii) they span the space.

Immediate consequence: There is one and only one way to write an

element of the space as a combination of the basis vectors.

The dimension of a space is the number of vectors in every basis.

The dimension of C(A) is called the (column-)rank of A.

The dimension of N(A) is called the nullity of A.
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Nullspace and Independence

Example: The columns of this triangular matrix are linearly independent:

A =

 3 4 2
0 1 5
0 0 2

 .

Why? Solving Ax = 0 ⇝ look for combination of the columns that produces 0:

c1

 3
0
0

+ c2

 4
4
0

+ c3

 2
5
2

 =

 0
0
0


Independence: show that c1, c2, c3 are all forced to be zero.

Last equation ⇝ c3 = 0. Next equation gives c2 = 0, substituting into 1st eq.: c1 = 0.

The nullspace of A contains only the zero vector c1 = c2 = c3 = 0.

The columns of A are independent exactly when N(A) = {0}.
Then, the dimension of the column space (the rank) is n.

We say that the matrix has full rank.
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Linear Systems of Equations

Gauss-Jordan Elimination
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The invertible case: Gauss-Jordan elimination

Assume A is invertible ⇝ a solution is guaranteed to exist: x = A−1b.

Sometimes we also want to find the inverse itself.

Then Gauss-Jordan elimination is the method of choice.

• PRO

– produces both the solution(s), for (multiple) bj, and the inverse A−1

– numerically stable if pivoting is used ⇝ will be discussed later...

– straightforward, understandable method

• CON

– all right hand sides bj must be known before the elimination starts.

– three times slower than alternatives when inverse is not required
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The invertible case: Gauss-Jordan elimination

• Augmented matrix A′ = [A, b1, . . . , bj, In]

• Idea:

Define B = [b1, . . . , bj] X = [x1, . . . ,xj]

[A,B, I] ⇒ A−1[A,B, I] = [IXA−1].

• Example:

A =

1 3 −2

3 5 6

2 4 3

 , B =

57
8

⇒ [A,B, I] =

1 3 −2 5 1 0 0

3 5 6 7 0 1 0

2 4 3 8 0 0 1



⇒ [I,X,A−1] =

1 0 0 −15 9
4

17
4 −7

0 1 0 8 −3
4 −7

4 3

0 0 1 2 −1
2 −1

2 1


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Gauss-Jordan: Simplest Form

Main idea: Cycle through columns of A (⇝ pivot column) and select

entry on diagonal (⇝ pivot element).

Then normalize pivot row and introduce zeros below and above.

Pivot column: 1, pivot element = 1. Divide pivot row by pivot element1 3 −2 5 1 0 0
3 5 6 7 0 1 0
2 4 3 8 0 0 1


For all other rows: (i) store element in pivot column,
(ii) subtract pivot row multiplied with this element

1 3 −2 5 1 0 0
0 −4 12 −8 −3 1 0
0 −2 7 −2 −2 0 1


Proceed to pivot column 2 with pivot element = -4
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Gauss-Jordan: Simplest Form

Proceed to pivot column 2 with pivot element = -41 0 7 −1 −1.25 0.75 0
0 1 −3 2 0.75 −0.25 0
0 0 1 2 −0.5 −0.5 1


After elimination in column 3 with pivot = 11 0 0 −15 2.25 4.25 −7

0 1 0 8 −0.75 −1.75 3
0 0 1 2 −0.5 −0.5 1



Now we have transformed A to the identity matrix I.

This is a special case of the reduced row Echelon form (more on this later).

The solution vector is the 4th column x = (−15, 8, 2)t.

Note that we have overwritten the original b ⇝ no need to allocate further memory.

The inverse A−1 is the right 3× 3 block.
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Gauss-Jordan elimination

Elementary operations (they do not change the solution):

1. Replace a row by a linear combination of itself and any other row(s).

2. Interchange two rows.

3. Interchange two columns and corresponding rows of x.

Basic G-J elimination uses only operation #1 but...

Elimination fails mathematically when a zero pivot is encountered
⇝ pivoting is essential to avoid total failure of the algorithm.

Example: Try Ax = b with

A =


2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

 , b =


−4
5
7
7


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Linear Systems: Numerical Issues
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The need for pivoting

• Elimination fails mathematically when a zero pivot is encountered

• and fails numerically with a too-close-to-zero pivot (we will see why
in a minute...)

• The fix is partial pivoting

– use operation #2 to place a desirable pivot entry in the current

row

– usually sufficient for stability

• Using operation #3 as well gives full pivoting
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x

y

somewhere
The lines cross

in here...

Linear systems: numerical issues

If a system is too close to linear dependence

• an algorithm may fail altogether to get a solution

• round off errors can produce apparent linear dependence at some

point in the solution process

⇝ accumulated roundoff errors
can dominate in the solution

⇝ an algorithm may still work

but produce nonsense.
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When is sophistication necessary?

• Sophisticated methods can detect and correct numerical pathologies

• Rough guide for a “not-too-singular” n× n system:

– n < 20...50 single precision

– n < 200...300 double precision

– n = 1000 OK if equations are sparse
(special techniques take advantage of sparsity)

• Close-to-singular can be a problem even for very small systems

• But...what is the underlying reason for these numerical problems?
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Floating Point Numbers: float, double

• float similar to scientific notation
± D.DDDD ×10E

– D.DDDD has leading mantissa digit ̸= 0

– D.DDDD has fixed number of mantissa digits.

– E is signed integer.

• Precision varies: precision of 1.000 × 10−2 is 100 times higher than

precision of 1.000× 100.

• The bigger the number, the less precise:
1.000× 104 + 1.000× 100 = 1.000× 104 !!!
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Simple Data Types: float, double (2)

Technical Realization (IEEE Standard 754)

• 32 bit ( float) or 64 bit ( double)

• float:

1 bit sign (s ∈ {0, 1})
8 bit exponent (e ∈ {0, 1, . . . , 255}) (like before, but basis 2!)

23 bit mantissa (m ∈ {0, 1, . . . , 223 − 1})

S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

• double: 1 bit sign, 11 bit exponent, 52 bit mantissa

S EEEEEEEEEEE MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
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Floating Point Arithmetic: Problems

• Fixed number of mantissa bits ⇒ limited precision:
If a ≫ b ⇒ a+b = a.

• Iterated addition of small numbers (like a=a+b with a ≫ b ) can

lead to a huge error: at some point, a does not increase anymore,

independent of the number of additions.

• double is better, but needs two times more memory.

• Machine epsilon (informal definition): The smallest number ϵm which

when added to 1 gives something different than 1.

Float (23 mantissa bits): ϵm ≈ 2−23 ≈ 10−7,

Double (52 mantissa bits): ϵm ≈ 2−52 ≈ 10−16.
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Elementary matrices: Row-switching transformations

Switches row i and row j. Example:

R35A =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





a11 a12
a21 a22
a31 a32
a41 a42
a51 a52
a61 a62
a71 a72


=



a11 a12
a21 a22
a51 a52
a41 a42
a31 a32
a61 a62
a71 a72


The inverse of this matrix is itself: R−1

ij = Rij

33



Elementary matrices: Row-multiplying transformations

Multiplies all elements on row i by m ̸= 0.

Ri(m) =



1
. . .

1

m

1
. . .

1


The inverse of this matrix is: Ri(m)−1 = Ri(1/m).

34



Elementary matrices: Row-addition transformations

Subtracts row j multiplied by m from row i.

Rij(m) =



1
. . .

1
. . .

−m 1
. . .

1


The inverse of this matrix is: Rij(m)−1 = Rij(−m).
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Row operations

• Elementary row operations correspond to left-multiplication by ele-

mentary matrices:

A · x = b

(· · ·R3 ·R2 ·R1 ·A) · x = · · ·R3 ·R2 ·R1 · b
(In) · x = · · ·R3 ·R2 ·R1 · b

x = · · ·R3 ·R2 ·R1 · b

• x can be built-up in stages since the R matrices are multiplied in the

order of acquisition.

• Inverse matrix A−1 and solution x can be built up in the storage

locations of A and b respectively.
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Column operations
Elementary column operations correspond to right-multiplication:
transform rows of At, then transpose: (RAt)t = ARt = AC ⇝ C = Rt.

Note that (AB)t = BtAt.

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · · ) · (· · ·C−1
3 · C−1

2 · C−1
1 ) · x = b

(In) · (· · ·C−1
3 · C−1

2 · C−1
1 ) · x = b

x = C1 · C2 · C3 · · · · b

The C matrices must be stored until the last step:
they are applied to b in the reverse order of acquisition.
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Gaussian Elimination with Backsubstitution

• Like Gauss-Jordan, but (i) don’t normalize pivot row,

and (ii) introduce zeros only in rows below the current pivot element.

• Example: a22 is current pivot element

⇝ use pivot row to zero only a32, a42, . . .

• Suppose we use partial pivoting (never change columns)

⇝ Original system Ax = b transformed to

upper triangular system Ux = c.

⇝ Pivots d1, . . . , dn on diagonal of U .

• Solve with backsubstitution.

• Triangular systems are

computationally and numerically straightforward.
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Gaussian Elimination with Backsubstitution

Ax = b

R1Ax = R1b

(· · ·R2 ·R1)A︸ ︷︷ ︸
U

x = (· · ·R2 ·R1)b︸ ︷︷ ︸
c

U x

=

d

c

d

d

d

d

d

d

2

3

4

1

6

7

5
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The invertible case: Summary

• b is in the column space of An×n, the columns of A are a basis of Rn

(so C(A) = Rn), the rank of A is n.

• G-J: A → I by multiplication with elementary row matrices:

(· · ·R3 ·R2 ·R1) ·A = I = RE.

RE = rref(A) is the reduced row Echelon matrix,
and Ax = b → REx = d ⇔ x = (· · ·R3 ·R2 ·R1)b.

• A invertible ⇝ RE = I ⇝ columns are standard basis of Rn.

• Gaussian elim.: Zeros only below diagonal: Ax = b → Ux = c.

• Representation of floating-point numbers ⇝ numerical problems

⇝ round-off errors ⇝ nonsense results possible.

• Solution: Partial (rows) and full pivoting (columns).
40



Chapter 1

Linear Systems of Equations

Singular Systems

41



The singular case

Recall: Let xp be a particular solution and xn ∈ N(A).

The solutions to all linear equations have the form x = xp + xn.

How to find xp and xn? ⇝ Elimination. Start with the nullspace.

Example: A3×4: 4 columns, but how many pivots?

A =

1 2 2 2

2 4 6 8

3 6 8 10


Initial observations:

- 2nd column is a multiple of first one

- 1st and 3rd column are linearly independent.

⇝ We expect to find pivots for column 1 and 3.
- 3rd row is linear combination of other rows.
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The singular case

A =

1 2 2 2

2 4 6 8

3 6 8 10

→

1 2 2 2

0 0 2 4

0 0 2 4

→

1 2 2 2

0 0 2 4

0 0 0 0

 = U

U is called the Echelon (staircase) form of A.

Note that elimination uses only elementary operations that do not change

the solutions, so Ax = 0 exactly when Ux = 0.

U Gives us important information about A:

• 2 pivots, associated with columns 1, 3

⇝ pivot columns (not combinations of earlier columns.)

• 2 free columns (these are combinations of earlier columns)

⇝ can assign x2, x4 to arbitrary values.

Note that 0 must be a linear combination of the column vectors ci:

0 = x1c1 + x2c2 + x3c3 + x4c4 43



The Reduced Row Echelon Form

Idea: Simplify U further: Elimination also above the pivots.

U =

1 2 2 2

0 0 2 4

0 0 0 0

→

1 2 0 −2

0 0 2 4

0 0 0 0

→

1 2 0 −2

0 0 1 2

0 0 0 0

 = RE.

A, U and RE all have 2 independent columns:

pivcol(A) = pivcol(U) = pivcol(RE) = (1, 3) ⇝ same rank 2.

Obviously, the rank equals the number of pivots! This is equivalent to
the algebraic definition rank = dim(C(A)), but maybe more intuitive.

Pivot cols: independent, span the column space ⇝ basis of C(A).
Pivot rows: independent, span row space ⇝ basis of C(At).

44



The special solutions

Solutions to Ax = 0 and REx = 0 can be obtained by setting the free

variables to arbitrary values and solving for the pivot variables.

“Special” solutions are linear independent:
set one free variable equal to 1, and all other free variables to 0.

REx =

1 2 0 −2

0 0 1 2

0 0 0 0



x1

x2

x3

x4

 = 0. s1 =


x1

1

x3

0

 , s2 =


x1

0

x3

1


Free variables: x2 = 1, x4 = 0 ⇝ x1 + 2 = 0, x3 = 0.

Pivot variables are x1 = −2, x3 = 0 ⇝ s1 = (−2, 1, 0, 0)t.

2nd special solution has x2 = 0, x4 = 1 ⇝ x1 − 2 = 0, x3 + 2 = 0

⇝ s2 = (2, 0,−2, 1)t.
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The nullspace matrix

The nullspace matrix N contains the two special solutions in its columns,

so AN = 0.

RE =

1 2 0 −2

0 0 1 2

0 0 0 0

 , N =


−2 2

1 0

0 −2

0 1


The linear combinations of these two columns give all vectors in the

nullspace ⇝ basis of null-space ⇝ complete solution to Ax = 0.

Consider the dimensions: n = 4, r = 2. One special solution for every

free variable. r columns have pivots ⇝ n− r = 2 free variables:

Ax = 0 has r pivots and n − r free variables. The nullspace matrix

N contains the n− r special solutions, and AN = REN = 0.
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General form

General form: Suppose that the fist r columns are the pivot columns:

RE =

[
I F

0 0

]
r pivot rows

m− r zero rows

The upper left block is the r × r identity matrix.
There are n− r free columns
⇝ upper right block F has dimension r × (n− r)

Nullspace matrix:

N =

[
−F

I

]
r pivot variables

n− r free variables

From this definition, we directly see that REN = I(−F ) + FI = 0.
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The Complete Solution

• So far: Ax = 0 converted by elimination to REx = 0

⇝ solution x is in the nullspace of A.

• Now: b nonzero ⇝ consider column-augmented matrix [Ab].

We will reduce Ax = b to REx = d.

• Example:1 3 0 2

0 0 1 4

1 3 1 6

x =

16
7

 ⇒

1 3 0 2 1

0 0 1 4 6

1 3 1 6 7

 = [Ab]

Elimination:

1 3 0 2 1

0 0 1 4 6

0 0 1 4 6

 ⇒

1 3 0 2 1

0 0 1 4 6

0 0 0 0 0

 = [REd]
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The Complete Solution

• Particular solution xp: set free variables x2 = x4 = 0

⇝ xp = (1, 0, 6, 0)t. By definition, xp solves Axp = b.

• The n− r special solutions xn solve Axn = 0.

• The complete solution is

x = xp + xn =


1

0

6

0

+ x2


−3

1

0

0

+ x4


−2

0

−4

1


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The Four Fundamental Subspaces

Assume A is (m× n).

1. The column space is C(A), a subspace of Rm.

It is spanned by the columns of A or RE.

Its dimension is the rank r = #(independent columns) = #(pivots).

2. The row space is C(At), a subspace of Rn. It is spanned by the rows

of A or RE. There is one nonzero row in RE for every pivot

⇝ dimension is also r.

3. The nullspace is N(A), a subspace of Rn.

It is spanned by the n− r special solutions (one for every free variable),

they are independent ⇝ they form a basis

⇝ dimension of N(A) (“nullity”) is n− r.

4. The left nullspace is N(At), a subspace of Rm.

It contains all vectors y such that Aty = 0. Its dimension is m− r.
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The Fundamental Theorem of Linear Algebra (I)
1.), 2.) and 3.) are part one of the

Fundamental Theorem of Linear Algebra.
For any m× n matrix A:

• Column space and row space both have dimension r.

In other words: column rank = row rank = rank.

• Rank + Nullity = r + (n− r) = n.

4.) additionally defines the “left nullspace”: it contains any left-side row

vectors yt that are mapped to the zero (row-)vector: ytA = 0t.

At := B is a (n×m) matrix

⇝ dim(C(B))︸ ︷︷ ︸
r

+ dim(N(B))︸ ︷︷ ︸
m−r

= m.

⇝ Rank + “Left Nullity” = m.
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The Fundamental Theorem of Linear Algebra (II)

Part two of the Fundamental Theorem of Linear Algebra concerns orthog-

onal relations between the subspaces. Two definitions:

Two vectors v,w ∈ V are perpendicular if their scalar product is zero.
The orthogonal complement V ⊥ of a subspace V in the vector space

W contains every vector in W that is perpendicular to V .

The nullspace is the orthogonal complement of the row space.

Proof: Every x perpendicular to the rows satisfies Ax = 0.
(follows directly from definition of matrix-vector multiplication)

Reverse is also true:
If v is orthogonal to N(A), it must be in the row space.
Otherwise we could add v as an extra independent row of the matrix

(thereby increasing the rank) without changing the nullspace

⇝ row space would grow, contradicting r + dim(N(A)) = n.
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The Fundamental Theorem of Linear Algebra (II)

Same reasoning holds true for the left nullspace:

Part two of the Fundamental Theorem of Linear Algebra:

• N(A) is the orthogonal complement of C(At) (in Rn).

• N(At) is the orthogonal complement of C(A) (in Rm).

Immediate consequences:
Every x ∈ Rn can be split into x = xrow + xnullspace.

Thus, the action of A on x is as follows:

Axn = 0,

Axr = Ax
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The 4 subspaces

Fig. 2.5 in Gilbert Strang: Linear Algebra and Its Applications
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Invertible part of a matrix

Every vector in C(A) comes from one and only one vector in the row

space. Every vector in C(At) comes from one and only one vector in

the column space.

Proof (first assertion):

(i) Axr = Ax′
r ⇒ A(xr − x′

r) = 0 ⇒ δ := xr − x′
r ∈ N(A).

(ii) xr ∈ C(At),x′
r ∈ C(At) ⇒ δ ∈ C(At).

But N(A) and C(At) are orthogonal ⇒ δ = 0.

Conclusion: From the row space to the column space, A is invertible.

In other words: There is a r × r invertible matrix “hidden” inside A.

This will be explored later in this course in the context of the

pseudoinverse and the SVD.
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Further Methods for Linear Systems

• Direct solution methods

– Gauss-Jordan elimination with pivoting

– Matrix factorization (LU, Cholesky)

– Predictable number of steps

• Iterative solution methods

– Jacobi, Newton etc.

– converge in as many steps as necessary

• Combination

– direct solution, then improved by iterations

– useful for close-to-singular systems
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Factorization methods

• Disadvantage of Gaussian elimination:
all righthand sides bj must be known in advance.

• LU decomposition keeps track of the steps in Gaussian elimination

⇝ The result can be applied to any future b required.

• A is decomposed or factorized as A = LU :

– L lower triangular,

– U upper triangular.

• Example: For a 3× 3 matrix, this becomes:a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

l11 0 0

l21 l22 0

l31 l32 l33


u11 u12 u13

0 u22 u23

0 0 u33

 .
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LU factorization

• A = LU , L lower triangular, U upper triangular.

• Ax = b becomes LUx = b. Define c = Ux.

Lc = b solved by forward-substitution, followed by

Ux = c solved by back-substitution.

• The two interim systems are trivial to solve since both are triangular.

• Work effort goes into the factorization steps to get L and U .

• U can be computed by Gaussian elimination,
L records the information necessary to undo the elimination steps.
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LU factorization: the book-keeping

• Steps in Gaussian elimination involve pre-multiplication by elementary

R-matrices ⇝ These are trivially invertible.

A = (R−1
1 ·R1) ·A = · · · =

= (R−1
1 ·R−1

2 ·R−1
3 · · ·R3 ·R2 ·R1) ·A

= (R−1
1 ·R−1

2 ·R−1
3 · · · )︸ ︷︷ ︸

L

· (· · ·R3 ·R2 ·R1 ·A)︸ ︷︷ ︸
U

• Entries for L are the inverses (i.e. negatives) of the multipliers in the

row transformation for each step: Rij(m) Subtracts row j multiplied

by m from row i. Inverse: Rij(m)−1 = Rij(−m).[
2 1

6 8

]
A

=

[
1 0

3 1

]
R−1

[
1 0

−3 1

]
R

[
2 1

6 8

]
A

=

[
1 0

3 1

]
L

[
2 1

0 5

]
U
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LU factorization via Gaussian elimination

• LU is not unique:

– Decomposition is multiplicative

⇝ factors can be re-arranged between L and U .

• LU may not exist at all, if there is a zero pivot. Pivoting:

– Can factorize as A = P−1LU = P tLU .

– P records the effects of row permutations, so PA = LU .

Need to keep track of permutations in P .

Permutation π =

(
1 2 3 4 5

1 4 2 5 3

)
⇒ Pπ =


et1
et4
et2
et5
et3

 =


1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

.
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Crout’s algorithm

• Alternative method to find the L and U matrices

• Write out A = LU with unknowns for the non-zero elements of L,U .

• Equate entries in the n× n matrix equation

⇝ n2 equations in n2 + n unknowns.

• Underdetermined ⇝ n unknowns are arbitrary

(shows that the LU decomposition is not unique)
⇝ choose the diagonal entries lii = 1.

• Crout’s algorithm:

– re-write the n2 equations in a carefully chosen order so that elements

of L and U can be found one-by-one.
63



Crout’s algorithm

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13

0 u22 u23

0 0 u33

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


Multiplying out gives:

u11 = a11

l21u11 = a21

l31u11 = a31

u12 = a12

l21u12 + u22 = a22

l31u12 + l32u22 = a32

u13 = a13

l21u13 + u23 = a23

l31u13 + l32u23 + u33 = a33

Red indicates where an element is used for
the first time.
Only one red entry in each equation!
Crout’s method fills in the combined matrix

u11 u12 u13 u14 · · ·
l21 u22 u23 u24 · · ·
l31 l32 u33 u34 · · ·
l41 l42 l43 u44 · · ·
... ... ... ... . . .


by columns from left to right, and from top
to bottom.
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A small example

[
4 3

6 3

]
=

[
1 0

l21 1

] [
u11 u12

0 u22

]
Solve the linear equations:

u11 = 4

l21 · u11 = 6

u12 = 3

l21 · u12 + u22 = 3

Substitution yields:

[
4 3

6 3

]
=

[
1 0

1.5 1

] [
4 3

0 −1.5

]
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Positive definite matrices

An n× n symmetric real matrix A is positive-definite if xtAx > 0

for all vectors x ̸= 0.

Simple tests for positive definiteness?

• A positive definite matrix A has all positive entries on the main

diagonal (use xtAx > 0 with vectors (1, 0, ..., 0)t, (0, 1, 0, ..., 0)t etc.)

• A is diagonally dominant if |aii| >
∑

i̸=j |aij|.
• A diagonally dominant matrix is positive definite if it is symmetric and

has all main diagonal entries positive. Follows from the Gershgorin
circle theorem (details will follow...). Note that the converse is false.

There are many applications of pos. def. matrices:

• Linear regression models (⇝ chapter 2).

• Solution of partial differential equations ⇝ heat conduction,

mass diffusion, wave equation etc.
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Example: Heat equation

• u = u(x, t) is temperature as a function of space and time.
This function will change over time as heat spreads throughout space.

• ut :=
∂u
∂t is the rate of change of temperature at a point over time.

• uxx := ∂2u
∂x2 is the second spatial derivative of temperature.

• Heat equation: ut ∝ uxx. The rate of change of temperature
over time is proportional to the local difference of temperature.
Proportionality constant: diffusivity of the (isotropic) medium.

• Discretization u
(m)
j = u(xj, tm) at grid points xj and time points tm:

xj := j · h
spatial step size

and tm := m · τ
temporal step size

• Assume h = τ = 1, and also diffusivity = 1.
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Example: Heat equation

• Approximate derivative on grid (⇝ finite differences):

f ′(x) ≈ f(x+ h)− f(x)

h
.

• Second order (central difference approximation):

f ′′(x) ≈
f(x+h)−f(x)

h − f(x)−f(x−h)
h

h
=

f(x+ h)− 2f(x) + f(x− h)

h2
.

• Approximate equation ut = uxx by (we assumed step size =1)

u
(m+1)
j − u

(m)
j︸ ︷︷ ︸

rate of change over time

= u
(m+1)
j−1 − 2u

(m+1)
j + u

(m+1)
j+1︸ ︷︷ ︸

local temperature difference
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Example: Heat equation

• Solve this implicit scheme for u(m+1):

(1+2)u
(m+1)
j −u

(m+1)
j−1 −u

(m+1)
j+1 = u

(m)
j , for j = 1, . . . , n−1, and m ≥ 0.

• With A = tri-diagonal with (aj,j−1, aj,j, aj,j+1) = (−1, 2,−1):

(I +A)u(m+1) =


· · · · · · ·
0 −1 3 −1 0 0 0

0 0 −1 3 −1 0 0

0 0 0 −1 3 −1 0

· · · · · · ·

u(m+1) = u(m)

• (I+A) is diagonal dominant and symmetric, and has positive diagonal

entries ⇝ positive definite! It is also sparse ⇝ efficient elimination

possible: per column only 1 zero needs to be produced below the pivot.
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Cholesky LU decomposition

• The Cholesky LU factorization of a pos. def. matrix A is A = LLt.

• Use it to solve a pos. def. system Ax = b.

• Cholesky algorithm: Partition matrices in A = LLt as(
a11 at

21

a21 A22

)
=

(
l11 0

l21 L22

)(
l11 lt21
0 Lt

22

)
=

(
l211 l11l

t
21

l11l21 l21l
t
21 + L22L

t
22

)

Recursion:

– step 1: l11 =
√
a11, l21 =

1
l11
a21.

– step 2: compute L22 from S := A22 − l21l
t
21 = L22L

t
22.

This is a Cholesky factorization of S(n−1)×(n−1).
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Cholesky: Proof

Proof that the algorithm works for positive definite An×n by induction:

1. If A is positive definite then a11 > 0,

⇝ l11 =
√
a11 and l21 =

1
l11
a21 are well-defined.

2. If A is positive definite, then

S = A22 − l21l
t
21 = A22 − 1

a11
a21a

t
21 is positive definite.

Proof: take any (n− 1) vector v ̸= 0 and w = −(1/a11)a
t
21v ∈ R.

vtSv =
(
w vt

)(a11 at
21

a21 A22

)(
w

v

)
=
(
w vt

)
A

(
w

v

)
> 0.

• Induction step: Algorithm works for n = k if it works for n = k − 1.

• Base case: It obviously works for n = 1; therefore it works for all n.
72



Chapter 1

Linear Systems of Equations

Iterative Methods

73



Iterative improvement

• Floating point arithmetic limits the precision of calculated solutions.

• For large systems and “close-to-singular” small systems, precision is

generally far worse than machine precision ϵm.

– Direct methods accumulate roundoff errors.
– Loss of some significant digits isn’t unusual even for well-behaved

systems.

• Iterative improvement: Start with direct solution method (Gauss,

LU, Cholesky etc.), followed by some post-iterations.

It will get your solution back to machine precision efficiently.
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Iterative improvement

• Suppose x is the (unknown) exact solution of Ax = b and x+ δx is

a calculated (inexact) solution with unknown error δx.

• Substitute calculated solution in original equation:

A(x+ δx) = b+ δb, (1)

• Subtract Ax (or b) from both sides:

Aδx = δb. (2)

• Eqn. (1) gives:

δb = A (x+ δx)︸ ︷︷ ︸
calculated solution

− b. (3)

• Right hand side of eqn. (3) is known

⇝ get δb and use this in (2) to solve for δx.
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Iterative improvement

Α

b

b+  b

x
x

x+   xδ

δ
δ

δ

b

Α
−1

Iterative improvement: first guess x+ δx is multiplied by A to produce b+ δb.
Known vector b is subtracted ⇝ δb.
Inversion gives δx and subtraction gives an improved solution x.

LU factorization of A can be used to solve Aδx = LUδx = δb to get δx.

Repeat until ∥δx∥ ≈ ϵm.
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Iterative methods: Jacobi

• Assume that all diagonal entries of A are nonzero.

• Write A = D + L+ U

where D =


a11 0 · · · 0

0 a22 · · · 0
... ... . . . ...

0 0 · · · ann

 and L+U =


0 a12 · · · a1n
a21 0 · · · a2n
... ... . . . ...

an1 an2 · · · 0


• So Ax = b ⇝ (L+D + U)x = b.

• The solution is then obtained iteratively via

Dx = b− (L+ U)x.
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Iterative methods: Jacobi

• The solution is obtained iteratively via

Dx = b− (L+ U)x. (4)

• Given x(i) obtain x(i+1) by solving (4) with x = x(i):

x(i+1) = −D−1(L+ U)x(i) +D−1b.

• Define J = D−1(L+ U) as the iteration matrix.
⇝ x(i+1) = −Jx(i) +D−1b.

• From (4): D−1b = x+D−1(L+ U)x = x+ Jx

⇒ x(i+1) = −Jx(i) + x+ Jx.

• (i+ 1)-th error term: ϵ(i+1) = x(i+1) − x = −J(x(i) − x) = −Jϵ(i).

• Convergence guaranteed if J is “contracting”.
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Calculating the error, revisited

• Error in (i+ 1)-th iteration: ϵ(i+1) = −Jϵ(i).

• ϵ(i+1) = −J(−Jϵ(i−1)) = J2ϵ(i−1) = · · · = (−1)i+1J i+1ϵ(0).

• So if J i → 0 (zero matrix) for i → ∞ then ϵ(i) → 0.

• The key to understanding this condition is the

eigenvalue decomposition J = V ΛV −1 (details next section)

– the columns of V consist of eigenvectors of J and

– Λ is a diagonal matrix of eigenvalues of J .

• Then J2 = V ΛV −1V ΛV −1 = V Λ2V −1 ⇝ Jn = V ΛnV −1.

If all the eigenvalues of J have magnitude < 1,

then Λn → 0 and consequently Jn → 0 ⇝ convergence.

• A diagonally dominant ⇝ Jacobi method converges.
Follows from the Gershgorin circle theorem.
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Eigenvalues and eigenvectors

• Consider a square matrix A. A vector v for which Av = λv for some

(possibly complex) scalar λ is an eigenvector of A,

and λ is the associated eigenvalue.

• The eigenvectors span the nullspace of (A− λI):

They are the solutions of (A− λI)v = 0.

• A non-zero solution v ̸= 0 exists if and only if the matrix (A − λI)

is not invertible:

otherwise we could invert (A− λI) and get the unique solution

v = (A− λI)−10 = 0, i.e. only the zero solution.

• Equivalently we have non-zero eigenvectors
if and only if the rank of (A− λI) < n.

• Equivalently we want: det(A− λI) = 0. Why?
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Determinants

• The determinant of a square matrix is a single number.

It contains a lot of information about the matrix.

• But is is not a “simple” function...

Explicit formulas are complicated, but its properties are simple.

Three rules completely determine the number det(A):

1. The determinant of the identity matrix is 1: det(I) = |I| = 1.

2. The determinant changes sign when two rows are exchanged.

3. The determinant is a linear function in each row separately
(all other rows stay fixed): 2d-example for first row∣∣∣∣ta tb

c d

∣∣∣∣ = t

∣∣∣∣a b

c d

∣∣∣∣∣∣∣∣a+ a′ b+ b′

c d

∣∣∣∣ = ∣∣∣∣a b

c d

∣∣∣∣+ ∣∣∣∣a′ b′

c d

∣∣∣∣
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Determinants
Further rules can be deduced:

4. If two rows of A are equal, then det(A) = 0.
Rule 2: Exchange of the equal rows ⇝ det(A) changes sign.

But matrix stays the same, so det cannot change ⇝ det(A) = 0.

5. Subtracting a multiple of one row from another row leaves the
same determinant.∣∣∣∣a− lc b− ld

c d

∣∣∣∣ = ∣∣∣∣a b

c d

∣∣∣∣− l

∣∣∣∣c d

c d

∣∣∣∣︸ ︷︷ ︸
=0 (rule 4)

Usual elimination steps do not affect the determinant!

6. If A has a row of zeros, then det(A) = 0.
Add some other row to zero row ⇝ det(A) is unchanged (rule 5).

But now there are two identical rows ⇝ det(A) = 0 by rule 4.
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Determinants

7. If A is triangular then det(A) =
∏

i aii.
Suppose the diagonal entries are nonzero. Then elimination can remove

all the off-diagonal entries, without changing det(A) (rule 5).

Factoring out the diagonal elements gives

det(A) =
∏

i aii · det(I) =
∏

i aii (rules 3 and 1).

Zero diagonal entry ⇝ elimination produces a zero row.

Rule 5: elimination steps do not change det(A).

Rule 6: zero row ⇝ det(A) = 0.

8. If A is singular, then det(A) = 0. If A is invertible, det(A) ̸= 0.
A singular: Elimination ⇝ zero row in U ⇝ det(A) = det(U) = 0.

A nonsingular: Elimination puts the nonzero pivots d1, . . . , dn on the

diagonal. Sign depends on whether the number of row exchanges is

even or odd: det(A) = ±det(U) = ±
∏

i di ̸= 0.
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Determinants

9. The determinant of AB is the product det(A) · det(B).
Proof sketch: When |B| ≠ 0, consider ratio D(A) := |AB|/|B|.
Check that this ratio has properties

1: A = I implies D(A) = 1,

2: exchange of two rows of A gives a sign reversal of D(A),

3: linearity in each row

⇝ D(A) must be the determinant of A: D(A) = |A| = |AB|/|B|.
10. Formula for 2× 2 case:[

a b

c d

]
= LU =

[
1 0

c/a 1

]
︸ ︷︷ ︸

det=1

[
a b

0 (ad− bc)/a

]
︸ ︷︷ ︸

det=ad−bc
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Eigenvalues and eigenvectors

• det(A− λI) = 0 is the characteristic polynomial of A.

– it’s a polynomial of degree n for A(n×n),

– its solutions give all the eigenvalues λi.

Example:

∣∣∣∣a− λ b

c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc = 0.

• Once we know all the λ1, λ2, . . . , λn we take each one in turn and find

the corresponding eigenvectors vi by solving the linear system

(A− λiI)vi = 0.

• All eigenvectors fulfill Avi = λivi. In matrix form: AV = V Λ,

where vi is the i-th column of V and Λ is the diagonal matrix

Λ =

λ1
. . .

λn


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Eigenvalues, pivots and determinants

• Suppose that λ1, . . . λ2 are eigenvalues of A. Then the λi are the roots

of the characteristic polynomial, and this polynomial of degree n always

separates into n factors involving the (possibly complex) eigenvalues

(fundamental theorem of algebra), i.e.

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

• Holds for every λ ⇝ can set λ = 0:

det(A) =
∏
i

λi

• We already showed that det(A) = ±det(U) = ±
∏

i di, so

Determinant = ± (product of pivots) = product of eigenvalues.
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Diagonalization

• Not all linear operators can be represented by diagonal matrices with

respect to some basis.

• A square matrix A for which there is some (invertible) P so that

P−1AP = D is a diagonal matrix is called diagonalizable.

Theorem. Suppose that A(n×n) has n linearly independent eigen-

vectors v1, . . . , vn, arranged as columns in the matrix V . Then

V −1AV = Λ =

λ1
. . .

λn


Proof. Avi = λivi ⇒ AV = V Λ ⇒ V −1AV = Λ
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Diagonalization

Theorem. Eigenvectors corresponding to distinct (all different) eigen-

values are linearly independent.

Proof. Suppose c1v1 + c2v2 = 0.

Then A(c1v1 + c2v2) = c1λ1v1 + c2λ2v2 = 0.

Also λ2(c1v1 + c2v2) = c1λ2v1 + c2λ2v2 = 0.

Subtraction gives:

(λ1 − λ2)c1v1 = 0 ⇒ c1 = 0 , since v1 ̸= 0 and λ1 ̸= λ2.

Similarly, c2 = 0. Thus, no other combination c1v1 + c2v2 = 0, and the

eigenvectors must be independent. Proof directly extends to any number

of eigenvectors.
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Orthogonal Diagonalization

• If P is also orthogonal (PP t = I), A is orthogonally diagonalizable.

• Columns of P = linearly independent eigenvectors of A.

• Diagonal entries of D are the corresponding eigenvalues.

Theorem. If a matrix is orthogonally diagonalizable, then it is sym-

metric

Proof. We assume that P tAP = D holds, with P t = P−1.

Thus, A = PDP t and At = (PDP t)t = PDP t = A.
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Orthogonal Diagonalization

Theorem.Eigenvectors of a symmetric matrix corresponding to differ-

ent eigenvalues are orthogonal.

Proof. Let At = A have eigenvectors v1 and v2 for eigenvalues λ1 ̸= λ2.

(Av1)
tv2 = vt

1(Av2) = λ1v
t
1v2 = λ2v

t
1v2.

Since λ1 ̸= λ2, we must have vt
1v2 = 0.

More general version (without explicit proof): Spectral Theorem

Theorem. Suppose the n× n matrix A is symmetric.

Then it has n orthogonal eigenvectors with real eigenvalues.

A square matrix A is orthogonally diagonalizable

if and only if it is symmetric.
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Chapter 1

Linear Systems of Equations

Matrix Powers and Markovian Matrices
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Matrix Powers

• Consider a square matrix A with eigenvector decomposition

A(n×n) = V ΛV −1.

• What are the eigenvectors of A2 = AA?

Substitution gives: A2 = V ΛV −1V ΛV −1 = V Λ2V −1.

So A2 has the same eigenvectors and squared eigenvalues.

• General form: An = V ΛnV −1.

• When does Ak → 0 (zero matrix)?

All |λi| < 1 (cf. convergence analysis of Jacobi iterations).

• Are there other interesting applications of matrix powers? Yes, many!
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Matrix Powers: Fibonacci numbers

• The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . comes from

Fk+2 = Fk+1 + Fk.

• Assume you want to compute F100. Can it be done directly?
Yes, with the help of matrix powers...

• Define uk =

[
Fk+1

Fk

]
and the transition matrix A =

[
1 1

1 0

]
.

• The rule
Fk+2 = Fk+1 + Fk

Fk+1 = Fk+1
is uk+1 =

[
1 1

1 0

]
uk.

• After 100 steps we reach u100 = A100u0, with u0 =

[
1

0

]
.
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Matrix Powers: Fibonacci numbers

1. Find eigenvectors v1,v2 and associated eigenvalues of A.

2. Express u0 as combination of eigenvectors:
u0 = c1v1 + c2v2 ⇝ c = V −1u0.

3. Now A100u0 = V Λ100V −1u0 = V Λ100c. Thus, multiply each eigen-

vector vi with λ100
i and add up the results with weights ci.

In our case:

A− λI =

[
1− λ 1

1 −λ

]
⇝ det(A− λI) = λ2 − λ− 1

!
= 0

⇝ λ = 1
2 ±

√
1
4 + 1 ⇝ λ1 =

1+
√
5

2 ≈ 1.618, λ2 =
1−

√
5

2 ≈ −0.618.

(A− λI)v = 0 ⇝ v1 =

[
λ1

1

]
, v2 =

[
λ2

1

]
.
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Matrix Powers: Fibonacci numbers
Weights: c1 = 1/(λ1 − λ2), c2 = −1/(λ1 − λ2)

After 100 steps: u100 = c1λ
100
1 v1 + c2λ

100
2 v2 =

λ100
1 v1−λ100

2 v2

λ1−λ2
.

• We want F100 = second component of u100.

Second components of eigenvectors are 1, and λ1 − λ2 =
√
5. Thus,

F100 =
λ100
1 − λ100

2

λ1 − λ2
=

1√
5

(1 +
√
5

2

)100

−

(
1−

√
5

2

)100
 ≈ 3.54·1020.

• Note: λk
2/(λ1 − λ2) < 1/2 and result must be an integer,

so Fk =
λk
1−λk

2
λ1−λ2

must be the nearest integer to
λk
1

λ1−λ2
= 1√

5

(
1+

√
5

2

)k
.

• The ratio
Fk+1
Fk

approaches the golden ratio 1+
√
5

2 ≈ 1.618 for large k.
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Matrix Powers: Markov matrices

• A matrix is a Markov matrix iff the following holds:

1. Every entry is non-negative, 2. Every column adds to 1.

• A Markov matrix is called column-stochastic:
entries in every column can be interpreted as probabilities.

• Suppose A is Markovian, and start with probability vector u0.

• Observation: if we make a sequence of update steps, uk = Aku0,

we will approach a steady state for k → ∞, and this steady state

does not depend on the starting vector u0!

• Asymptotic loss of memory: Markov chain ”forgets” where it

started. The question is why...
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Matrix Powers: Markov matrices

• Intuition: Since the eigenvalues of A are raised to larger and larger

powers, a non-trivial steady state can only occur for λ = 1.

The steady state equation Au∞ = u∞ then makes u∞ an

eigenvector of A with eigenvalue λ = 1.

• A2 is also a Markov matrix:

A2 =

[
p21 + p2q1 p1q1 + q1q2
p1p2 + p2q2 p2q2 + q22

]
Note that this matrix is also column-stochastic: Sum of first column is

p21 + p2q1 + p1p2 + p2q2 = p1(p1 + p2) + p2(q1 + q2) = p1 + p2 = 1.

• By induction, all matrices Ak are Markov matrices!
⇝ they all have the eigenvalue λ = 1.

• This argument holds true for any n× n Markov matrix A.
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Matrix Powers: Markov matrices

Theorem.A positive Markov matrix (entries aij > 0) has one eigen-

value λ1 = 1, all other eigenvalues have |λ| < 1.

Proof part 1: Existence of λ1 = 1 follows from this observation:

Consider A =

[
p1 q1
p2 q2

]
. A is column-stochastic, so every column of

A − 1I adds to 1 − 1 = 0 ⇝ the row vectors add up to zero,
(p1 − 1, q1)

t + (p2, q2 − 1)t = (0, 0)t, so they are linearly dependent
⇝ det(A− 1I) = 0 ⇝ λ = 1 is an eigenvalue of A.

Proof part 2: No eigenval. can have |λ| > 1: With such a λ, powers

Ak would grow without bound as k → ∞⇝ contradiction to observation

that Ak is a Markov matrix (non-negative entries in columns add to 1)!
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Markov matrices: Rental cars example

Rental cars in Denver. Every month, 80% of the Denver cars stay in

Denver, 20% leave. 5% of outside cars come in, 95% stay outside.

Fraction of cars in Denver starts at 1/50 = 0.02 ⇝ u0 = (0.02, 0.98)t.

First month: u1 =

[
0.8 0.05

0.2 0.95

] [
0.02

0.98

]
=

[
0.065

0.935

]
k-th month: uk = Aku0 = V ΛkV −1u0

Eigenvalues and eigenvectors:

A

[
0.2

0.8

]
= 1

[
0.2

0.8

]
, A

[
−1

1

]
= 0.75

[
−1

1

]

Weights: u0 = c1v1 + c2v2 =

[
0.02

0.98

]
= 1

[
0.2

0.8

]
+ 0.18

[
−1

1

]
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Markov matrices: Rental cars example

After k months: uk = Aku0 = V Λkc = 1k ·1
[
0.2

0.8

]
+(0.75)k ·0.18

[
−1

1

]

Thus, the eigenvector v1 =

[
0.2

0.8

]
with λ1 = 1 is the steady state,

i.e. in the limit, 20% of the cars are in Denver and 80% outside.

Initial vector u0 is asymptotically irrelevant.

Other eigenvector v2 disappears because |λ2| < 1.

Magnitude of λ2 controls the speed of convergence to the steady state.
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Markov matrices: Google example

Idea: for n websites, columns in An×n contain pairwise transition

probabilities from one website to all other ones, computed from the

number of links between the sites.

Then find u∞ by a random walk that follows links (i.e. random surfing).

This steady state vector gives the limit fraction of time at each site.

The ranking of sites is then based on u∞.

According to Google, the Markov matrix A has 2.7 · 109 rows and cols.

Probably the largest eigenvalue problem ever solved!
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Non-negative matrices: Perron-Frobenius

Theorem (Perron-Frobenius).
Assume A > 0. All numbers in Ax = λmaxx are strictly positive.

Note that there is no requirement that columns add to 1.

Proof part 1: For some non-negative x, look at all t : Ax ≥ tx. Then,

for the largest value tmax, equality holds: Ax = tmaxx.

Why? Otherwise, multiplication by A gives A2x > tmaxAx

(because A is strictly positive) ⇝ the strictly positive vector y = Ax

satisfies Ay > tmaxy, and tmax could be increased.

So Ax = tmaxx and tmax is an eigenvalue.
Its eigenvector x is positive, because on the left side of the equality,

Ax is positive.
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Non-negative matrices and population models

Proof part 2: No eigenvalue can be larger than tmax: Suppose Az = λz

for some (generally complex) eigenvalue and eigenvector.

Take absolute values: |λ||z| = |Az| ≤ |A||z| = A|z|.
Now |z| is non-negative, so |λ| is one of the possible candidates t in

Ax ≥ tx ⇝ |λ| ≤ tmax ⇝ tmax = λmax.

Example application: Simple population model:

• Divide a population into three age groups (generations):
age < 20, age 20 to 39, and age 40 to 59.

• At year T the sizes of those groups are n1, n2, n3.

Twenty years later, the sizes have changed for two reasons:

– Reproduction nnew
1 = F1n1 + F2n2 + F3n3 gives a new generation

(Fi are fertility rates)

– Survival nnew
2 = P1n1 and nnew

3 = P2n2 gives the older generations
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Population Models

In matrix form (with the Leslie matrix A):n1

n2

n3


(T+∆)

=

F1 F2 F3

P1 0 0

0 P2 0


n1

n2

n3


(T )

=

.04 1.1 .01

.98 0 0

0 .92 0


n1

n2

n3


(T )

Note: In a more realistic model, A will change with time (from the

environment or internal factors).

The matrix has A ≥ 0 but not A > 0. The Perron-Frobenius theorem

still applies because A3 > 0. The largest eigenvalue is λmax ≈ 1.06 > 1.

λ(A) =

 1.06
−1.01

−0.01

 , A2 =

1.08 0.05 .00

0.04 1.08 .01

0.90 0 0

, A3 =

0.10 1.19 .01

0.06 0.05 .00

0.04 0.99 .01


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Population Models

• Assume u(0) = (0, 1, 0). That middle group will reproduce 1.1 and

also survive 0.92. The newest and oldest generations are in

u1 = Au0 = (1.1, 0, .92) = column 2 of A.

• Then u2 = Au1 = A2u0 is the 2nd column of A2.

• The early numbers (transients) depend a lot on u0,

but the asymptotic growth rate λmax is the same from every start.

• Solution in terms of eigenvalues/vectors:

– Express initial values as linear combinations of eigenvectors,

i.e. find coefficients c that solve u0 = V c.

– Solution at time k : uk = V Λkc.

– For large k, the leading eigenvalue λ1 dominates
⇝ numbers asymptotically grow like v1λ

k
1c1,

i.e. multiples of leading eigenvector v1 ≈ (.63, .58, .51)
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Population Models
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Size of age group 20-39 years. X-axis represents index of generation (1 generation =

20 years). Red: exact values, Black: Asymptotic model using only the leading

eigenvalue. The red curve starts according to u0 = c(0, 1, 0).
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Population Models: Sensitivity analysis

Model are never exactly right. If the F ’s or P ’s in the matrix change by

10%, does λmax go below 1 (which means extinction)?
⇝ Analyze the sensitivity of eigenvalues to changes ∆A in matrix A.

Consider changes in eigenvalues of perturbed matrix:

(A+∆A)(V +∆V ) = (V +∆V )(Λ +∆Λ)

Ignore “quadratic” terms (∆A)(∆V ) and (∆V )(∆Λ):

A(∆V ) + (∆A)V = V (∆Λ) + (∆V )Λ

V −1A(∆V ) + V −1(∆A)V = (∆Λ) + V −1(∆V )Λ

V −1A(∆V )− V −1(∆V )Λ︸ ︷︷ ︸
Diagonal elements are 0, see next slide

+ V −1(∆A)V = ∆Λ︸︷︷︸
Diagonal matrix

diag(V −1(∆A)V ) = ∆Λ
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Population Models: Sensitivity analysis

V −1A(∆V )− V −1(∆V )Λ︸ ︷︷ ︸
Diagonal elements are 0

Why? Note that AV = V Λ implies V −1A = ΛV −1, so the statement

follows if

diag(ΛB) = diag(BΛ), with B := V −1(∆V ),

but this is the case for any B, because Λ is diagonal!

In our case for ∆A = ±0.1A:

Λ = (1.063,−1.014,−0.008)

∆Λ = ±(0.106,−0.101,−0.001)

So there might be a huge uncertainty...
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Population Models: Sensitivity analysis
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Size of age group 20-39 years. X-axis represents index of generation (1 generation =

20 years). Black: Asymptotic model using only the leading eigenvalue. Dashed blue

lines: perturbed matrix with ∆A = ±0.1A.
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Linear Algebra in Economics

• We have n industries like chemicals, food, and oil.

• To produce a unit of chemicals may require .2 units of chemicals, .3

units of food, and .4 units of oil.

• Consumption in production:chemical

food

oil

 =

.2 .3 .4

.4 .4 .1

.5 .1 .3


chemical input

food input

oil input


• Note: The “real” matrix for the United States in 1958 contained 83

industries. Modern models are much larger and more precise.

• Question: Can this economy meet demands y1, y2, y3 for chemi-

cals, food, and oil?

• To do that, the inputs p1, p2, p3 will have to be higher,

because part of p is consumed in producing y.
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Linear Algebra in Economics

• The input is p and the consumption is Ap, which leaves the

output p−Ap. This net production is what meets the demand y.

• Problem: Find p such that p−Ap = y or p = (I −A)−1y,

assuming the inverse exists.

• The demand vector y is nonnegative, and so is A.

Production levels in p = (I −A)−1y must also be nonnegative.

• The real question is: When is (I −A)−1 a nonnegative matrix?
Answer: If λmax < 1 then (I −A)−1 is nonnegative as desired.

• Why? Series expansion (I − A)−1 = I + A + A2 + · · · . Analog to

geometric series 1 + x+ x2 + · · · = (1− x)−1, for x ∈ [−1, 1]. When

x = 1 the series is 1 + 1 + · · · = ∞. When |x| ≥ 1 the series diverges.

• If you multiply the series S = I+A+A2+ · · · by A, you get the same

series except for I. Therefore S − AS = I, which is (I − A)S = I.

The series adds to S = (I −A)−1 if it converges.

And it converges if all eigenvalues of A have |λ| < 1.
112



Linear Algebra in Economics

• Our case: A > 0⇝ All terms in series ≥ 0 ⇝ sum is (I −A)−1 ≥ 0.

• A =

.2 .3 .4

.4 .4 .1

.5 .1 .3

 has λmax = 0.9 and (I −A)−1 = 1
93

41 25 27

33 36 24

34 23 36

 .

• This economy is productive: A is small compared to I, because

λmax = 0.9. To meet the demand y, start from p = (1−A)−1y.

Then Ap is consumed in production, leaving p−Ap.

This is (1−A)p = y, and the demand is met.

• Other example: A =

[
0 4

1 0

]
has λmax = 2 and (I−A)−1 = −1

3

[
1 4

1 1

]
.

• This consumption matrix A is too large. Demands can’t be met,
because production consumes more than it yields.
The series does not converge to (I −A)−1 because λmax > 1.
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Chapter 1

Linear Systems of Equations

Singular Value Decomposition
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Singular value decomposition

• Remember matrix diagonalization: V −1AV = Λ. Three problems:

– A must be square.

– There are not always enough eigenvectors.

– Only for symmetric matrices, the vi are orthogonal.

• The SVD solves these problems, but at an additional price: we now

have two sets of singular vectors ui and vi.

Denoting by σi the singular values, they are related as:

Avi = σiui and Atui = σivi.

• If r is the rank of A, there will be r positive singular values, say

σ1, . . . , σr > 0. All remaining ones will be zero.
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Calculating the SVD

• Combine the two equations that define a pair u,v:

At(Av) = At(σu) = σ(Atu) = σ(σv) = σ2v.

• So AtAv = σ2v.

Singular values: square roots of the eigenvalues of AtA (note that

AtA is positive semi-definite).

Singular vectors v: eigenvectors of AtA.

• We can always choose orthonormal eigenvectors: Orthonormal basis

always exists, because AtA is symmetric⇝ orthogonally diagonalizable.

• Given vi, σi, compute ui according to ui = σ−1
i Avi, i = 1, . . . , r.

• Arrange singular values on diagonal of a matrix S and singular vectors

as the columns of orthogonal matrices U and V .

• Then we have AV = US and AtU = V S.
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Calculating the SVD: starting with U

• So far: Start with eigenvector decomposition of AtA ⇝ V and S,

then compute ui = σ−1
i Avi.

• Can also start with AAt ⇝ U and S:

AAtu = Aσv = σ(Av) = σ(σu) = σ2u.

Singular values are also the square roots of the eigenvalues of AAt,

and the eigenvectors of AAt are the columns of U .

• Then vi = σ−1
i Atui, i = 1, . . . , r.

• BUT: Don’t mix the two methods. Problem: Eigenvectors only

determined up to the direction: if v is eigenvector of AtA, then also

−v is one: AtAv = λv ⇒ AtA(−v) = λ(−v).

So if you compute both ui and vi as eigenvectors of AAt and AtA,

the signs can be arbitrary ⇝ not necessarily a correct SVD.
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Singular value decomposition

Orthogonality implies AV = US ⇝ AV V t = A = USV t.

Economy version of the singular value decomposition (SVD) of A:

U is m× r, S is r × r, V is n× r.

A = USV t =

 | | | |
u1 u2 . . . ur

| | | |



σ1

σ2
. . .

σr



− vt

1 −
− vt

2 −
...

− vt
r −


What about the remaining n − r vectors vi and the m − r vectors ui

with σi = 0? They span the nullspaces of A and At:

Avj = 0, for j > r

Atuj = 0, for j > r
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Singular value decomposition

Full singular value decomposition (SVD) of A:

U is m×m, S is m× n, V is n× n.

 | | | | | |
u1 u2 . . . ur ur+1 . . . um

| | | | | | |





σ1

σ2
. . .

σr

0
. . .

0
0 0 . . . 0 0 . . . 0
... ... ... ... ... ... ...
0 0 . . . 0 0 . . . 0





− vt
1 −

− vt
2 −
...

− vt
r −

− vt
r+1 −

...
− vt

n −


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SVD and bases for the 4 subspaces

Avj = σjuj, for j ≤ r. Atuj = σjvj, for j ≤ r.

Avj = 0, for j > r. Atuj = 0, for j > r.

• Columns of V with σj > 0 are an orthonormal basis for C(At).
Diagonal elements in S scale the columns in V : Aty = V StU ty,

so the columns of V with nonzero σ span the row space.

• Last n− r columns of V are an orthonormal basis for N(A).

• Columns of U with σj > 0 are an orthonormal basis for C(A).
Diagonal elements in S scale the columns in U : Ax = USV tx, so the

columns of U with nonzero σ span the column space.

• Last m− r columns of U are an orthonormal basis for N(At).
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SVD and bases for the 4 subspaces

v u

r+1v
vn

r

v1

r+1u

um

u

σ

1

1u1

σ r u

row space

nullspace left nullspace

column space

dim m−r

σ

σ

r

r

dim r dim r

dim n−r

r rr

nAv  = 0

1Av  =     u11

R

Av  =     uR
n

m
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SVD and linear systems
Assume A is a n× n matrix. With the SVD decomposition:

Ax = b

USV tx = b

SV tx = U tb

Sz = d, where z = V tx and d = U tb.

Written in blocks this is

σ1

σ2
. . .

σr

σr+1= 0
. . .

σn= 0





z1
z2
...
zr

zr+1
...
zn


=



d1
d2
...
dr

dr+1
...
dn


Solution: zi = di/σi, i = 1, . . . , r. What about the remaining entries?
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SVD and linear systems

Recall: b must be in C(A) (otherwise no solution exists),

last m− r columns of U form basis of orthogonal complement N(At).

Right hand side is

d = U tb =



− ut
1 −

− ut
2 −
...

− ut
r −

− ut
r+1 −

− ut
r+2 −
...

− ut
m −


b =



d1
...

dr
0
...

0



For r + 1 ≤ i ≤ n: 0 · zi = 0 ⇝ can choose them arbitrarily.
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Pseudoinverse

Alternative formalism for SVD solution:

• Write S+ to denote the matrix obtained by replacing each σk in St by

its reciprocal, so S+S =

[
Ir 0

0 0

]
• Then compute:

USV tx = b

SV tx = U tb

Sz = U tb

z̃ = (z[1:r],0)
t = S+U tb

x = V z̃ = V S+U t︸ ︷︷ ︸
A+

b.

A+ is the pseudoinverse of A: it maps b ∈ C(A) back to x ∈ C(At).
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SVD and linear systems

Homogeneous equations:

• Zero right hand side: b = 0

• Columns of V with σj = 0 are an orthonormal basis for the N(A).

• Solved immediately by SVD:
Any column of V whose corresponding σj = 0 yields a solution.

General case:

• Consider arbitrary b. Two cases: does b lie in C(A) or not?

• If YES, there exists a solution x; in fact more than one,

since any vector in the nullspace can be added to x.

• SVD solution x = A+ b is the “purest” solution: the one with smallest

length ∥x∥2. Why? x ∈ C(At), any nonzero component in the

orthogonal nullspace would only increase the length.
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General case

Consider arbitrary b. Two cases: does b lie in C(A) or not?

NO: If b is not in C(A), there is no solution.

But: can compute compromise solution: Among all possible x, it will

minimize the sum of squared errors between left- and right hand side

⇝ least-squares methods.
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SVD and Zeroing

The SVD can solve further numerical problems:

• Zero a small singular value if σj is (too) close to zero.

• This forces a zero coefficient instead of a random large coefficient
that would scale a vector “close to” the nullspace:

x = V z = v1
d1
σ1

+ · · ·+ vr
dr
σr︸ ︷︷ ︸

rowspace

+ vr+1zr+1 + · · ·+ vnzn︸ ︷︷ ︸
nullspace

• Rule of thumb: if the ratio σj/σ1 < ϵm then zero the entry in
the pseudo-inverse matrix, since the value is probably corrupted by
roundoff anyway.
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Chapter 1

Linear Systems of Equations

The condition number
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Conditioning

• Conditioning is a measure of the sensitivity to perturbations, due to
measurement error, statistical fluctuations in the data analysis process,

or caused by roundoff errors.

These perturbations might affect the numerical values in b and/or A.

• Conditioning describes how this problem error ∆b,∆A will affect the

solution error ∆x.

• A function of the problem itself, independent of the algorithm used.

(In practice, however, this separation between the problem and the

algorithm might be less clear as it seems...Example: In elimination, the

values in A change after every elimination step.)
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Vector and matrix norms

• How to compare closeness of two vectors x and x+∆x?

Look at relative quantities like ∥∆x∥
∥x∥ ≤ δ, or ∥∆x∥

∥x+∆x∥ ≤ δ.

• Vector norm properties:
(i) ∥x∥ > 0, ∀x ̸= 0

(ii) ∥ax∥ = |a|∥x∥
(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

• The vector p-norms (ℓp norms) are defined by

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p ≤ ∞,

∥x∥∞ = max(|x1|, · · · |xn|).

• ∥x∥2 is the usual Euclidean norm. What about matrix norms?
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Vector and matrix norms

• y = Ax transforms vector x into y

⇝ A rotates and/or stretches x.

• Consider the effect of A on a unit vector x

(i.e. x so that ∥x∥2 = 1).

• The “largest” Ax value is a measure of the

geometric effect of the transformation A.

• The 2-norm is ∥A∥2 = max∥x∥2=1 ∥Ax∥2.

• Also called the spectral norm of A,

because ∥A∥2 =
√
max(λi) where λi is an eigenvalue of AtA

(See handout on matrix norms).
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Vector and matrix norms

• Two other useful and easier-to-calculate matrix norms:

• ∥A∥1 = maxj
∑m

i=1 |aij| column sum norm.

• ∥A∥∞ = maxi
∑n

j=1 |aij| row sum norm.

• ∥A∥ satisfies vector norm properties PLUS
∥AB∥ ≤ ∥A∥∥B∥ and, in particular, ∥Ax∥ ≤ ∥A∥∥x∥.
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Sensitivity to perturbations

• Original system is Ax = b. Assume that right hand side is changed to

b+∆b because of roundoff or measurement error.

• Then the solution is changed to x+∆x.

Goal: Estimate the change in the solution from the change ∆b.

Subtract Ax = b from A(x+∆x) = b+∆b

to find A(∆x) = ∆b ⇔ ∆x = A−1∆b

∆x = A−1∆b ⇒ ∥∆x∥ ≤ ∥A−1∥∥∆b∥
Ax = b ⇒ ∥b∥ ≤ ∥A∥∥x∥

Multiplication and division of both sides by (∥b∥∥x∥) gives

∥∆x∥
∥x∥

≤ ∥A∥∥A−1∥︸ ︷︷ ︸
k(A)

∥∆b∥
∥b∥

.

133



Sensitivity to perturbations

• Error can also be in the matrix: we have A +∆A instead of the true

matrix A.

• Subtract Ax = b from (A+∆A)(x+∆x) = b

to find A(∆x) = −(∆A)(x+∆x) ⇔ ∆x = −A−1(∆A)(x+∆x)

∥∆x∥ ≤ ∥A−1∥∥∆A∥∥x+∆x∥
∥∆x∥

∥x+∆x∥
≤ ∥A∥∥A−1∥︸ ︷︷ ︸

k(A)

∥∆A∥
∥A∥

.

• Conclusion: Errors can be in the matrix or in the r.h.s.

This problem error is amplified into the solution error ∆x.

Rel. solution error is bounded by k(A) times rel. problem error.
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Condition number

• k(A) = ∥A∥∥A−1∥ is called the condition number of A.

• 1 ≤ k(A) ≤ ∞.

• An ill-conditioned problem has a large condition number.

• Small residual does not guarantee accuracy for ill-conditioned problems:

x̂ is a numerical solution to Ax = b, and ∆x = x− x̂.

Define residual r to represent the error r = b−Ax̂ = b− b̂ = ∆b:

∥∆x∥
∥x∥

≤ k(A)
∥r∥
∥b∥

.

• k(A) is a mathematical property of the coefficient matrix A.

• In exact math a singular matrix has k(A) = ∞. k(A) indicates how

close a matrix is to being numerically singular.
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Condition number

• k(A) can be measured with any matrix p-norm.

• Spectral norm ∥A∥2 =
√
λmax(AtA) = σmax(A)

For an invertible matrix M we have:

Mv = λv ⇒ v = λM−1v ⇒ M−1v = λ−1v,

so M−1 has the same eigenvectors but inverse eigenvalues, and

∥A−1∥2 =
√
λmin(AtA) = σmin(A)⇝ k(A) =

σmax

σmin
.

• Can be generalized to singular/rectangular matrices: k(A) = ∥A∥∥A+∥
= ratio of largest and smallest positive singular value.
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Chapter 1

Linear Systems of Equations

Matrix Exponentials and Differential Equations
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Applications to Differential Equations

Main Idea: Convert constant-coefficient DEs into linear algebra.

• One equation: du
dt = λu has solutions u(t) = ceλt.

• Initial conditions: Choose c = u(0) (since e0 = 1).

• n equations: du
dt = Au, starting from u(0) at t = 0.

• Equations are linear:
If u(t) and v(t) are solutions ⇝ cu(t) + dv(t) is solution.

• Here, A is a constant matrix

⇝ compute eigen-vectors and -values satisfying Av = λv.

• Substitute u(t) = eλtv into du
dt = Au:

⇝ λeλtv = Aeλtv ⇔ Av = λv.
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First Order Equations

• All components of this special solution u(t) = eλtv share the same

time-dependent scalar eλt.

• Real eigenvalues: λ > 0 ⇝ solution grows, λ < 0 ⇝ solution decays.

• Complex eigenvalues: Real part describes growth/decay, imaginary

part ω gives oscillation like a sine wave: eiωt = cos(ωt) + i sin(ωt).

• Complete solution is linear combination of special solutions for each
(v, λ)-pair. Coefficients are determined by initial conditions.

• Recipe (assuming no repeated eigenvalues ⇝ n eigenvectors):

– Write u(0) as combination of eigenvectors c1v1 + · · ·+ cnvn

– Multiply vi by eλit

– Solution is u(t) = c1e
λ1tv1 + · · ·+ cne

λntvn.
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Second Order Equations
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Spring-Mass Systems: Equilibrium

• The mass comes to an equilibrium position because the force of gravity,

FG, balances the restoring force of the spring, FS.

• Hooke’s law: the force needed to extend or compress a spring by some

distance scales linearly with respect to that distance:

FS = −k(s + x), where s is the equilibrium position. k is the spring

constant, or “stiffness” parameter.

• Newton’s first law of motion:
The sum of the forces acting on a body at rest must equal zero∑

F = Ftot = FG + FS = 0

= mg − ks = 0
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Spring-Mass Systems: Equilibrium

• Newton’s Second law:
The change of momentum is proportional to the force impressed

Ftot = mv̇ = mẍ = mg − ks︸ ︷︷ ︸
=0

− kx.

• Second order equation:

mẍ+ bẋ+ kx = 0.

• In real systems, there will always be an additional damping term,

proportional to the velocity:

mass
m ẍ

acceleration
+ bẋ

damping
+ kx

restoring force
= 0
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Second Order Equations

• Mechanics is dominated by

mass
m ẍ

acceleration
+ bẋ

damping
+ kx

restoring force
= 0

Linear second-order equation with constant coefficients m, b, k.

• Assume m = 1. define u = (x, ẋ)t. The two eqs.

dx

dt
= ẋ and

dẋ

dt
= −kx− bẋ

convert to
d

dt
u = Au ⇝

d

dt

[
x

ẋ

]
=

[
0 1

−k −b

] [
x

ẋ

]
• Reduction to first-order system!
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Second Order Equations: No damping

• Special case: No damping (b = 0). Define k = ω2

• Determinant |A− λI| = λ2 + ω2 !
= 0

⇝ two distinct eigenvalues λ1, λ2 = ±iω

• Solving |A−λI| = 0⇝ two eigenvectors, v1 = (1, iω)t,v2 = (1,−iω)t.

• Solution:

u(t) = c1e
λ1tv1 + c2e

λ2tv2.

First component: x(t) (position),

Second component: ẋ(t) (velocity).

• Constants c1,2 can be determined from initial conditions x(0) and ẋ(0).
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Second Order Equations

• With the identity eix = cos(x) + i sin(x), we finally get the familiar

harmonic oscillations:

x(t) = A cos(ωt) +B sin(ωt) = α sin(ωt+ ϕ),

for some real constants A,B, α, ϕ, determined by the initial conditions.
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Stability

Consider general ODE problem d
dtu = Au

Q.: Does the solution approach u = 0 as t → ∞?

I.e. Is the problem stable, by dissipating energy?

A.: Depends on eigenvalues!

• Solutions are linear combinations of eλitx.

• If λ is real, then we need λ < 0 for stability.

• In general, eigenvalues are complex, i.e. λ = R+ iI ⇝ eλt = eRteiIt.

• The factor eiIt has absolute value = 1:

eiIt = cos(It) + i sin(It) ⇒ |eiIt|2 = cos2(It) + sin2(It) = 1.

• The factor eRt controls growth (R > 0, instability)
or decay (R < 0, stability)
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Stability

• For a 2 × 2 matrix A =

[
a b

c d

]
, two conditions guarantee that all

eigenvalues have negative real part: The trace T = a + d must be

negative, and the determinant D = ad− bc must be positive: Why?

• |A − λI| = λ2 − Tλ + D = 0 ⇝ 2λ1,2 = T ±
√
T 2 − 4D Assume

eigenvalues are complex, i.e. T 2 < 4D. Both T and D are real, which

implies R(λ1) = R(λ2) = T , I(λ1) = −I(λ2).

• Thus, T < 0 implies that the real part R is negative ⇝ stable.

• Parabola T = 4D separates real from complex eigenvalues.

Gilbert Strang: Linear Algebra and Its Applications, 4th edition.
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Damped oscillations

• FD = −bẋ describes damping, or friction, proportional to velocity.

d

dt
u =

d

dt

[
x

ẋ

]
=

[
0 1

−k −b

] [
x

ẋ

]

• Solving |A− λI| = 0 ⇝ λ1,2 =
−b±

√
b2−4mk
2m

• Two different regimes: Overdamped: b2 > 4mk

⇝
√
b2 − 4mk < b ⇝ λ1,2 < 0, x(t) = c1e

λ1t + c2e
λ2t

Underdamped: b2 < 4mk ⇝ R(λ1) = R(λ2) = − b
2m < 0.
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Forced Oscillations

• So far: the right-hand side of the ODE is zero:

natural modes of the spring-mass system

• In many applications there is an external forcing

mass
m ẍ

acceleration
+ bẋ

damping
+ kx

restoring force
= f(t)

• A general solution can be written as

x(t) = xh(t)︸ ︷︷ ︸
solves mẍ+bẋ+kx=0

+ xp(t)︸ ︷︷ ︸
A particular solution

• In a damped system, xh vanishes over time and xp

dictates the long-term behavior

⇝ steady-state solution
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Resonance

• Systems that are not overdamped have their own natural modes or

resonant frequencies

• Example ẍ(t) + x(t) = 5 cos(t).

Homogeneous solution is xh(t) = A sin(t+ ϕ).

Particular solution is xp(t) =
1
2t sin(t) (can be easily checked).

Total solution: x(t) = xh + xp(t) = A sin(t+ ϕ) + 1
2t sin(t).
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Happens in real systems with damping, too...
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Higher Order Systems

• Consider a 3rd-order equation with constant coefficients

...
x +Bẍ+ Cẋ+Dx = 0

• Define u = (x, ẋ, ẍ)t. The three eqs.

dx

dt
= ẋ,

dẋ

dt
= ẍ, and

dẍ

dt
= −Dx− Cẋ−Bẍ

convert to

d

dt
u = Au ⇝

d

dt

xẋ
ẍ

 =

 0 1 0

0 0 1

−D −C −B


xẋ
ẍ


• Again a reduction to a first-order system!
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The exponential of a matrix

• If there are n independent eigenvectors: Complete solution is

linear combination of special solutions for each (v, λ)-pair.

More general & compact version?

• Taylor series of function f(x) is
∑∞

n=0
f (n)(a)

n! (x− a)n, where f (n)(a)

is the n-th derivative of f at point a.

• Exponential function, a = 0: ex = 1 + x+ 1
2x

2 + 1
6x

3 + · · ·
• Substitute square matrix At for x:

eAt = I +At+
1

2
(At)2 +

1

6
(At)3 + · · ·

d

dt
eAt = A+A2t+

1

2
A3t2 + · · · = AeAt

⇝ we immediately see that u = eAtu(0) solves d
dtu = Au.
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The exponential of a matrix

Simple case: n indep. eigenvectors⇝ A is diagonalizable⇝ A = V ΛV −1:

eAt = I + V ΛV −1t+
1

2
(V ΛV −1t)2 + · · ·

= V

[
I + Λt+

1

2
(Λt)2 + · · ·

]
V −1

= V eΛtV −1 = V

eλ1t

. . .

eλnt

V −1.

Substitute in general form of solution:

u(t) = eAtu(0) = V eΛt V −1u(0)︸ ︷︷ ︸
=c, since V c=u0

= c1e
λ1tv1 + · · ·+ cne

λntvn.
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The exponential of a matrix

What if there are not enough eigenvectors? Example:

d

dt
u = Au ⇝

d

dt

[
y

ẏ

]
=

[
0 1

−1 2

] [
y

ẏ

]
det(A−λI) = λ2−2λ+1 = (λ−1)2 = 0⇝ repeated e.value λ1 = λ2 = 1

⇝ only one eigenvector ⇝ diagonalization not possible.

Idea: Use Taylor series directly. Series ends after linear term!

eAt = eIte(A−I)t = et[I + (A− I)t+
1

2
(A− I)2︸ ︷︷ ︸

0

t2 + 0 + · · · ]

u(t) = eAtu(0) = et
[
I +

[
−1 1

−1 1

]
t

]
u(0)

First component: y(t) = et y(0)− tet y(0) + tet ẏ(0).
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Adding a source term

• We now know that when A is constant in time, the solution to
d
dtu = Au is eAtu(0).

• Now consider an additional source term: d
dtu(t) = Au(t) + f(t).

Idea: Massage this equation and integrate:

u̇(t)−Au(t) = f(t)

eAt d

dt

[
e−Atu(t)

]
︸ ︷︷ ︸
e−Atu̇−Ae−Atu

= f(t)

d

dt

[
e−Atu(t)

]
= e−Atf(t)

156



Adding a source term

Integrating both sides gives∫ t

0

d

ds

[
e−Asu(s)

]
ds =

∫ t

0

eA(−s)f(s)ds

The left side is∫ t

0

d

ds

[
e−Asu(s)

]
ds =

[
e−Atu(t)

]
−
[
e−A0u(0)

]
= e−Atu(t)− u(0)

Finally,

u(t) = eAtu(0)︸ ︷︷ ︸
homogeneous sol.

+

∫ t

0

eA(t−s)f(s)ds︸ ︷︷ ︸
particular sol.

.

In a stable system, uhom vanishes over time and upart dictates the long-

term behavior ⇝ steady-state solution
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Applications of ODEs

Application 1: Modeling the Carbon Cycle

Public Domain, https://commons.wikimedia.org/w/index.php?curid=19434238
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The Carbon Cycle: Box Models

• Most carbon cycle models are box models: The total CO2 is split into

boxes. The boxes exchange CO2 with certain rates (often determined

via experimental fitting)

• The simplest non-trivial models of this kind contain 3 boxes:

Atmosphere, Upper Ocean and Lower Ocean. More sophisticated

models include many more boxes, representing different regimes in the

ocean and the biosphere.
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The Carbon Cycle: Box Models
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The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model

for global carbon cycle-climate simulations, https://doi.org/10.5194/gmd-11-1887-2018
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The BEAM model

• Introduced in (Glotter et al., Climatic Change (2014)) as a simple

generalization of classical models.

• Based on a 3-box carbon cycle model first outlined by Bolin and

Eriksson (1959)

• BEAM: “Bolin and Eriksson Adjusted Model”

• Taking into account nonlinearities of CO2 uptake in the upper ocean.

• No longer a constant coefficient ODE model: Parameters describ-

ing the exchange between boxes vary over time, reflecting different

dependencies on environmental conditions.
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The BEAM model

• MAT − A · B · MUP : disequilibrium between atmospheric and ocean

inorganic carbon.

• A is the ratio of atmosphere to ocean CO2 concentration at equilibrium,

which is weakly dependent on temperature:
a warmer ocean holds less dissolved CO2.

• B is the ratio of dissolved CO2 to total ocean inorganic carbon at

equilibrium, a strong function of acidity:
more acidic seawater stores less inorganic carbon.
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The BEAM model

• Variation in B in particular alters uptake rates dramatically

⇝ very different (and more realistic!) model behavior as compared to

linear variant of this model: Dynamic Integrated model of Climate
and the Economy (DICE) (Nordhaus, 1993, 2008, 2010).

• Uptake of CO2 proceeds when concentrations in the atmosphere and

upper ocean are out of equilibrium (MAT ̸= A ·B ·MUP ).

• Crucial insight from ocean carbon chemistry: dissolved inorganic carbon

species are partitioned between

carbon dioxide CO2, bicarbonate (HCO –
3 ), carbonate (CO 2–

3 ).

in proportions fixed by the ocean’s acidity.
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Carbon chemistry

• Assumption: instantaneous repartitioning of inorganic carbon species:

CO2 + H2O −−⇀↽−− HCO –
3 + H+ −−⇀↽−− CO 2–

3 + 2H+

• Partitioning set by dissociation coefficients k1 and k2 and acidity (pH)
of seawater (pH = neg. log of concentration of hydrogen ions)

Introduction to Oceanography, Paul Webb, rwu.pressbooks.pub/webboceanography/
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Carbon chemistry

• The carbon storage factor 1/B :

equilibrium ocean total inorganic carbon relative to dissolved CO2:

1

B
=

[CO2] + [HCO −
3 ] + [CO 2−

3 ]

[CO2]
= 1 +

k1

[H+]
+

k2

[H+]2

Introduction to Oceanography, Paul Webb, rwu.pressbooks.pub/webboceanography/
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Carbon chemistry

• Higher acidity reduces the ocean’s ability to store carbon.
(higher [H+], lower pH)

• But: Dissolved CO2 itself acts a weak acid.

• Any ocean uptake of CO2 reduces the efficiency of future uptake.

At present, bicarbonate dominates DIC and the carbon storage factor is ≈ 170. In a more acidic ocean (lower pH), CO2 becomes more significant and
the carbon storage factor drops. At pH below 5, CO2 dominates and the carbon storage factor approaches 1.

Glotter et al., Climatic Change (2014), 126:319-335.
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Back to the BEAM model...

ODE system with time dependent coefficient A ·B = (AB)(t):

d

dt

 mAT

mUP

mLO

 =

 −ka ka ·AB 0

ka −(ka ·AB)− kd
kd
δ

0 kd −kd
δ


 mAT

mUP

mLO

+

 e

0

0


No analytic solution possible⇝ discretize time and use implicit scheme

(cf. slides on the heat equation).

d

dt
m(t) = D(t)m(t) + e(t) ≈ m(t+1) −m(t)

∆t
= D(t)m(t+1) + e(t)

.

update m(t+1) = (I −∆t ·D(t))−1(m(t) +∆t · e(t)).
update D(t+1) as a function of new carbon mass m(t+1).

167



Simulations: Constant emissions
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Coupling to Temperature Model

• Just as the ocean takes up CO2 in response to atmospheric CO2

perturbations, it also takes up heat in response to surface warming,
with a long equilibration time because of the large thermal inertia of

the ocean.

• In BEAM, the DICE 2007 temperature model was used:
Heat uptake is represented by a linear model (which seems to be a

realistic assumption for heat uptake).

• Many of the coefficients in DICE 2007 temperature model are calibrated

to the MAGICC model (Wigley et al, 2007) or taken from the IPCC

(2001) and IPCC (2007).

• Dynamic Integrated model of Climate and the Economy (DICE)
(Nordhaus, 1993, 2008, 2010): Essentially the same model, but without

proper handling of the ocean chemistry.
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Coupling to Temperature Model

• The temperature model uses two layers, the atmosphere and lower

ocean; the upper ocean is assumed to follow atmospheric temperature.
• Radiative forcing F due to increased atmospheric CO2 warms the
atmosphere (and upper ocean), producing a disequilibrium with the
lower ocean that is eroded with timescales 1/µ:

TAT (t) = TAT (t− 1)

+µAT · [Λ · (Teq(t)− TAT (t− 1))− γ · (TAT (t− 1)− TLO(t− 1))]

TLO(t) = TLO(t− 1) + µLO · γ · (TAT (t− 1)− TLO(t− 1)).

– γ relates atmosphere-ocean heat transfer to temperature anomaly

(γ = 0.3W/m2/◦C)

– Λ is climate sensitivity (1.3W/m2/◦C);

– F (t) is the increase in radiative forcing since pre-industrial, in W/m2;

– Teq(t) is the equilibrium temperature that would be produced by that

forcing: Teq(t) = F (t)/Λ.
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Radiative forcing

• Concept to quantify the change in energy balance in the atmosphere.

• Defined as ”the change in the net radiative flux (W/m2) due to a

change in an external driver of climate change.”

By Eric Fisk - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=81034563
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Coupling to Temperature Model

• Forcing F (t) is assumed to be linear with the binary logarithm of

the fractional change in CO2 since pre-industrial times, a standard

assumption in climate science:

F (t) = α · log2(MAT (t)/MAT (PI)),

where MAT (PI) is the mass of pre-industrial atmospheric carbon

(596.4 Gt, equivalent to 280 ppm CO2) and α is the assumed forcing

increase per doubling of CO2 (α = 3.8W/m2).

• The climate sensitivity Λ is derived by dividing α by β , the assumed

equilibrium warming after doubling of CO2 (β = 3.0 ◦C / doubling).
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IPCC emission scenarios

Left: Annual Carbon Emissions for the Various IPCC SRES Scenarios. Credit: Robert A. Rohde / Global Warming Art

Right: Observed Historic Emissions Compares with the Various IPCC SRES Scenarios. Credit: The Copenhagen Diagnosis.
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Simulated Carbon and Temperature Anomalies

From (Glotter et al., Climatic Change (2014), 126:319-335)
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Towards more realistic models

www.pmel.noaa.gov/co2/file/Ocean+Carbon+Uptake+Image
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The biological carbon pump

Public Domain, https://commons.wikimedia.org/w/index.php?curid=47248209

176



Inclusion of biosphere

Public Domain, https://commons.wikimedia.org/w/index.php?curid=19434238
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Terrestrial carbon in the water cycle

By Nicholas D. Ward, Thomas S. Bianchi, Patricia M. Medeiros, Michael Seidel, Jeffrey E. Richey, Richard G. Keil and Henrique O. Sawakuchi - [1]

doi:10.3389/fmars.2017.00007, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=95813068
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The Bern Simple Climate Model (BernSCM)
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The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model

for global carbon cycle-climate simulations, https://doi.org/10.5194/gmd-11-1887-2018
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Applications of ODEs

Application 2: Modeling the COVID-19 pandemic

The family of MSEIR models:
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The simplest useful model: SIR

SIR model ( W.O. Kermack & A.G. McKendrick, 1927): simple mathe-

matical model of epidemics. An epidemic is when the number of people

infected with a disease is increasing in a population.

S(t), I(t), and R(t) stand for:

S - susceptible. These are people that are not infected with the disease

yet. However, they are not immune to it either, and so they can become

infected with the disease in the future.

I - infected or infectious. These are people that are infected with the

disease and can transmit the disease to susceptible people.

R - recovered. These are people who have recovered from the disease and

are immune, so they can no longer be infected with the disease.
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The simplest useful model: SIR
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Is this a linear algebra problem?

• Letting u(t) = (S(t), I(t), R(t))t , can we write du(t)
dt = Au(t)

for some matrix A that does not depend on S, I,R?

• Sadly, no...the expressions contain multiplications between S and I:

dS(t)

dt
= −β

I(t)

N
S(t)

• A superposition of two solutions is in general not a solution

• Perhaps not everything is lost...

• Technical note: In the following figure, I rewrote the equations in terms

of fractions s = S/N, i = I/N, r = R/N ⇝ s+ i+ r = 1.

Further, I introduced the new parameter R0 =
β
γ :

ds(t)
dt = −γR0i(t)s(t),

di(t)
dt = γR0i(t)s(t)− γi(t), dr(t)

dt = γi(t).
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SIR curves

Note: s+ i+ r = 1
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Stability of dynamical systems / ODEs

f(t) = f(t0) + f′ (t0)(t − t0) + O( | t − t0 |
2 )

37

Key principle When things are non-linear, linearize them!

Taylor series (first two terms)

Key question Linearize about which point? How to choose ?t0



Equilibria of dynamical 

systems

du(t)

dt
= F(t, u(t))

du

dt
= 0 F(t, u(t)) = 0⟺

38

Good choice: equilibria of

In an equilibrium,  does not change:u

What happens when we tap a system in equilibrium?



Stable and unstable equilibria

UnstableStable

du

dt
= 0

du

dt
= 0
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A stability criterion

40

du

dt
= αu• Let us look at a simple first-order ODE 

• Equilibria are at  which is solved by 
du

dt
= 0 u = u0 = 0

• We know that a general solution is given as u(t) = ceαt

When we perturb the system around an equilibrium, do we  

come back to the equilibrium or we go away from it?

• Thus starting from a point , do we go back to  or not?  

We already know this!

u(0) = u0 + ϵ = ϵ 0

α < 0 stable α > 0 unstable



A stability criterion

The key parameter in a linear fist-order ODE is α.

We would like to generalize to du
dt = f(u) with a nonlinear f(u).

For the linear f(u) = αu, the key parameter α equals f ′(u):

α = d
du(αu) = f ′(u)...Coincidence?

What happens when we move very slightly out of an equilibrium u0,

i.e. u = u0 + ϵ(t)?

d(u0 + ϵ(t))

dt
=

dϵ(t)

dt
=f(uo + ϵ) ≈ f(uo) + f ′(u0)(u− u0) = f ′(u0)︸ ︷︷ ︸

const. scalar

ϵ

We effectively linearized our nonlinear equation around uo!
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Example 1: Simple 1D systems

43

du

dt
= αu

du

dt
= u − u2

du

dt
= u − u3

du

dt
= 0 u0 = 0 u0 = 0, 1 u0 = 0, ± 1

Stable?
α < 0 U = 0

U = 1

U = 0

U = 1

U = − 1

✓ ✘

df

du
u=U

α
f′ (0) = 1

f′ (1) = − 1

f′ (0) = 1

f′ (±1) = − 2

✓

✘

✓
✘α > 0 ✓



A quick numerical check…

44

u0 = 0.001

u0 = − 0.001

u0 = 3

u0 = 0



More than one variable

du(t)

dt
= F (u)

Taylor series (first two terms)

F (u) = F (u0) +∇uF
∣∣
u=u0

(u− u0) +O(∥u− u0∥2)

∇uF is the Jacobian matrix:

∇uF =

[
dF1
du1

dF1
du2

dF2
du1

dF2
du2

]
u = u0 + ϵ ⇝ truncation after linear term ⇝ new linear system

d(u0 + ϵ)

dt
=

dϵ(t)

dt
, ϵ = u− u0 ⇝

dϵ

dt
=
(
∇F

∣∣
u=u0

)
ϵ = J(u0)ϵ.

Stability of equilibria: analyze eigenvalues of J!
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OK, back to COVID…

49
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Application to the SIR model

• Note that r = 1 − s − i ⇝ sufficient to consider two equations:
ds(t)
dt = −γR0i(t)s(t),

di(t)
dt = γR0i(t)s(t)− γi(t)

• Defining function F : R2 → R2, write ODEs as

d

dt

[
s

i

]
= F (s, i) =

[
F1(s, i)

F2(s, i)

]
• If s(t) and i(t) don’t change, neither does r...

⇝ Consider equilibria ds
dt = 0, di

dt = 0

and assume r(t) = 0 (before the epidemic started):

⇝ Epidemic equilibria (s, i) = (1, 0), (s, i) = (0, 0)

• Taylor series (first two terms)

F (u) = F (u0) +∇uF
∣∣
u=u0

(u− u0) +O(∥u− u0∥2)
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Linearize around the (1,0) equilibrium

d

dt

[
s

i

]
= F (s, i) =

[
−γR0is

γR0is− γi

]
, (close to ϵ0 :)

[
s

i

]
=

[
1

0

]
+ ϵ(t)

Taylor expansion, truncation after linear term:

d

dt
ϵ(t) =

[
d
ds(−γR0is)

d
di(−γR0is)

d
ds(γR0is− γi) d

di(γR0is− γi)

]
s=1,i=0

ϵ(t)

Finally:
d

dt
ϵ(t) =

[
0 γR0

0 γR0 − γ

]
ϵ(t) = J(ϵ0)ϵ(t).

Eigenvalues of Jacobian: |J − λI| = 0 ⇝ −λ(γ(R0 − 1)− λ) = 0

⇝ λ1 = 0, λ2 = γ(R0 − 1)

⇝ R0 > 1 ⇒ epidemic, R0 < 1 ⇒ no epidemic.
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Phase Portraits: The Role of R0

Idea: Start the evolution of the system at many points and track where

it goes...
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Extending the model

Improve model by adding a 4th compartment, E: Exposed individuals
who will become infected after an incubation period

ds(t)

dt
= −γR0i(t)s(t), λ = βi = γR0i

de(t)

dt
= γR0i(t)s(t)− σe(t),

di(t)

dt
= σe(t)− γi(t),

dr(t)

dt
= γi(t), s+ e+ i+ r = 1.
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Mitigation

The idea is that R0 can be influenced by policy – a lockdown hopefully

makes it smaller

R0 does not change instantaneously:

dR0

dt
= η(Rtarget −R0)

It will be interesting to track the cumulative caseload c = i+ r and the

number of deaths:

d c(t)

dt
=

d (i+ r)(t)

dt
= σe(t)

d d(t)

dt
= δ

d r

dt
= δγi(t)
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Modeling in python
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Introducing lockdown
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Lifting lockdown
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