
Chapter 2

Least squares problems



Linear curve fitting

• Notation: n objects at locations xi ∈ Rp.

Every object has measurement yi ∈ R.
• Approximate “regression targets” y as a

parametrized function of x.

• Consider a 1-dim problem initially.

• Start with n data points (xi, yi), i = 1, . . . , n.

• Choose d basis functions g0(x), g1(x), . . . .

• Fitting to a line uses two basis functions

g0(x) = 1 and g1(x) = x . In most cases n≫ d.

• Fit function = linear combination of basis functions:
f(x;w) =

∑
j wjgj(x) = w0 + w1x.

• f(xi) = yi exactly is (usually) not possible, so approximate f(xi) ≈ yi

• n residuals are defined by ri = yi − f(xi) = yi − (w0 + w1xi).
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Calculus or algebra?

• Quality of fit can be measured by

residual sum of squares
RSS =

∑
i r

2
i =

∑
i[yi − (w0 + w1xi)]

2.

• Minimizing RSS with respect to w1 and w0

provides the least-squares fit.

• To solve the least squares problem we can

1. set the derivative of RSS to zero

⇝ calculus, or
2. solve an over-determined system
⇝ algebra: w0 + w1xi = yi, i = 1, . . . , n

• The results you get are...

– mathematically the same, but
– have different numerical properties.
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Matrix-vector form

• Write f(x) ≈ y in matrix-vector form for n observed points as
1 x1

1 x2
... ...

1 xn


︸ ︷︷ ︸

X

[
w0

w1

]
︸ ︷︷ ︸

w

≈


y1
y2
...

yn


︸ ︷︷ ︸

y

• We minimize the sum of squared errors, which is the squared norm of

the residual vector r = y −Xw:

RSS =

n∑
i=1

(yi − (Xw)i)
2 = ∥y −Xw∥2 = ∥r∥2 = rtr.

• RSS = 0 only possible if all the data points lie on a line.
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Basis functions

X has as many columns as there are basis functions. Examples:

• High-dimensional linear functions
x ∈ Rp, g0(x) = 1 and g1(x) = x1, g2(x) = x2, . . . , gp(x) = xp.

Xi• = gt(xi) = (1,— xt
i —), (i-th row of X)

f(x;w) = wtg = w0 + w1x1 + · · ·+ wpxp.

• Document analysis: Assume a fixed collection of words:

x = text document

g0(x) = 1

gi(x) = #(occurences of i-th word in document)

f(x;w) = wtg = w0 +
∑

i∈words

wigi(x).
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Solution by Calculus

RSS = rtr = (y −Xw)t(y −Xw)

= yty − ytXw −wtXty +wtXtXw

= yty − 2ytXw +wtXtXw.

Minimization: set the gradient (vector of partial derivatives) to zero:

∇wRSS =
∂RSS

∂w

!
= 0.

We need some properties of vector derivatives:

∂(Ax)/∂x = At

∂(xtA)/∂x = A

∂(xtAx)/∂x = Ax+Atx (if A is square)
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Normal Equations

∂RSS

∂w
=

∂

∂w

[
yty − 2ytXw +wtXtXw

]
= −2Xty + [XtXw + (XtX)tw]

= −2Xty + 2XtXw = 0

Normal equations: XtXw = Xty.
Could solve this system. But: All solution methods based on normal

equations are inherently susceptible to roundoff errors:

k(X) = σmax/σmin, where XtXvi = σ2
i vi

k(XtX) = µmax/µmin, where XtXXtXvi = µ2
ivi

XtXXtXvi = XtXσ2
i vi = σ4

i vi ⇒ µi = σ2
i

⇒ k(XtX) = k2(X),

The algebraic approach will avoid this problem!
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From Calculus to Algebra

∂RSS(w)

∂w
= −2Xty + 2XtXw

!
= 0

⇒Xt(y −Xŵ) = Xtr = 0 ⇒ r ∈ N(Xt).

• Every Xw is in column space C(X),

residual r is in the orthogonal complement N(Xt) (left nullspace).

• Let ŷ be the orthogonal projection of y on C(X)

⇝ y can be split into ŷ ∈ C(X) + r ∈ N(Xt).

X[.,1]

X[.,2]

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)
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Algebraic interpretation

• y = ŷ ∈ C(X) + r ∈ N(Xt) ⇝ Consider over-determined systems

Xw = y = ŷ + r (solution impossible, if r ̸= 0)

Xŵ = ŷ (solvable, since ŷ ∈ C(X)!)

• The solution ŵ of Xw = ŷ makes the error as small as possible:

∥Xw − y∥2 = ∥Xw − (ŷ + r)∥2 = ∥Xw − ŷ∥2 + ∥r∥2

Reduce ∥Xw− ŷ∥2 to zero by solving Xŵ = ŷ and choosing w = ŵ.

Remaining error ∥r∥2 cannot be avoided, since r ∈ N(Xt).

XtXŵ = Xtŷ = Xty ⇒ ŵ = (XtX)−1Xty (if XtX invertible).

• The fitted values at the sample points are ŷ = Xŵ = X(XtX)−1Xty.

• H = X(XtX)−1Xt is called hat matrix (puts a “hat” on y ⇝ ŷ).
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Algebraic interpretation

• Left nullspaceN(Xt) is orthogonal complement of column space C(X).

• H is orthogonal projection on C(X):

HX = X(XtX)−1XtX = X, HN(Xt) = 0.

• M = I −H is orthogonal projection on nullspace of Xt:

MX = (I −H)X = X −X = 0, MN(Xt) = M.

• H and M are symmetric (Ht = H) and idempotent (MM = M)

The algebra of Least Squares:
H creates fitted values: ŷ = Hy ⇝ ŷ ∈ C(X)

M creates residuals: r = My ⇝ r ∈ N(Xt)
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Algebraic interpretation

XtX is invertible iff X has linearly independent columns.

Why? XtX has the same nullspace as X:

(i) If a ∈ N(X), then Xa = 0 ⇒ XtXa = 0 ⇝ a ∈ N(XtX).

(ii) If a ∈ N(XtX), then atXtXa = 0 ⇔ ∥Xa∥2 = 0,

so Xa has length zero ⇒ Xa = 0.

Thus, every vector in one nullspace is also in the other one.

So if N(X) = {0}, then XtX ∈ Rd×d has full rank d.

When X has independent columns, XtX is positive definite.

Why? XtX is clearly symmetric and invertible.

To show: All eigenvalues > 0

XtXv = λv ⇝ vtXtXv = λvtv ⇝ λ = ∥Xv∥2
∥v∥2 > 0.
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SVD for Least-Squares

• Goal: Avoid numerical problems for normal equations:

XtXw = Xty, k(XtX) = k2(X).

• Idea: Apply the SVD directly to Xn×d.

• The squared norm of the residual is

RSS = ∥r∥2 = ∥Xw − y∥2

= ∥USV tw − y∥2

= ∥U(SV tw − U ty)∥2

= ∥SV tw − U ty∥2

Last equation: U is orthonormal ⇝ ∥Ua∥2 = atU tUa = ata = ∥a∥2.

• Minimizing RSS is equivalent to minimizing

∥Sz − c∥2 where z = V tw and c = U ty.
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SVD and bases for the 4 subspaces
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SVD and LS

• ∥r∥2 = ∥Sz − c∥2 written in blocks:∥∥∥∥∥∥∥∥∥∥∥∥


σ1 0 . . . 0
0 σ2 . . . 0
0 0 . . . σd

0 0 . . . 0
... ... ... ...
0 0 . . . 0




z1
z2
...
zd

−


c1
...
cd

cd+1
...
cn



∥∥∥∥∥∥∥∥∥∥∥∥

2

• To choose z so that ∥r∥2 is minimal requires zi = ci/σi, i = 1, . . . , d

⇝ r1 = r2 = · · · = rd = 0.

• Unavoidable error: RSS = ∥r∥2 = c2d+1 + c2d+2 + · · ·+ c2n.

• For very small singular values, use zeroing. RSS will increase:

One additional term (usually small): RSS′ = c2d+c2d+1+c2d+2+· · ·+c2n,

but often significantly better precision (reduced condition number).
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Classification

Classification: Find class boundaries based on training data

{(x1, y1), . . . , (xn, yn)}. Use boundaries to classify new items x∗.

Here, yi is a discrete class indicator (or “label”). Example: Fish-packing plant

wants to automate the process of sorting fish on conveyor belt using optical sensing.
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

(Duda, Hart, Stork, 2001)

(Duda, Hart, Stork, 2001)
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Linear Discriminant Analysis (Ronald Fisher, 1936)
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FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

(Duda, Hart, Stork, 2001)

Main Idea: Simplify the problem by projecting down to a 1-dim subspace.

Question: How should we select the projection vector, which optimally

discriminates between the different classes?
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Separation Criterion

• Let mj an estimate of the class means µj:

my =
1

ny

∑
x∈class y

x, ny = #(objects in class y).

• Projected samples: x′
i = wtxi, i = 1, 2, . . . , n. Projected means:

m̃y =
1

ny

∑
x∈class y

wtx = wtmy.

• First part of separation criterion (two-class case):

max
w

[wt(m1 −m2)]
2 = max

w
[m̃1 − m̃2]

2.

• There might still be considerable overlap...

⇝ should also consider the scatter or variance.
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Separation Criterion

Two Gaussians with the same mean distance, but different variances:
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Excursion: The multivariate Gaussian distribution
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Probability density function:

p(x;µ,Σ) = 1√
2π|Σ|

exp(−1
2(x− µ)tΣ−1(x− µ))
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Excursion: The multivariate Gaussian distribution

Covariance
(also written “co-variance”)

is a measure of how much

two random variables vary
together. Can be positive,

zero, or negative.
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Sample covariance matrix Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)t,

with sample mean x = 1
n

∑n
i=1xi = m. If m = 0 ⇝ Σ̂ = 1

nX
tX.
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Separation Criterion

• Assume both classes are Gaussians with the same covariance matrix.

Let ΣW be an estimate of this “within class” covariance matrix:

Σy =
1

ny

∑
x∈class y

(x−my)(x−my)
t,

ΣW = 0.5(Σ1 +Σ2).

• Variance of projected data:

Σ̃y =
1

ny

∑
x∈class y

(wtx− m̃y)(w
tx− m̃y)

t

=
1

ny

∑
x∈class y

wt(x−my)(x−my)
tw = wtΣyw

Σ̃W = 0.5(Σ̃1 + Σ̃2) = wtΣWw ∈ R+

• Strategy: ∆2
m̃ = (m̃1 − m̃2)

2 should be large, Σ̃W small.
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Separation Criterion

J(w) =
∆2

m̃

Σ̃W

=
wt

=:ΣB︷ ︸︸ ︷
(m1 −m2)(m1 −m2)

tw

wtΣWw
.

∂

∂w
J(w) =

∂

∂w

wtΣBw

wtΣWw

!
= 0

= − wtΣBw

(wtΣWw)2
2ΣWw +

1

wtΣWw
2ΣBw

⇒ wtΣBw

wtΣWw
(−ΣWw) + ΣBw = 0

⇒ ΣBw =
wtΣBw

wtΣWw
ΣWw =: λ ΣWw
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Separation Criterion

• Let ΣW be non-singular:

[
Σ−1

W ΣB

]
w︸ ︷︷ ︸

∆m∆t
mw∝∆m

= λw, with λ =
wtΣBw

wtΣWw
= J(w).

• Thus, w is an eigenvector of Σ−1
W ΣB, the associated eigenvalue is the

objective function! Maximum: eigenvector with largest eigenvalue.

• Unscaled Solution: ŵ = Σ−1
W ∆m = Σ−1

W (m1 −m2).

• This is the solution of the linear system ΣWw = m1 −m2.

• ΣW is a covariance matrix⇝ there is an underlying data matrix A such

that ΣW ∝ AtA ⇝ potential numerical problems: squared condition

number compared to A...
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Discriminant analysis and least squares

Theorem: The LDA vector ŵLDA = Σ−1
W (m1 −m2) coincides with the

solution of the LS problem ŵLS = argminw ∥Xw − y∥2 if

n1 = # samples in class 1

n2 = # samples in class 2

X =


– xt

1 –

– xt
2 –
...

– xt
n –

 , y =


y1
y2
...

yn

 ,

with
1

n

n∑
i=1

xi = m = 0 (i.e. origin in sample mean),

yi =

{
+1/n1, if xi in class 1

−1/n2, else.
⇒

n∑
i=1

yi = 0.
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Discriminant analysis and least squares (cont’d)

• “Within” covariance ΣW ∝
∑

x∈class y(x−my)(x−my)
t.

• “Between” covariance ΣB ∝ (m1 −m2)(m1 −m2)
t

• The sum of both is the “total covariance” ΣB +ΣW = ΣT

ΣT ∝
∑

i xix
t
i = XtX.

• We know that wLDA ∝ Σ−1
W (m1 −m2) ⇝ ΣWwLDA ∝ (m1 −m2).

• Now ΣBw
LDA = (m1−m2)(m1−m2)

twLDA⇝ ΣBw
LDA ∝ (m1 −m2).

• ΣTw
LDA = (ΣB +ΣW )wLDA ⇝ ΣTw

LDA ∝ (m1 −m2).

• With XtX = ΣT , X
ty = m1 −m2, we arrive at

wLDA ∝ Σ−1
T (m1 −m2) = Σ−1

T Xty ∝ (XtX)−1Xty = wLS.
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Chapter 2

Least squares problems

Application Example: Secondary Structure Prediction in Proteins

By Thomas Shafee, https://commons.wikimedia.org/w/index.php?curid=52821069
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Short historical Introduction

• Genetics as a natural science started in 1866: Gregor Mendel performed experiments
that pointed to the existence of
biological elements called genes.

• Deoxy-ribonucleic acid (DNA) isolated by Friedrich Miescher in 1869.

• 1944: Oswald Avery (and coworkers) identified DNA as the major carrier of genetic
material, responsible for inheritance.
Ribose: (simple) sugar molecule, deoxy-ribose ⇝ loss of oxygen atom.
Nucleic acid: overall name for DNA and RNA (large biomolecules). Named for their
initial discovery in nucleus of cells, and for presence of phosphate groups (related to
phosphoric acid).

By Miranda19983 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84120486
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Short historical Introduction

• 1953, Watson & Crick: 3-dimensional structure of DNA. They in-

ferred the method of DNA replication.

• 2001: first draft of the human genome published by the

Human Genome Project and the company Celera.

• Many new developments, such as Next Generation Sequencing,
Deep learning etc.

Input OutputHidden

By RE73 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18862884
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Base pairs and the DNA

By Madprime (talk Â· contribs) - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1848174

• DNA composed of 4 basic molecules
⇝ nucleotides.

• Nucleotides are identical up to different
nitrogen base: organic molecule with
a nitrogen atom that has the chemical
properties of a base (due to free electron
pair at nitrogen atom).

• Each nucleotide contains phosphate,
sugar (of deoxy-ribose type), and one of
the 4 bases: Adenine, Guanine, Cyto-
sine, Thymine (A,G,C,T).

• Hydrogen bonds between base pairs:
G ≡ C, A = T .
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By OpenStax - https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface, CC BY 4.0,

https://commons.wikimedia.org/w/index.php?curid=30131206
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The structure of DNA

• DNA molecule is directional due to asymmetrical structure of the sugars which
constitute the skeleton: Each sugar is connected to the strand upstream in its 5th
carbon and to the strand downstream in its 3rd carbon.

• DNA strand goes from 5′ to 3′. The directions of the two complementary DNA
strands are reversed to one another (⇝ Reversed Complement).

Adapted from https://commons.wikimedia.org/w/index.php?curid=30131206
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By Zephyris - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15027555
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Replication of DNA

Biological process of producing two replicas of DNA from one original DNA molecule.

Cells have the distinctive property of division

⇝ DNA replication is most essential part for biological inheritance.

Unwinding ⇝ single bases exposed on each strand.

Pairing requirements are strict ⇝ single strands are templates for re-forming identical

double helix (up to mutations).

DNA polymerase: enzyme that catalyzes the synthesis of new DNA.

https://commons.wikimedia.org/w/index.php?curid=2497221
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Genes and Chromosomes

• In higher organisms, DNA
molecules are packed in a chro-
mosome.

• Genome: total genetic informa-
tion stored in the chromosomes.

• Every cell contains a complete
set of the genome, differences
are due to variable expression of
genes.

• A gene is a sequence of nu-
cleotides that encodes the syn-
thesis of a gene product.

By Sponk, Tryphon, Magnus Manske,

https://commons.wikimedia.org/w/index.php?curid=20539140

• Gene expression: Process of synthesizing a gene product (often a protein) ⇝
controls timing, location, and amount.
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The Central Dogma

Wikipedia

Transcription: making of an RNA molecule from DNA template.

Translation: construction of amino acid sequence from RNA.

⇒ Almost no exceptions (⇝ retroviruses)
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Transcription

By Kelvinsong - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23086203
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https://commons.wikimedia.org/w/index.php?curid=9810855
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Translation

• mRNA molecules are translated by ribosomes:
Enzyme that links together amino acids.

• Message is read three bases at a time.

• Initiated by the first AUG codon
(codon = nucleotide triplet).

• Covalent bonds (=sharing of electron pairs) are
made between adjacent amino acids
⇒ growing chain of amino acids
(“polypeptide”).

• When a “stop” codon (UAA, UGA, UAG) is
encountered, translation stops.

Wikipedia
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By Boumphreyfr - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7200200
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The genetic code

Wikipedia

Highly redundant: only 20 (or 21) amino acids formed from

43 = 64 possible combinations.
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By Dancojocari. https://commons.wikimedia.org/w/index.php?curid=9176441
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Proteins

• Linear polymer of amino acids, linked together by peptide bonds.

Average size ≈ 200 amino acids, can be over 1000.

• To a large extent, cells are made of proteins.

• Proteins determine shape and structure of a cell.
Main instruments of molecular recognition and catalysis.

• Complex structure with four hierarchical levels.

1. Primary structure: amino acid sequence.

2. Different regions form locally regular secondary structures like α-

helices and β-sheets.

3. Tertiary structure: packing such structures into one or several 3D

domains.

4. Several domains arranged in a quaternary structure.
41



Molecular recognition

Interaction between molecules through noncovalent bonding

Crystal structure of a short peptide L-Lys-D-Ala-D-Ala (bacterial cell wall precursor) bound to the antibiotic vancomycin through hydrogen bonds. By

M stone, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2327682
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Catalysis

Increasing the rate of a chemical reaction by adding a substance ⇝
catalyst.

Wikipedia
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Protein Structure: primary to quaternary

Durbin et al., Cambridge University Press

Structure is determined by the primary sequence and their physico-
chemical interactions in the medium.

Structure determines functionality.
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Secondary Structure

Secondary structure: two main types: β-sheet and α-helix

The School of Biomedical Sciences Wiki

Short range interactions in the AA chain are important for the secondary structure:

α-helix performs a 100◦ turn per amino acid ⇝ full turn after 3.6 AAs.

Formation of a helix mainly depends on interactions in a 4 AA window.
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Example: Cytochrome C2 Precursor

Secondary structure (h=helix)

amino acid sequence

hhhhhhhhhhh

MKKGFLAAGVFAAVAFASGAALAEGDAAAGEKVSKKCLACHTFDQGGANKVGPNLFGVFE

hhhhhhhh hhhhhhhhh hhhhhhhhh

NTAAHKDDYAYSESYTEMKAKGLTWTEANLAAYVKDPKAFVLEKSGDPKAKSKMTFKLTK

hhhhhhhhhhhhh

DDEIENVIAYLKTLK

Given: Examples of known helices and non-helices in several proteins

⇝ training set

Goal: Predict, mathematically, the existence and position of α-helices in

new proteins.
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Classification of Secondary Structure

Idea: Use a sliding window to cut the AA chain into pieces. 4 AAs are

enough to capture one full turn ⇝ choose window of size 5.

Decision Problem: Find function f(. . . ) that predicts for each substring

in a window the structure:

f(AADTG) =

{
”Yes”, if the central AA belongs to an α-helix,

”No”, otherwise

Problem: How should we numerically encode a string like AADTG?

Simple encoding scheme: Count the number of occurrences of each
AA in the window. First order approximation, neglects AA’s position

within the window.
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Example

...RAADTGGSDP...

...xxxhhhhhhx...

...xxxhhhhhhx...

...xxxhhhhhhx...

(black =̂ structure info about central AA; green =̂ know secondary structure; red=̂ sliding window)

A C D . . . G . . . R S T . . . Y Label

2 0 1 0 0 0 1 0 1 0 0 “No”

2 0 1 0 1 0 0 0 1 0 0 “Yes”

1 0 1 0 2 0 0 0 1 0 0 “Yes”
... ... ... ... ... ... ... ... ... ... ... ...

This is a binary classification problem

⇝ use Linear Discriminant Analysis
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Discriminant Analysis
Consider Xn×d, with n = #(windows) and d = #(AAs) = 20(or 21),

and the n-vector of class indicators y

X =


2 0 1 . . . 0 . . .

2 0 1 . . . 1 . . .

1 0 1 . . . 2 . . .
... ... ... ... ... ...

 =


– xt

1 –

– xt
2 –
...

– xt
n –

 , y =


”No”

”Yes”

”Yes”
...


For the binary class idicators, we use some numerical encoding scheme.

Interpretation with basis functions:

x = sequence of characters from alphabet A
gi(x) = #(occurences of letter i in sequence)

f(x;w) = wtg =
∑

i∈characters

wigi(x)
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Discriminant analysis and least squares

Recall: The LDA vector ŵLDA = Σ−1
W (m1 −m2) coincides with the

solution of the LS problem ŵLS = argminw ∥Xw − y∥2 if

n1 = # samples in class 1

n2 = # samples in class 2

X =


– xt

1 –

– xt
2 –
...

– xt
n –

 , y =


y1
y2
...

yn

 ,

with
1

n

n∑
i=1

xi = m = 0 (i.e. origin in sample mean),

yi =

{
+1/n1, if xi in class 1

−1/n2, else.
⇒

n∑
i=1

yi = 0
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Singular Value Decomposition (SVD)

Recall: SVD for nonsquare matrix X ∈ Rn×d: X = USV t.

Residual sum of squares:
RSS = ∥r∥2 = ∥Xw − y∥2 =

∥∥USV tw − y
∥∥2 = ∥∥SV tw︸︷︷︸

z

−U ty︸︷︷︸
c

∥∥2
Minimizing ∥r∥2 is equivalent to minimizing ∥Sz − c∥2:

minimize ∥r∥2 =

∥∥∥∥∥∥∥∥∥∥∥∥


σ1 0

. . .
0 σd

0 · · · 0
... . . . ...
0 · · · 0

 ·
z1...
zd

−


c1
...
cd

cd+1
...
cn



∥∥∥∥∥∥∥∥∥∥∥∥

2

We now choose zk so that ∥r∥2 is minimal, i.e., for σk > 0:

zk =
ck
σk 51



Iterative Algorithm

In our problem we have d = 20 (or 21) and n > 10000.

Goal: Use only XtX ∈ Rd×d and Xty ∈ Rd.

Initialize XtX = 0 (zero matrix), Xty = 0. Update: for j = 1 to n :

XtX + xjx
t
j −→ XtX

Xty + xjyj −→ Xty

The first update procedure is correct, since(
XtX

)
ik

=
∑n

j=1
xjixjk

⇒ XtX =

n∑
j=1


xj1

xj2
...

xjd

 · [xj1, xj2, . . . , xjd] =
∑n

j=1
xjx

t
j
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Iterative Algorithm

A similar calculation yields the other equation:

(
Xty

)
i
=

∑
j

xjiyj ⇒ Xty =
∑
j


xj1

xj2
...

xjd

 · yj =
n∑

j=1

xjyj

One remaining problem: In LDA we assumend that X was centered,
i.e. the column sums are all zero. Compute the column sums as:

1tX = [1, 1, . . . , 1]


– xt

1 –

– xt
2 –
...

– xt
n –

 = n · [m1,m2, . . . ,md] = n ·mt

⇝ “centered” Xc = X − 1mt = X − 1
n11

tX
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Centering

Xc = X − 1mt = X − 1

n
11tX

Xt
cXc = XtX +

1

n2
Xt1 1t1︸︷︷︸

=n

1tX − 1

n
Xt11tX − 1

n
Xt11tX

= XtX − 1

n
Xt11tX

= XtX − n ·mmt

Iteratively update the vector n·m for every xi corresponding to a new win-

dow position: Initialize n ·m = 0 and update n ·m← n ·m+ xi

What about Xty? We should have used

Xt
cy = (X − 1mt)ty = (Xt −m1t)y = Xty −m1ty

But by construction, y is orthogonal to 1 ⇝ 1ty = 0,

so nothing needs to be done!
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Iterative Algorithm

Goal: Solution which only requires Xc
tXc ∈ Rd×d and Xc

ty ∈ Rd alone

(and does not use Xc or y explicitly).

We need:

• The matrix V (for computing ŵ = V z)

Solution: columns of V are the eigenvectors of Xt
cXc,

corresponding eigenvalues are λi, i = 1, . . . , n ⇒ σ2
i = λi

• For the nonzero SVs, we need zi = (U ty)i/σi = σi(U
ty)i/σ

2
i

Solution:

Xc = USV t ⇒ V tXt
cy = V tV StU ty = StU ty

⇒ zi = (U ty)i/σi = (V tXt
cy)i/σ

2
i

So z and finally ŵ = V z can be computed from Xt
cXc and Xt

cy alone!
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Chapter 2

Least squares problems

Least-squares and dimensionality reduction
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Least-squares and dimensionality reduction

Given n data points in d dimensions:

X =


− xt

1 −
− xt

2 −
− ... −
− xt

n −

 ∈ Rn×d

Want to reduce dimensionality from d to k. Choose k directions

w1, . . . ,wk, arrange them as columns in matrix W :

W =

 | | |
w1 w2 . . . wk

| | |

 ∈ Rd×k

Project x ∈ Rd down to z = W tx ∈ Rk. How to choose W?
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Encoding–decoding model

The projection matrix W serves two functions:

• Encode: z = W tx, z ∈ Rk, zj = wt
jx.

– The vectors wj form a basis of the projected space.

– We will require that this basis is orthonormal, i.e. W tW = I.

• Decode: x̃ = Wz =
∑k

j=1 zjwj, x̃ ∈ Rd.

– If k = d, the above orthonormality condition implies W t = W−1,

and encoding can be undone without loss of information.

– If k < d, the decoded x̃ can only approximate x

⇝ the reconstruction error will be nonzero.

• Note that we did not include an intercept term. Assumption: origin of

coordinate system is in the sample mean, i.e.
∑

ixi = 0.
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Principal Component Analysis (PCA)

We want the reconstruction error ∥x− x̃∥2 to be small.

Objective: minimize minW∈Rd×k:W tW=I

∑n
i=1 ∥xi −WW txi∥2
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Finding the principal components

Projection vectors are orthogonal ⇝ can treat them separately:

min
w: ∥w∥=1

∑n

i=1
∥xi −wwtxi∥2

∑
i
∥xi −wwtxi∥2 =

n∑
i=1

[xt
ixi − 2xt

iwwtxi + xt
iwwtw︸︷︷︸

=1

wtxi]

=
∑

i
[xt

ixi − xt
iwwtxi]

=
∑

i
xt
ixi −

∑
i
wtxix

t
iw

=
∑

i
xt
ixi −wt

( n∑
i=1

xix
t
i

)
w

=
∑

i
xt
ixi︸ ︷︷ ︸

const.

−wtXtXw.
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Finding the principal components

• Want to maximize wtXtXw under the constraint ∥w∥ = 1

• Can also maximize the ratio J(w) = wtXtXw
wtw

.

• Optimal projection w is the eigenvector of XtX with largest eigenvalue

(compare handout on spectral matrix norm).

• We assumed
∑

ixi = 0, i.e. the columns of X sum to zero.

⇝ compute SVD of “centered” matrix Xc

⇝ column vectors in W are eigenvectors of Xt
cXc

⇝ they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi ∈ Rd is a face image

• xij = intensity of the j-th pixel in image i

xi ≈ WW txi = Wzi

(Xt)d×n ≈ Wd×k (Zt)k×n

≈

 | |
z1 . . . zn

| |


Conceptual: We can lean something about the structure of face images.

Computational: Can use zi for efficient nearest-neighbor classification:

Much faster when k ≪ d.
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Information retrieval: Latent Semantic Analysis
[Deerwater, 1990]

• d = number of words in the vocabulary, say 10000.

• Each xi ∈ Rd is a vector of word counts

• xij = frequency of word j in document i

(Xt)d×n ≈ Wd×k (Zt)k×n
stocks: 2 . . . . . . 0

chairman: 4 . . . . . . 1
the: 8 . . . . . . 7
. . . ... . . . . . . ...
wins: 0 . . . . . . 2
game: 1 . . . . . . 3

 ≈


0.4 . . . −0.001
0.8 . . . 0.03
0.01 . . . 0.04
... . . . ...

0.002 . . . 2.3
0.003 . . . 1.9


 | |
z1 . . . zn

| |


How to measure similarity between two documents? Dot products xt

ixj

In such high-dimensional spaces most pairs of vectors are almost

orthogonal ⇝ scalar products tend to be “noisy”.

If k ≪ d, zt
izj is probably a better similarity measure than xt

ixj.
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Appendix Chapters 1/2

The Gershgorin circle theorem
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Gershgorin circle theorem

Every eigenvalue of An×n is in one or more of n circles in the complex

plane. Each circle is centered at a diagonal entry aii,

the radius is ri =
∑

j ̸=i |aij| ⇝ “Gershgorin disk” D(aii, ri).

Proof: Av = λv, assume i is the index for which |vi| ≥ |vj|, ∀j ̸= i

(Av)i = λvi ⇔
∑

j
aijvj = λvi

(λ− aii)vi =
∑

j ̸=i
aijvj

|λ− aii||vi| = |
∑

j ̸=i
aijvj|

⇝ |
∑

j ̸=i aijvj| ≤
∑

j ̸=i |aij||vj| ≤
∑

j ̸=i |aij||vi| = ri|vi|

⇝ |λ− aii||vi| ≤ ri|vi| ⇝ |λ− aii| ≤ ri.

Applied to At: λi must also lie within circles corresponding to the columns of A.
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Example

A =


10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11



By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=76601319

For every row, aii is the center for the disc with radius
∑

j ̸=i |aij| = ri.
Discs: D(10, 2), D(8, 0.6), D(2, 3), D(−11, 3).
Can improve the accuracy of last two discs by applying the formula to the columns:
D(2, 1.2) and D(−11, 2.2). True eigenvalues are 9.8218, 8.1478, 1.8995,−10.86.

Note that At is diagonal dominant: |aii| >
∑

j ̸=i |aji| ⇝ most of the matrix is in the

diagonal ⇝ explains why the eigenvalues are so close to the centers.
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Gershgorin circle theorem and diagonal dominance

A diagonal dominant matrix (i.e. |aii| >
∑

j ̸=i |aij|) is non-singular.

λ ∈ C is in at least one of the Gershgorin discs D(aii, ri) in the complex

plane, but none of these discs contains 0:

|aii| − ri = |aii| −
∑

j ̸=i |aij| > 0, so each disc center aii
is further away from 0 than the disc radius, and the point

λ = 0 can’t belong to any circle.

aii

ri

0

A symmetric diagonal dominant matrix that has positive values on its

diagonal (i.e. aii >
∑

j ̸=i |aij|) is positive definite.

Eigenvalues of symmetric matrices are real.

λ ∈ R is in at least one of the intervals [aii− ri, aii+ ri], but all intervals

contain only positive numbers: aii − ri = aii −
∑

j ̸=i |aij| > 0.
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Consequences: Jacobi iterations

• Assume that all diagonal entries of A are nonzero.

• Write A = D + L+ U

where D =


a11 0 · · · 0

0 a22 · · · 0
... ... . . . ...

0 0 · · · ann

 and L+U =


0 a12 · · · a1n
a21 0 · · · a2n
... ... . . . ...

an1 an2 · · · 0


• So Ax = b ⇝ (L+D + U)x = b.

• Define J = D−1(L+ U) as the iteration matrix.

• The solution is then obtained iteratively via

x(i+1) = −Jx(i) +D−1b.

• Error ϵ(i+1) = −Jϵ(i) = · · · = (−1)i+1J i+1ϵ(0).

• Arrange eigenvalues of J in diagonal matrix Λ.
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Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude < 1,

then Λn→ 0 and consequently Jn→ 0 ⇝ convergence.

A diagonally dominant ⇝ Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1.

If A = L+ I +U is diagonal dominant, i.e. 1 ≥ row sums of abs(L+U),

then L± λI + U is also diagonally dominant if |λ| ≥ 1,

because |λ| ≥ 1 ≥ row sums of abs(L+ U).

Let λ be an eigenvalue of J .

⇒ det(J − λI) = det(L+ U − λI) = 0.

But if |λ| ≥ 1, then L + U − λI is diagonal dominant as well, so it is

non-singular and det = 0 is not possible. So |λ| < 1.
69


	 Linear curve fitting
	 Calculus or algebra?
	 Matrix-vector form
	 Basis functions
	 Solution by Calculus
	 Normal Equations
	 From Calculus to Algebra
	 Algebraic interpretation
	 Algebraic interpretation
	 Algebraic interpretation
	 SVD for Least-Squares
	 SVD and bases for the 4 subspaces
	 SVD and LS
	 Classification
	 Linear Discriminant Analysis (Ronald Fisher, 1936)
	 Separation Criterion
	 Separation Criterion
	 Excursion: The multivariate Gaussian distribution
	 Excursion: The multivariate Gaussian distribution
	 Separation Criterion
	 Separation Criterion
	 Separation Criterion
	 Discriminant analysis and least squares
	 Discriminant analysis and least squares (cont'd)
	 Short historical Introduction
	 Short historical Introduction
	 Base pairs and the DNA
	 The structure of DNA
	  Replication of DNA
	  Genes and Chromosomes
	  The Central Dogma
	 Transcription
	  Translation
	  The genetic code
	  Proteins
	  Molecular recognition
	  Catalysis
	  Protein Structure: primary to quaternary
	 Secondary Structure
	 Example: Cytochrome C2 Precursor
	 Classification of Secondary Structure
	 Example
	 Discriminant Analysis
	 Discriminant analysis and least squares
	 Singular Value Decomposition (SVD)
	 Iterative Algorithm
	 Iterative Algorithm
	 Centering
	 Iterative Algorithm
	 Least-squares and dimensionality reduction
	 Encoding–decoding model
	 Principal Component Analysis (PCA)
	 Finding the principal components
	 Finding the principal components
	 Eigen-faces [Turk and Pentland, 1991]
	 Information retrieval: Latent Semantic Analysis [Deerwater, 1990]
	 Gershgorin circle theorem
	 Example
	 Gershgorin circle theorem and diagonal dominance
	  Consequences: Jacobi iterations
	 Consequences: Jacobi iterations

	anm0: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


