Chapter 2

Least squares problems
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Linear curve fitting

e Notation: n objects at locations x; € RP.
Every object has measurement y; € R.

e Approximate “regression targets’ vy as a
parametrized function of x.

e Consider a 1-dim problem initially.

e Start with n data points (z;,y;), i =1,...,n.

e Choose d basis functions gy(x), g1(x),. ...

e Fitting to a line uses two basis functions
go(x) =1 and gi1(z) = x . In most cases n > d.

e Fit function = linear combination of basis functions:
flxyw) =) wigi(z) = wo + wiz.
o f(x;) =y, exactly is (usually) not possible, so approximate f(x;) =~ y;

e n residuals are defined by 7, = y; — f(x;) = y; — (wo + wix;).



Calculus or algebra?

e Quality of fit can be measured by
residual sum of squares
RSS =37 r7 =32,y — (wo + wizy)]*

e Minimizing RSS with respect to wy and wy
provides the least-squares fit.

e To solve the least squares problem we can

1. set the derivative of RSS to zero 3 w_0=w 141
~~ calculus, or o
2. solve an over-determined system .

~+ algebra: wy +wix; =y, 1=1,...,n

e [he results you get are...

— mathematically the same, but
— have different numerical properties.



Matrix-vector form

e Write f(x) = y in matrix-vector form for n observed points as

1 x4 Y1
L x| Jwo| _ Y2
H H w]. -
. - = . -
X Yy

e We minimize the sum of squared errors, which is the squared norm of
the residual vector r = y — Xw:

RSS =3 (yi — (Xw):)* = [ly — Xw|? = |[r|* = r'r.
1=1

e RSS = 0 only possible if all the data points lie on a line.



Basis functions
X has as many columns as there are basis functions. Examples:

e High-dimensional linear functions
x € RP, go(x) =1 and g1(x) = x1,92(T) = z2, ..., gp(x) = ).

Xie =g'(x;) = (1,— x¢ —), (i-th row of X)
flz;w) = w'g = wo + wiry + -+ - + Wy,
e Document analysis: Assume a fixed collection of words:

text document

= 1

8
|

!
S
8

)

. ~.
VR VR

8
N—— N—— N—"

#(occurences of i-th word in document)

= w'g=w+ Z w;gi(x).

1 Ewords



Solution by Calculus

RSS =r'r = (y — Xw)'(y — Xw)
=yly —y'Xw — w' Xy +w' X' Xw
= y'y — 2y' Xw + w' X' Xw.
Minimization: set the gradient (vector of partial derivatives) to zero:

VwRSS = oRS5S 1 0.

ow

We need some properties of vector derivatives:

—

O(Ax)/0x = A
O(x'A)/0x = A
O(x'Ax)/0x = Ax + A'z  (if A is square)



Normal Equations

ow ow
= 2X'y + [ X' Xw + (X' X)'w]

= 22Xy +2X'Xw =0

OR55 _ O [yty — 2yt Xw + thtXfw]

Normal equations: X‘'Xw = X'y.
Could solve this system. But: All solution methods based on normal

equations are inherently susceptible to roundoff errors:

k(X) = 0max/Omin, Where X' Xv; = (72-2’02-

k(X'X) = tmax/ftmin, Where X X X' Xv; = piv;
XX X' Xv; = X X020, = odv; = p; = 0

= E(X'X) = E4(X),

The algebraic approach will avoid this problem!



From Calculus to Algebra

ORSS(w)

— 29Xty +2X'Xw =0
ow

=X'(y—Xw)=Xr=0 =rcNX".

e Every Xw is in column space C'(X),
residual = is in the orthogonal complement N (X?) (left nullspace).

e Let y be the orthogonal projection of y on C'(X)
~ 4 can be split into y € C(X) + r € N(X?).

X[.,1]

e X[.2]

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman)



Algebraic interpretation
e y=9ycC(X)+reN(X" ~ Consider over-determined systems

Xw =1y =y + r (solution impossible, if » # 0)
Xw = y (solvable, since y € C(X)!)

e The solution w of Xw = y makes the error as small as possible:
|Xw —ylI* = [ Xw — (g + )" = | Xw - g[|* + [|r[

Reduce || Xw — 9||* to zero by solving X1 = ¢ and choosing w = b.
Remaining error ||7]|* cannot be avoided, since r € N(X?).

X'Xw=X9g=Xy = w=(X"X)"'X'y (if X*X invertible).

o The fitted values at the sample points are § = X = X (X'X) 1 X1y.
e H=X(X'X)"1X"is called hat matrix (puts a “hat” on y ~ 9).



Algebraic interpretation

e Left nullspace N(X?) is orthogonal complement of column space C'(X).

e H is orthogonal projection on C'(X):
HX =X(X'X)"'X'X =X, HNX")=0.
e M =] — H is orthogonal projection on nullspace of X*:
MX=I-HX=X-X=0, MNX" =M.

e H and M are symmetric (H'* = H) and idempotent (MM = M)

‘The algebra of Least Squares:
H creates fitted values: y = Hy ~ y € C(X)
M creates residuals: r = My ~» r € N(X?)




Algebraic interpretation

XX is invertible iff X has linearly independent columns.

Why? X!'X has the same nullspace as X:

(i) Ifa € N(X), then Xa=0 = X'Xa=0~ a € N(X'X).
(i) f a € N(X'X), then a!X'Xa =0 & || Xa|* =0,

so Xa has length zero = Xa = 0.

Thus, every vector in one nullspace is also in the other one.
So if N(X) = {0}, then XtX € R%*4 has full rank d.

When X has independent columns, XX is positive definite.

Why? XX is clearly symmetric and invertible.
To show: All eigenvalues > 0

X' Xv =M ~ vIX'Xv = \v ~~ )\ = IXv|® > 0.

lvll*
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SVD for Least-Squares

e Goal: Avoid numerical problems for normal equations:
X' Xw= X'y, KkX'X)=FkK(X).

o |dea: Apply the SVD directly to X,,«4.

e The squared norm of the residual is

RSS = ||r||* = [[Xw — y|°
= |USVIw — y|?
= || U(SViw — Uly)||?
= [|SV'w — U'y||?

Last equation: U is orthonormal ~ ||[Ua|]* = a'U'Ua = ala = ||a||*.

e Minimizing RSS is equivalent to minimizing

|Sz — c||* where z = Viw and ¢ = U'y. ;



SVD and bases for the 4 subspaces

dimr
row space

Av; = oju;

AVr - Gr ur

AVn=0

left nullspace
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SVD and LS

e Unavoidable error: RSS = ||r||* =c5, + o+ -+ o

e [|7]|2 = ||Sz — cl|? written in blocks:
i 01 0 0 | C1
0 o9 0 [ 21 | ;
0 0 0d 29 Cd
0 0 0 Can
: : : | Zq | :
00 0 | e
e To choose z so that ||r||? is minimal requires z; = ¢;/o;,i=1,...,d
=19 = =14 =0.

2
n

e For very small singular values, use zeroing. RSS will increase:
One additional term (usually small): RSS’ = ¢;+c5, 1 +c o+ +ch,
but often significantly better precision (reduced condition number).

13



Classification

Classification: Find class boundaries based on training data
{(®1,y1),--.,(xn,yn)}. Use boundaries to classify new items x*.
Here, y; is a discrete class indicator (or “label”). Example: Fish-packing plant

wants to automate the process of sorting fish on conveyor belt using optical sensing.

width
224 salmon sea bass

21t

| Preprocessing |

A
Y [

I Feature extraction [

P

[ Classification |

/N

"salmon” "sea bass"
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(Duda, Hart, Stork, 2001)

(Duda, Hart, Stork, 2001)
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Linear Discriminant Analysis (Ronald Fisher, 1936)
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(Duda, Hart, Stork, 2001)

Main ldea: Simplify the problem by projecting down to a 1-dim subspace.
Question: How should we select the projection vector, which optimally

discriminates between the different classes? .



Separation Criterion

Let m; an estimate of the class means p;:

1 . .
my = — E ecimssy T WS #(objects in classy).
Y

Projected samples: x! = w'x;, i =1,2,...,n. Projected means:
~ 1 Z t t
ny xcclass y
First part of separation criterion (two-class case):

max[w’(m; — my)]?

= max[fﬁ?,l — ﬁzg]Q.
w w

There might still be considerable overlap...
~+ should also consider the scatter or variance.

16



Two Gaussians with the same mean distance, but different variances:
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Excursion: The multivariate Gaussian distribution

Probability density function:

p(x; p, %) = \/#—meXp(—%(w —p)'E (z — p))
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Excursion: The multivariate Gaussian distribution

Covariance

(also written “co-variance™)
iIs a measure of how much
two random variables vary
together. Can be positive,
zero, or negative.

2 -1 0 1 2 -2 -1 0 1 2

x 1
Sample covariance matrix X =+ 3"" | (z; — T)(z; — T)",

with sample mean T = %Z?’:l r,i=m. lfm=0-~ 3= %XtX.

19



Separation Criterion

e Assume both classes are Gaussians with the same covariance matrix.

Let X1y be an estimate of this “within class” covariance matrix:

1
2y = o Z (x —my)(x —m,)",
Y xeclass Y

Swo= 0.5(3 + D).

e Variance of projected data:

~

- 1 t ~ t ~ t
Ey - n_y Zazéclass y(w L= my)(w L — my)

_ 1 t b ot
= n_y wedassyw(w—my)(w—my)w—waw

~

Swo= 0.5(31 4 ) = wiEpw € Ry

~

e Strategy: A2 = (11 — 112)? should be large, Sy small.

20



Separation Criterion

=:2.p
Jaw) = D _ w1 —ma)(my —my) w
iW thWw .
o, o, ’UJtZB’UJ l
—J = =0
ow (w) ow wiXyw
wtY pw 1
= — 2> 2>
(wtXpw)? Ww+wt§3ww Bt
w!Y pw
— wtzzw(—Eww)—l—ZBw:O
;
by
= Ypw = — B s =\ Spw

wiyw
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Separation Criterion

e Let Xy be non-singular:

B _ wtY pw
S Zslw = \w, with A= S J(w).

AmAL w o A

e Thus, w is an eigenvector of E;‘}ZB, the associated eigenvalue is the
objective function! Maximum: eigenvector with largest eigenvalue.

e Unscaled Solution: | w = Z;‘}Am = Z;Vl(ml — my).

e This is the solution of the linear system Xyyw = mq; — meo.

e Yy is a covariance matrix ~» there is an underlying data matrix A such
that Xy oc A*A ~~ potential numerical problems: squared condition
number compared to A...

22



Discriminant analysis and least squares

Theorem: The LDA vector w""" = Y (M1 — my) coincides with the

solution of the LS problem w" = arg min,, || Xw — y||? if

ny = F# samples in class 1
no = F# samples in class 2
_ A .
B Y1
t
- Ly Y2
_ 2 __
X = | Y= 1"
t
n
. 1 . L
with — Y x;=m =0 (i.e. origin in sample mean),
n
i=1

+1/n1, if x; inclass 1 -
i { LS -0
i=1

—1/no, else.
23



Discriminant analysis and least squares (cont’d)

e “Within" covariance Yy o > (x —my)(x — my)t-

xcclassy

e “Between” covariance Y g  (my1 — myo)(my — mz)t

e The sum of both is the “total covariance” X g + 2w = X7
Yrox Y riel = XX,

—1

e We know that w'P* « ¥ r(m; — my) ~ Syw'PA

x (M1 — my).

DA LD DA

o Now Y pw'PA = (m—my) (mi—my)twPA v Lpw'Ph « (M — my).

o LrwtPA = (B + ) wtPA ~ BrwPh o« (my — m).
o With X'X = Y7, X'y = m; — my, we arrive at

wPA o B2 (my —mp) = 352 Xy o (XEX) 1 Xy = wbS,

24



Chapter 2
Least squares problems

Application Example: Secondary Structure Prediction in Proteins

—

B-Sheet (3 strands) a-helix

By Thomas Shafee, https://commons.wikimedia.org/w/index.php?curid=52821069
25



Short historical Introduction

e Genetics as a natural science started in 1866: Gregor Mendel performed experiments
that pointed to the existence of
biological elements called genes.

e Deoxy-ribonucleic acid (DNA) isolated by Friedrich Miescher in 1869.

e 1944: Oswald Avery (and coworkers) identified DNA as the major carrier of genetic
material, responsible for inheritance.
Ribose: (simple) sugar molecule, deoxy-ribose ~~ loss of oxygen atom.
Nucleic acid: overall name for DNA and RNA (large biomolecules). Named for their
initial discovery in nucleus of cells, and for presence of phosphate groups (related to
phosphoric acid).

CH,OH
1“0

OH OH OH H
Ribose Deoxyribose

By Mirandal9983 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84120486
26



Short historical Introduction

e 1953, Watson & Crick: 3-dimensional structure of DNA. They in-
ferred the method of DNA replication.

e 2001:  first draft of the human genome published by the
Human Genome Project and the company Celera.

e Many new developments, such as Next Generation Sequencing,
Deep learning etc.
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Input Hidden Output

By RE73 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18862834 )
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Base pairs and the DNA

Thymine

5end  Adenine |, Y o
oy’ NH 2 en
L0 P

Phosphate-

deoxyribose"‘?g H . |
backbone - kg‘\(H """ o, q
Guaninecytos'ne°\;2_;

OH

3" end

By Madprime (talk A- contribs) -

https://commons.wikimedia.org/w/index.php?curid=1848174

Own work, CC BY-SA 3.0,

DNA composed of 4 basic molecules
~» nucleotides.

Nucleotides are identical up to different
nitrogen base: organic molecule with
a nitrogen atom that has the chemical
properties of a base (due to free electron
pair at nitrogen atom).

Each nucleotide contains phosphate,
sugar (of deoxy-ribose type), and one of
the 4 bases: Adenine, Guanine, Cyto-
sine, Thymine (A,G,C,T).

Hydrogen bonds between base pairs:
G=C,A=T.

28



Hydrogen bonds

Nitrogenous bases: Thymine o Adenme 3
3 5/ D Adenine _ OH
=X Thymine O O
e Guanine —U © O O@
E==X Cytosine P
o "0
_HaN
N o /
-N >
. a2 Y A N T 0" g)
Base pair NH N F'-"-'
0 Cytosine 05,
Sugar- 0 Guamne ©
phosphate ||
backbone |
Sugar- phosphate Bases Sugar-phosphate
3 5 backbone backbone

ﬁ Nitrogenous base
O—P—O0O——CH, 0
I
Phosphate
OH
Sugar

By OpenStax - https://cnx.org/contents/FPtK1zmh@©8.25:fEI3C80t©@10,/Preface, CC BY 4.0
https://commons.wikimedia.org/w/index.php?curid=30131206



The structure of DNA

e DNA molecule is directional due to asymmetrical structure of the sugars which

constitute the skeleton: Each sugar is connected to the strand upstream in its bth
carbon and to the strand downstream in its 3rd carbon.

e DNA strand goes from 5 to 3’. The directions of the two complementary DNA
strands are reversed to one another (~ Reversed Complement).

Hydrogen bonds

Nitrogenous bases: . Thymme P Ade”'"e 3
' ,  mmm® Adenine OH
3 5 O~po_

=X Thymine

mm» Guanine -O H O O@
Cytosine O P,
_HeN
|
| > 0" % &
Base pair >—N QF',-:O
-0 Cytosine O,
Sugar- 0 Guanlne ©5
phosphate || |
backbone |
Sugar- pho3phate Bases Sugar-phosphate
3 5’ backbone backbone

Adapted from https://commons.wikimedia.org/w/index.php?curid=30131206
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© Hydrogen
o © Oxygen
§ @ Nitrogen
S © Carbon
5 @ Phosphorus
=
=
()
>
(@)
o
O
S
(O
=

Pyrimidines Purines

By Zephyris - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15027555
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Replication of DNA

Biological process of producing two replicas of DNA from one original DNA molecule.
Cells have the distinctive property of division

~» DNA replication is most essential part for biological inheritance.

Unwinding ~~ single bases exposed on each strand.

Pairing requirements are strict ~» single strands are templates for re-forming identical

double helix (up to mutations).
DNA polymerase: enzyme that catalyzes the synthesis of new DNA.

https://commons.wikimedia.org/w/index.php?curid=2497221 30



Genes and Chromosomes

In  higher organisms, DNA
molecules are packed in a chro-

mosome. Cell
o DNA

Genome: total genetic informa-
tion stored in the chromosomes.

Every cell contains a complete
set of the genome, differences
are due to variable expression of
genes.

Nucleus Chromosome

By Sponk, Tryphon, Magnus Manske,

A gene IS a sequence of nu- https://commons.wikimedia.org/w/index.php?curid=20539140
cleotides that encodes the syn-

thesis of a gene product.

Gene expression: Process of synthesizing a gene product (often a protein) ~~
controls timing, location, and amount.
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The Central Dogma

replication
(DNA -> DNA)
DNA Polymerase

DDA DA oNA

transcription
(DNA -> RNA)

RNA Polymerase

translation
(RNA -> Protein)
Ribosome

O-0-0-0-0-0O0 Protein Wikipedia

Transcription: making of an RNA molecule from DNA template.
Translation: construction of amino acid sequence from RNA.

= | Almost no exceptions (~ retroviruses)




Transcription

Coding 1 RNA polymerase (not shown) adds complementary
strand RNA nucleotides to a template DNA strand.

The formed RNA strand is identical to the other
codmg DNA strand, except U is substituted for T.

OTTH\ Nucleotides are only added to the 3!

Template end of the RNA molecule.

strand

RNA

2 VVarious proteins bil
to asequence AAU
near the 3' end of t
pre-mRNA molecul
10-30 nucleotides
the cleavage and p
specificity factor (C
the pre-mRNA.

P

Free RNA nucleotides

By Kelvinsong - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23086203
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Cytosine . — Cytosine .
NH, .—Nucleobases NH,
(\L\N | \N
N’l\o NJ\O
H H
Guanine . Guanine .
0 o)

N N N NH
(N \ N/)‘\NHz &N \ N)\NHZ
H H

Base pair
Adenine |§|

Adenine

H,N
al
I\
AH N

Uracil Thymine .

0]
H;C

helix of
sugar-phosphates

| NH
NAO
H

Nucleobases
of DNA

Nucleobases
of RNA

RNA DNA
Ribonucleic acid Deoxyribonucleic acid

https://commons.wikimedia.org/w/index.php?curid=9810855
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Translation

mRNA molecules are translated by ribosomes:
Enzyme that links together amino acids.

Message is read three bases at a time.

Initiated by the first AUG codon
(codon = nucleotide triplet).

Covalent bonds (=sharing of electron pairs) are
made between adjacent amino acids
= growing chain of amino acids

(“polypeptide™).

When a “stop” codon (UAA, UGA, UAG) is
encountered, translation stops.

GrFrcCcOOPFFOOO0OCCOOPO0O0PPCOmn

Ribonucleic acid

Wikipedia

Codon 1

Codon 2

Codon 3

Codon 4

Codon 5

Codon &

Codon 7
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Growing peptide chain

QOutgoing
empty tRNA 1 |
TRNARTRNA
U UC U A

'. AAA '1[['

Incoming tRNA
bound to Amino Acid

MessengerRNA

Peptide Synthesis

By Boumphreyfr - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7200200
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UL
ULz
A
1IN ]
cuu
CUuc
CLIA
CLUG
AL
AUC
ALIA,

|FhaiF) Fhanylalanine

(L) Leucing

() Isoleucing

AUGH  (MetM) Methionine

Guu
GUC
GLUA
GUG

(ValiV) Valine

The genetic code

GCU
GCC
GCA
GCG

Standard genetic code

{SerfS) Serine

[PrenP) Proling

(ThrT) Thireonine

(Adaa) Alanine

2nd base

LAl
LA

LA
M el

CAU
CAC
CAA
CAG
AaLl
AL
AR
AAG
Gau
GAC
GAA
GAG

Wikipedia

A
(TyrfY) Tyrosine

Stop (Ocheg)
Stop (Amber)

(HisH) Fistidine

(GIn'Q) Ghutamine

(Asn/N) Asparagine

(Lys/K) Lysine

[Asp'D) Aspartic acid

(GIWE) Ghulamic acid

G
= (Cy=/C) Cystaina
uGe

uGA'" | Siop (Opal

UGG | (Trp/W) Tryplophan
cau

cGe .

= {Arg/R) Arginine
cGG

e (Ser/S) Sarine
AGC

AGA -

i (Arg/R) Arginine
GGU

GGG _

— (GlyiG) Glycine
GGG

Highly redundant: only 20 (or 21) amino acids formed from
43 = 64 possible combinations.

mrn:n:n:mrn:n:ncgﬁ
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By Dancojocari.

() Fusitive

= Sige chain charga at piysiclog
A Amine Acids with Electrically Charged Side Charns
Posirive Neginive
“ Arginine Histidine Lysine

" aspartic Acid Glutamic Acid

(Arg) His) ILys) (Asp) (Gl
Q@ "Q o "® (€

a0l Jf Pl 1A "’Ophtli A’b P 185 l‘f [LERALY
O 0 o
NH, NH, NH, NH,
PEABLD A BEE FEARIG A pEARSE
HN—(

—
o
& _-NH
NH N st =
#2415
@ NH, :
@M—lz [ FR0EY
[C PR FRL]

B.  Amino Acids with Polar Uncharged Side Chains C. Special Cases

Serine Threonine Asparagine Glutamine Cysteine Selenccysteine  Glycine Proling

tsme (Thr) o [hsn) m dGhIn@ rc',me [Sec) 'D [kl @ [Pral e

pkaz13 pia 230 [2LEEARY

pEALIE

‘b B '-“';,b pEa1a &D pc:zy;!b A 155
o O o O :
O D o O %_ PR 10T
PEA RS pSA RS PR LT PR O Il |
NH, NH, NH, NH, o et NH
HO H eH
q_l o pRas1
H, O
H,

D, Amine Ackis with Hydrophobic Side Chain
Alanine Valine Iscleucine Leucine

Methionine Phenylalanine Tyrosine Tryptophan
i.ﬂ.la:-e n.‘vallo (=] o ILw:-o Met) @

Phe) o (Tyrl o (Trpl @

e i1 (-0 L

15 %
’.‘T- P .T7 .‘9 . & > D A‘b (]
pHa 213 Q NH
4 o . N, N, ok i
02& A N ar- R
NH, pEaBA] —
pEAET]
s Ay
\

https://commons.wikimedia.org/w/index.php?curid=9176441

pEa 1010
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Proteins

e Linear polymer of amino acids, linked together by peptide bonds.
Average size ~ 200 amino acids, can be over 1000.

e To a large extent, cells are made of proteins.

e Proteins determine shape and structure of a cell.
Main instruments of molecular recognition and catalysis.

e Complex structure with four hierarchical levels.

1.
2.

Primary structure: amino acid sequence.

Different regions form locally regular secondary structures like a-
helices and [3-sheets.

Tertiary structure: packing such structures into one or several 3D
domains.

Several domains arranged in a quaternary structure.
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Molecular recognition

Interaction between molecules through noncovalent bonding

Crystal structure of a short peptide L-Lys-D-Ala-D-Ala (bacterial cell wall precursor) bound to the antibiotic vancomycin through hydrogen bonds. By

M stone, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2327682
42



Catalysis

Increasing the rate of a chemical reaction by adding a substance ~~

catalyst.

Energy

X, Y

E, (no catalyst)

uuuuuuuuuuuuuuuuuu

E. (with catalyst)

Reaction Progress Wikipedia
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Protein Structure: primary to quaternary

Quaternary

Primary Secondary Tertiary

Durbin et al., Cambridge University Press

Structure is determined by the primary sequence and their physico-
chemical interactions in the medium.
Structure determines functionality.
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Secondary Structure

Secondary structure: two main types: [3-sheet and a-helix
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The School of Biomedical Sciences Wiki
Short range interactions in the AA chain are important for the secondary structure:

a-helix performs a 100° turn per amino acid ~- full turn after 3.6 AAs.

Formation of a helix mainly depends on interactions in a 4 AA window.
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Example: Cytochrome C2 Precursor

Secondary structure (h=helix)
amino acid sequence

hhhhhhhhhhh
MKKGFLAAGVFAAVAFASGAALAEGDAAAGEKVSKKCLACHTFDQGGANKVGPNLEFGVFE
hhhhhhhh hhhhhhhhh hhhhhhhhh
NTAAHKDDYAYSESYTEMKAKGLTWTEANLAAYVKDPKAFVLEKSGDPKAKSKMTFKLTK

hhhhhhhhhhhhh

DDEIENVIAYLKTLK

Given: Examples of known helices and non-helices in several proteins
~~ training set

Goal: Predict, mathematically, the existence and position of a-helices in
new proteins.
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Classification of Secondary Structure

Idea: Use a sliding window to cut the AA chain into pieces. 4 AAs are
enough to capture one full turn ~~ choose window of size 5.

Decision Problem: Find function f(...) that predicts for each substring
in a window the structure:

f£(AADTG) = { \N/is , If the central AA belongs to an a-helix,

otherwise

Problem: How should we numerically encode a string like AADTG?

Simple encoding scheme: Count the number of occurrences of each
AA in the window. First order approximation, neglects AA's position
within the window.
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Example

. .RAADTGGSDP. ..

. .Xxxxhhhhhhx. ..

. . .xxxhhhhhhx. ..

. .xxxhhhhhhx. ..

(black = structure info about central AA; green = know secondary structure; red= sliding window)

AfC|D|... |G|... |R|S|T Y | Label
2101 0 |0 O (1]0|1] O |0] “No"
21011 0 1, 0 |0]0 1 0 | 0| “Yes"
101 0 |2 0 (001 0 | 0] "Yes"

This is a binary classification problem
~~ use Linear Discriminant Analysis
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Discriminant Analysis

Consider X, x4, with n = #(windows) and d = #(AAs) = 20(or 21),
and the n-vector of class indicators y

201 ...0 .. [- 2 - "No” |

201 ... 1 ... — xt - "Yes"
X: p— 2 p—

1 0 1 2 ... : Y "Yes"

For the binary class idicators, we use some numerical encoding scheme.

Interpretation with basis functions:

x = sequence of characters from alphabet A
gi(x) = 7#(occurences of letter 7 in sequence)
faw) = wg= S wgi(x)

1Echaracters
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Discriminant analysis and least squares

Recall: The LDA vector w™" = X} (m; — my) coincides with the

solution of the LS problem "

1

T2

X

with

# samples in class 1

# samples in class 2

-zt -
~ xb -

_m —

)

Y1

Y2
y=1.1>

Yn

= arg min,, | Xw — y||* if

n
1 . .
— E x; =m =0 (i.e. origin in sample mean),
n

1=1

—1/%2,

{+1/n17
Yi =

if ; in class 1

else.

:>zn:yZ:O
1=1

50



Singular Value Decomposition (SVD)

Recall: SVD for nonsquare matrix X € R**4: X = USV".

Residual sum of squares: , ,

_ 2 a2 b _ t,. 77t
RSS = |r||" = | Xw —y|” = |[USV'w —y||” = ||SV'w, —U'y||
Minimizing ||7||° is equivalent to minimizing ||Sz — ¢||*:

- - - q 112

01 0 €1
-
oL >_ |10 9d ) cd
minimize ||r||* = 0 --- 0 | | |legus
_ |z "
o -.. O_ | Cn |

_2 . - . .
We now choose zj so that ||7||” is minimal, i.e., for o5 > 0:

Ck
Ok

Rl —
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Iterative Algorithm

In our problem we have d = 20 (or 21) and n > 10000.
Goal: Use only XX € R4 and X'y e R%

Initialize X'X = 0 (zero matrix), X'y = 0. Update: for j =1 to n :

X' X +zjx; — X'X
X'y +xy; — X'y

The first update procedure is correct, since

(X'X),, = Zj_ T i jk

mn
tv Z T2 | _Z” ot
é X X _ : ® [le,xj2,.o-7x]d:| _— ]:1 w]w]
Jj=1 '
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Iterative Algorithm

A similar calculation yields the other equation:

o
(X'y), =) zjuy;= X'y=) %2 Y= ) Ty,
j j j=1
_xjd_

One remaining problem: In LDA we assumend that X was centered,
I.e. the column sums are all zero. Compute the column sums as:

~ ozt -

¢
- Ly ~ '

1'X =[1,1,...,1] =n-|my,Ma,...,Mg] =n-m

— t
L,

~ “centered” X.=X —1m'=X — 111'X
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Centering

1
X.=X—-1mli=X—-=11'X

n
1 1 1
X Xe=X'X+=5X1111'X - —X"11'X - —X"11'X
n ~ n n

=N

1
— XX — ZX'11tX
n

— X'X —n-mm’

lteratively update the vector n-m for every a; corresponding to a new win-
dow position: Initialize n-m = 0 and update n-m < n-m + x;

What about X’y? We should have used
Xey=X-1Im)y=(X'-ml)y=X'y -mlly

But by construction, vy is orthogonal to 1 ~» 1ty = 0,
so nothing needs to be done! .



Iterative Algorithm

Goal: Solution which only requires X.* X, € R%*% and X_ 'y € R? alone
(and does not use X, or y explicitly).

We need:

e The matrix V' (for computing w = V z)
Solution: columns of V' are the eigenvectors of X! X,
corresponding eigenvalues are \;, i =1,...,n = 07 = )\

e For the nonzero SVs, we need z; = (Uty)@-/cfi = 0@'(Uty)7;/0¢2
Solution:

X, =USV! = ViXly = VIVSUly = SUy

C

= 2= (U'y)ifos = (V' Xly)i/o}
So z and finally @ = V z can be computed from X'X, and X'y alone!
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Chapter 2

Least squares problems

Least-squares and dimensionality reduction
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Least-squares and dimensionality reduction

Given n data points in d dimensions:

ozt

t
— €T —
2 E R’I’LXCZ

t
—_ a’/on —_

Want to reduce dimensionality from d to k. Choose k directions
w1, ..., W, arrange them as columns in matrix W:

W= lw; wy ... wg ERka

Project £ € R? down to z = Wiz € R*. How to choose W7
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Encoding—decoding model

The projection matrix W serves two functions:

e Encode: z = W'z, z e R", z; =wix.

— The vectors w; form a basis of the projected space.
— We will require that this basis is orthonormal, i.e. W'W = 1I.

- L -
e Decode: & =Wz =) ", zjw;, €R%

— If k = d, the above orthonormality condition implies Wt = W =1,
and encoding can be undone without loss of information.

— If k < d, the decoded x can only approximate x
~+ the reconstruction error will be nonzero.

e Note that we did not include an intercept term. Assumption: origin of

coordinate system is in the sample mean, i.e. > . x; = 0.
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Principal Component Analysis (PCA)

We want the reconstruction error ||z — Z||? to be small.

Objective: minimize minyy, cpaxk. w7 21y |€i — WWha;||?
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Finding the principal components

Projection vectors are orthogonal ~~» can treat them separately:

: " £ 12
min Nz — ww'z
w: ||lw||=1 =1
n
3 o - wwla | =Y late: - 2t + atuwwu'e
1= p—

— Zz[a}f:c,,, — ziw w'z]

_ t ton ot
—E T, T — E W T, W
(4 (
n

|
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Finding the principal components

e Want to maximize w'X*Xw under the constraint ||w| =1

.. . t~yt
e Can also maximize the ratio J(w) = %=

e Optimal projection w is the eigenvector of X*X with largest eigenvalue
(compare handout on spectral matrix norm).

e We assumed ) . x; = 0, i.e. the columns of X sum to zero.
~» compute SVD of “centered” matrix X,
~ column vectors in W are eigenvectors of XX,
~+ they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

e d = number of pixels
e Each z; € R? is a face image

e z,;; = intensity of the j-th pixel in image ¢

&

Q

Conceptual: We can lean something about the structure of face images.
Computational: Can use z; for efficient nearest-neighbor classification:
Much faster when £ < d.
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Information retrieval: Latent Semantic Analysis
[Deerwater, 1990]

e d = number of words in the vocabulary, say 10000.
e Each x; € R% is a vector of word counts

e 1,; = frequency of word j in document

(Xt)an ~ Waxk (Zt)an
[ stocks: 2 ...... 0] 0.4 ... —0.001] ) i
chairman: 4 ...... 1 0.8 ... 0.03 ’ ‘
the: 8 ...... 7 0.01 ... 0.04
: : ~ : : <1 Zn
wins: 0 ... 2 0.002 ... 23 | |
| game: I ...... 3 10.003 ... 1.9 | ) i

How to measure similarity between two documents? Dot products xix;
In such high-dimensional spaces most pairs of vectors are almost
orthogonal ~» scalar products tend to be “noisy".

If k < d, zlz; is probably a better similarity measure than xlx;. }



Appendix Chapters 1/2

The Gershgorin circle theorem



Gershgorin circle theorem

Every eigenvalue of A IS in one or more of n circles in the complex
nxn

plane. Each circle is centered at a diagonal entry a;;,

the radius is r; = > ., |a;;| ~> "Gershgorin disk” D(a;i, ;).

Proof: Av = Av, assume 1 is the index for which |v;| > |v;|, Vj # i
Av); =, & iV = AU;
(Av) v Zj Q;;V; v
()\ — aii)vi — Zj;éi 55U

A — @il [vi] = |Z#i a;jV;)

o | i @i U5 < D i |aigllog] < 35 laigl|vil = rilvil
v A = ag||vi| < rilvi| o A= ag] <.

Applied to A?: \; must also lie within circles corresponding to the columns of A. .



Example

X  Eigenvalues
-].O _]. O ]- | } 0 X X X X
02 8 02 0.2
A= 1 1 2 1 E
-1 -1 -1 —11] )
: U— L 5 -10 - 5 0 5 L‘O 15

Real axis
By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w /index.php?curid=76601319

For every row, a;; is the center for the disc with radius Zj#i aij| = 7.

Discs: D(10,2), D(8,0.6), D(2,3), D(—11,3).

Can improve the accuracy of last two discs by applying the formula to the columns:
D(2,1.2) and D(—11,2.2). True eigenvalues are 9.8218,8.1478,1.8995, —10.86.

Note that A’ is diagonal dominant: |a;;| > >, |a;i| ~» most of the matrix is in the

diagonal ~~ explains why the eigenvalues are so close to the centers.
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Gershgorin circle theorem and diagonal dominance

[A diagonal dominant matrix (i.e. [ai;| > > ., |ai;|) is non-singular.

A € Cis in at least one of the Gershgorin discs D(a;;, ;) in the complex
plane, but none of these discs contains 0:

|aii| — i = |ai| — 3254 |aijl > 0, so each disc center a;;
is further away from 0 than the disc radius, and the point
A = 0 can't belong to any circle.

A symmetric diagonal dominant matrix that has positive values on its
diagonal (i.e. ai;; > » ., |aij|) is positive definite.

Eigenvalues of symmetric matrices are real.
A € Ris in at least one of the intervals [a;; — r;, a;; + 4], but all intervals
contain only positive numbers: a;; — 1; = a;; — Zj#i a;;| > 0.
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Consequences: Jacobi iterations

e Assume that all diagonal entries of A are nonzero.
e Write A=D+L+U

ai1 O --- 0 0
0 ag --- 0 (21
where D = and L+U =
0 0 "t Opn an1

e SoAr=b ~ (L+D+U)x=b.
e Define J = D™ YL + U) as the iteration matrix.
e [he solution is then obtained iteratively via

zy1) = —Jxy + Db,

e Error €(i+1) — —Je(i) — - = (—1)i+1Ji+1€(0).
e Arrange eigenvalues of J in diagonal matrix A.
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Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude < 1,
then A™ — 0 and consequently J” — 0 ~» convergence.

A diagonally dominant ~~ Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1.

If A= L+ 1+U is diagonal dominant, i.e. 1 > row sums of abs(L + U),
then L = A\l + U is also diagonally dominant if |A\| > 1,

because |A| > 1 > row sums of abs(L + U).

Let A be an eigenvalue of J.
= det(J —N) =det(L+U — M) =0.

But if |[A| > 1, then L + U — Al is diagonal dominant as well, so it is
non-singular and det = 0 is not possible. So |\| < 1.
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