
Chapter 5

Dynamic Programming

k r

r−1k k r+1

0

1

Depth

Dynamic Programming

• Simplex for LP: Greedy algorithm, makes a locally optimal choice.

• For many problems, we need a different approach called

Dynamic Programming

• Finds solutions for problems with lots of overlapping sub-problems.
Essentially, we try to solve each sub-problem only once.

• Optimal substructure: optimal solutions of subproblems can be used

to find the optimal solutions of the overall problem.

Example: Finding the shortest path in a graph.

1

Dynamic Programming

Typically, a dynamic programming solution is constructed using a

series of steps:

1. Characterise the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up (⇝ iteration)

or top-down (⇝ recursion) fashion. That is, build it from the results

of smaller solutions either iteratively from the bottom or recursively
from the top.

2

A Simple Example: Fibonacci numbers

Fibonacci sequence: The n-th number is the sum of the previous two.

This can be implemented using a simple recursive algorithm:

function FIBONACCI(n)

if n = 0 then

return 0

if n = 1 then
return 1

return FIBONACCI(n− 1) + FIBONACCI(n− 2)

Problem: Overlapping sub-problems: Computing

FIBONACCI(n− 1) overlaps FIBONACCI(n− 2)

⇝ exponential time complexity!

3

A Simple Example (2)

Define map object m, maps each instance of FIBONACCI that has

already been calculated to its result.

Modified recursion requires only O(n) time:

var m; m[0] = 0; m[1] = 1

function FIBONACCI(n)

if m does not contain key n

m[n] = FIBONACCI(n− 1) + FIBONACCI(n− 2)

return m[n]

Or define array f and use iteration: f [0] = 0, f [1] = 1.

FIBONACCI(n)

for i = 2 upto n step 1 do

f [i] = f [i− 1] + f [i− 2]

return f [n]

4

Another Example: Optimal Binary Search Trees

BST: Tree where the key values are stored in the nodes, and the keys

are ordered lexicographically.

For each internal node all keys in the left subtree are less than the keys

in the node, and all the keys in the right subtree are greater.

Knowing the probabilities of searching each one of the keys makes it

easy to compute the expected cost of accessing the tree.

An OBST is a BST with minimal expected search costs.

Index 1 2 3 4 5 6
Keys -5 1 7 8 13 21
Probabilities 1/8 1/32 1/32 1/16 1/4 1/2

−5

13

21

1

8

7

1 3 6

5

4

2

2

1

0

Depth

5

OBST

• Keys k1, . . . , kn in lexicographical order,

• Probabilities of acessing keys p1, . . . , pn.

• Depth DT (km) of node km in tree T . DT (root) = 0

• T ij: tree constructed from keys ki, . . . , kj

• Costs: number of comparisons done in a search.

• Expected costs: expected number of comparisons done during search

in tree, given the acess probabilities pi

6

OBST: Expected costs

Definiton of expected costs of tree constructed from keys ki, . . . , kj:

Ci,j : = E[cost(T ij)]

=
∑

all keys in T ij

prob. of key× (depth of key

one comparison for root︷︸︸︷
+1)

=

j∑
m=i

pm(DT (km) + 1)

Index 1 2 3 4 5 6
Keys -5 1 7 8 13 21
Probabilities 1/8 1/32 1/32 1/16 1/4 1/2

C1,6 = 1 ·1/16+2 · (1/32+1/4)+3 · (1/8+1/32+1/2)

= 85/32 −5

13

21

1

8

7

1 3 6

5

4

2

2

1

0

Depth

7

OBST

• Key observation: each subtree of an optimal tree is itself optimal

(replacing a subtree with a better one lowers the costs of entire tree)

• Consider tree T ij with root node r(T) = kr.

0

1r(T) r(T)

r(T)

L R

Depth(T)

8

Expected costs of tree T = T ij

Ci,j =

j∑
m=i

pm(DT (km) + 1)

=

r−1∑
m=i

pm(DT (km) + 1) + pr +

j∑
m=r+1

pm(DT (km) + 1)

=

r−1∑
m=i

pm((DT r
L
(km) + 1)︸ ︷︷ ︸

C(left subtree)|root=r

+ 1) + pr︸︷︷︸
root

+

j∑
m=r+1

pm((DT r
R
(km) + 1)︸ ︷︷ ︸

C(right subtree)|root=r

+ 1)

= C(T r
L) +

r−1∑
m=i

pm + pr + C(T r
R) +

j∑
m=r+1

pm

= Ci,r−1 + Cr+1,j +

j∑
m=i

pm, i ≤ r ≤ j.

9

OBST: algorithm

Recursive algorithm:

• consider every node as being the root

• split rest of the keys into left and right subtrees and recursively calculate

their costs.

Ci,i = pi

Ci,j = 0∀ j < i (tree with no nodes)

Ci,j =

j∑
m=i

pm + min
i≤r≤j

[Ci,r−1 + Cr+1,j]

Use memoization to avoid solving the same problem over and over.

Or use iterative algorithm.

10

DP for an OBST
• Precompute Pij =

∑j
m=i pm.

• Fill C-matrix by diagonals (start with main diagonal, move up-right)

• Store “winning” root index in matrix R

(C)ij =

1 2 3 4 5 6
1 1

8
3
16

9
32

15
32

31
32

63
32

2 0 1
32

3
32

7
32

19
32

47
32

3 0 1
32

1
8

15
32

21
16

4 0 1
16

3
8

19
16

5 0 1
4 1

6 0 1
2

=
1

32

4 6 9 15 31 63

1 3 7 19 47
1 4 15 42

2 12 38
8 32

16

• Find tree by backtracking: start in upper right corner R1,n

⇝ root of full tree, say root = k.
Right subtree: proceed with R(k + 1, n)
⇝ root of right subtree Tk+1,n, say R(k + 1, n) = r.
Draw edge k → r.
Left subtree: R(1, k − 1) = l ⇝ root of left subtree, edge k → l.
Recurse.

11

Computations

In our case:

Index 1 2 3 4 5 6

Keys -5 1 7 8 13 21

Probabilities 1/8 1/32 1/32 1/16 1/4 1/2

R =

1 1 1 1 5 5

2 2 3 5 6

3 4 5 6

4 5 6

5 6

6

 7

13

21−5

81

61

3

42

5

E[cost] = 1 · 1/4 + 2 · (1/2 + 1/8) + 3 · (1/32) + 4 · (1/16 + 1/32)

= 1/32[8 + 2(16 + 4) + 3 + 4(2 + 1)] = 63/32.

12

Chained Matrix Multiplication

• Problem: Given a series of n arrays (of appropriate sizes) to multiply:

A1 ×A2 × · · · ×An.

• Determine where to place parentheses to minimize the number of

multiplications.

• Matrix multiplication is associative: A1(A2A3) = (A1A2)A3, so all

placements give same result.

• Formal problem:

Given a sequence of matrices A1, A2, . . . , An, insert paren-

theses so that the product of the matrices needs the

minimal number of multiplications.

13

Number of Multiplications / Parenthesizations

• Multiplying an i × j and a j × k matrix requires ijk multiplications:

each element of the product requires j multiplications, and there are

ik elements

• Given the matrices A1, A2, A3, A4,

assume the dimensions of A1 = d0 × d1, A2 = d1 × d2 etc.

• Below are the five possible parenthesizations of these arrays, along with

the number of multiplications:

(A1A2)(A3A4) : d0d1d2 + d2d3d4 + d0d2d4

((A1A2)A3)A4 : d0d1d2 + d0d2d3 + d0d3d4

(A1(A2A3))A4 : d1d2d3 + d0d1d3 + d0d3d4

A1((A2A3)A4) : d1d2d3 + d1d3d4 + d0d1d4

A1(A2(A3A4)) : d2d3d4 + d1d2d4 + d0d1d4
14

Number of Multiplications / Parenthesizations

• The number of parenthesizations is at least T (n) ≥ T (n−1)+T (n−1):

– Since the number with the first element removed is T (n− 1),

which is also the number with the last removed

– Thus the number of parenthesizations is Ω(2n)

– The number is actually T (n) =

n−1∑
k=1

T (k)T (n− k)

– This is because the original product can be split into 2 subproducts

in k places. Each split is to be parenthesized optimally.

15

Characterizing the Optimal Parenthesization

• An optimal parenthesization of A1 . . . An must break the product into

two expressions, each of which is parenthesized or is a single array

• Assume the break occurs at position k

• In the optimal solution, the solution to the product A1 . . . Ak must be

optimal:

– Otherwise, we could improve A1 . . . An by improving A1 . . . Ak

– But the solution to A1 . . . An is known to be optimal

– Contradiction, thus the solution to A1 . . . An is optimal

• Use Dynamic Programming: Consider a recursive solution, then im-

prove it’s performance with memoization or by rewriting bottom up.

• Dimensions of matrix Ai is di−1 × di
⇝ Ai × · · · ×Aj is of size di−1 × dj

16

Recursive Solution

• Mij = number of multiplies in best way to parenthesize arrays Ai, . . . Aj

• M [i, i] = 0 since no product is required

• The optimal solution of Ai × Aj must break at some point, k, with

i ≤ k < j

• M [i, j] = M [i, k] +M [k + 1, j] + di−1dkdj

• M [i, j] =

{
0 if i = j

mini≤k<j{M [i, k] +M [k + 1, j] + di−1dkdj} if i < j

• This is easily expressed as a recursive function

(with exponential complexity)

17

Efficient Computation

• We must find a way to calculate this bottom up. Which values does

M [i, j] depend on?

• Consider a n× n matrix of values M [i, j]:

Diagonal is 0, build upper triangular table by diagonals

• Example: Array dimensions:

A_1: 2 x 3

A_2: 3 x 5

A_3: 5 x 2

A_4: 2 x 4

A_5: 4 x 3

Array sizes: Ai = di−1 by di:
j 0 1 2 3 4 5

dj 2 3 5 2 4 3
18

Example Showing Tables and Calculations

Mij = number of multiplies in best way to parenthesize arrays Ai, . . . Aj:
i, j 1 2 3 4 5

1 0 30 42 58 78

2 0 30 54 72

3 0 40 54

4 0 24

5 0

CalculatingM25 = number of multiplies in the optimal way to parenthesize

A2A3A4A5:

M25 = min

M22 +M35 + d1d2d5,

M23 +M45 + d1d3d5,

M24 +M55 + d1d4d5

19

Example Showing Tables and Calculations

= min

0 + 54 + 45 = 99

30 + 24 + 18 = 72

54 + 0 + 36 = 90

= min

(A2)(A3A4A5)

(A2A3)(A4A5)

(A2A3A4)(A5)

Optimal locations for parentheses:

i, j 1 2 3 4 5

1 1 1 3 3

2 2 3 3

3 3 3

4 4

5
20

DP for Aligning Biological
Sequences

By

Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=37188728

21

Mutations

• Mutation: Heritable change in the DNA sequence. Occur due to

exposure to ultra violet radiation or other environmental conditions.

• Two levels at which a mutation can take place:

– Point mutation: within a single gene.

• substitution (change of one nucleotide),

• insertion (addition of nucleotides),

• deletion.
– Chromosomal mutation: whole segments interchange,

either on the same chromosome, or on different ones.

22

Point Mutations

• May arise from spontaneous mutations during

DNA replication.

• The rate of mutation increased by mutagens
(physical or chemical agent that changes the genetic material).

• Mutagens: Physical (UV-, X-rays or heat), or chemical (molecules

misplace base pairs / disrupt helical shape of DNA).

Wikipedia. By Jonsta247 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=12481467
23

Importance of Mutations

• Mutations are responsible for inherited disorders & diseases.
Sickle-cell anemia caused by missense point mutation in hemoglobin
(in blood cells, responsible for oxygen transport.)

Hydrophilic glutamic acid replaced with hydrophobic valine.
⇝ deformed red blood cells.

Sequence for Normal Hemoglobin: 6th codon: adenine (A)
AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU ACU

START Val His Leu Thr Pro Glu Glu Lys Ser Ala Val Thr

Sickle Cell Hemoglobin: ⇝ thymine (DNA), uracil (RNA)
AUG GUG CAC CUG ACU CCU GUG GAG AAG UCU GCC GUU ACU

START Val His Leu Thr Pro Val Glu Lys Ser Ala Val Thr

• Mutations are the source of phenotypic variation
⇒ new species and adaption to environmental conditions.

24

Sequence Comparison: Motivation

Basic idea: similar sequences ⇝ similar proteins.
Protein folding: 30 % sequence identity ⇒ structures similar.

Rout et al., Scientific Reports, vol 8, no 7002 (2018)
25

Comparing sequences

Theory: during evolution mutations occurred, creating differences be-

tween families of contemporary species.

https://commons.wikimedia.org/w/index.php?curid=25399199
26

Comparing sequences

Comparing two sequences: looking for evidence that they have diverged
from a common ancestor by a mutation process.

By

Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=37188728

27

Sequence Alignment

Informal definition:
Alignment of sequences x = x1 . . . xn and y = y1 . . . ym:

(i) insert spaces,
(ii) place resulting sequences one above the other so that every character
or space has a counterpart.

Example: ACBCDDDB and CADBDAD. Possible alignments:

A C - - B C D D D B

| | | |

- C A D B - D A D -

- A C B C D D D B

| | |

C A D B D A D - -

28

Optimal Alignment

Given: two sequences x and y over alphabet A.

A ={A,G,C,T} (DNA)
A ={A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V} (proteins)

Formalizing optimality of an alignment: define

• the costs for substituting a letter by another letter

⇒ substitution matrix;

• the costs for insertion ⇒ gap penalties.

29

The Scoring Model

• Idea: assign a score to each alignment, choose best one.

• Additive scoring scheme: Total score = sum of all scores for pairs of

letters + costs for gaps.

Implicit assumption:
Mutations at different sites have occurred independently.
(In most cases) reasonable for DNA and protein sequences.

• All common algorithms use additive scoring schemes.

• Modeling dependencies is possible, but at the price of

significant computational complexities.

30

Substitution Matrices

• Expectation:
Identities in real alignments are more likely than by chance.

• Derive score for aligned pairs from a probabilistic model.

• Score: relative likelihood that two sequences are evolutionary related

as opposed to being unrelated

⇝ score = ratio of probabilities.

• First assumption: Ungapped alignment, n = m.

• R: Random model:
Letter a occurs independently with some frequency qa
⇒ Pr(two sequences) = product of probabilities for each letter:

P (x, y|R) =
∏
i

qxi

∏
i

qyi.

31

Substitution Matrices

• M (match): aligned pairs occur with joint probability

P (x, y|M) =
∏
i

pxiyi

• Ratio ⇝ “odds ratio”:

P (x, y|M)

P (x, y|R)
=

∏
i

pxiyi

qxi
qyi

• To arrive at an additive scoring system → log-odds ratio:

S =
∑

i log
(

pxiyi
qxiqyi

)
=

∑
i s(xi, yi)

• s(a, b): log-likelihood ratio of pair (a, b) occurring as an aligned pair
as opposed to an unaligned pair ⇝ substitution matrix.

32

BLOSUM62 substitution matrix

Wikipedia

33

Gap penalties

Gap penalty types for a gap of length g:

• Linear: γ(g) = −gd, with d being the gap weight.

• Affine: γ(g) = −d− (g − 1)e,

gap-open penalty d, gap-extension penalty e. Usually e < d.

• Convex: e.g. γ(g) = −d log(g). Each additional space contributes less

than the previous space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
20

−
15

−
10

−
5

0

g

ga
p

pe
na

lty
 (

d=
8,

 e
=

1)

34

Global Alignment: Needleman-Wunsch algorithm

The Global Alignment problem:

INPUT: two sequences x = x1 . . . xn and y = y1 . . . ym.

TASK: Find optimal alignment for linear gap penalties γ(g) = −gd.

Let F (i, j) be the optimal alignment score of the prefix sequences
x1...i and y1...j. A zero index i = 0 or j = 0 refers to an empty sequence. F (i, j) has
following properties:

Base conditions: F (i, 0) =
∑i

k=1
−d = −id

F (0, j) =
∑j

k=1
−d = −jd, F (0, 0) = 0.

Recurrence relation: for 1 ≤ i ≤ n, 1 ≤ j ≤ m :

F (i, j) = max

F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

35

Tabular Computation of Optimal Alignment

Starting from F (0, 0) = 0, fill the whole matrix (F)ij:

for i = 0 or j = 0, calculate new value

from left-hand (upper) value. −d

−d −2d0

F(2,0)

F(0,1)

F(1,0)

F(0,2)
−2d

F(0,0)

for i, j ≥ 1, calculate the bottom right-

hand corner of each square of 4 cells

from one of the 3 other cells:
F(i,j)

−d

F(i−1,j−1) F(i,j−1)

F(i−1,j)
−d

+s(x ,y)i j

keep a pointer in each cell back to the cell from which it was derived

⇒ traceback pointer.
36

Global Alignment: Example

x = HEAGAWGHEE, y = PAWHEAE. Linear gap costs d = 8.

Scoring matrix: BLOSUM50

Durbin et al., Cambridge University Press

37

Example: traceback procedure

H E A G A W G H E - E

- - P - A W - H E A E

Add pair of symbols: ↖: (xi, yj), ↑: (−, yj), ←: (xi,−)

Adapted from Durbin et al., Cambridge University Press
38

Time and Space Complexity

Theorem.The time complexity of the Needleman-Wunsch

algorithm is O(nm). Space complexity is O(m), if only F (x, y) is re-

quired, and O(nm) for the reconstruction of the alignment.

Proof:

Time: when computing F (i, j), only cells

(i− 1, j − 1), (i, j − 1), (i− 1, j) are examined

⇝ constant time. There are (n + 1)(m + 1) cells

⇝ O(nm) time complexity.
F(i,j)

−d

F(i−1,j−1) F(i,j−1)

F(i−1,j)
−d

+s(x ,y)i j

Space : row-wise computation of the matrix: for computing row k, only

row k − 1 must be stored ⇝ O(m) space.
Reconstructing the alignment: all traceback pointers must be stored

⇝ O(nm) space complexity.

39

Local Alignments

The Local Alignment problem:

INPUT: two sequences x = x1, . . . , xn and y = y1, . . . , ym.

TASK: find subsequences a of x and b of y,

whose similarity (=optimal global alignment score) is maximal

(over all such pairs of subsequences).

Assume linear gap penalties γ(g) = −gd.

Subsequence = contiguous segment of a sequence.

Consider first a simpler problem by fixing the endpoint of the subse-

quences at index pair (i, j):

Local suffix alignment problem: given x, y, i, j, find suffixes α of x1,...,i

and β of y = y1,...,j such that their global alignment score is maximal.

(x1, . . . , xk, . . . , xi︸ ︷︷ ︸
α

), (y1, . . . , yl, . . . , yj︸ ︷︷ ︸
β

)

40

Local suffix alignments

Consider global alignment path to cell (i, j). Where to start?

Intuition: Indices (k, l) found by following the path back to (0, 0), but

stopping at the first negative value.

−4
−9

−1
−9

−18−10
−16−80

6
9

1
4

7

9

13

1

j

k
l

i

(x1, . . . , xk, . . . , xi︸ ︷︷ ︸
α

), (y1, . . . , yl, . . . , yj︸ ︷︷ ︸
β

)

xixkx2

y1

yj

yl

x1

Remark: If we consider all solutions (i.e. for all (i, j) pairs), we look at

all possible subsequences (no restrictions on α, β)

Maximal solution of local suffix alignment over all pairs (i, j)

= solution of local alignment problem.
41

Smith-Waterman Algorithm

F (i, j): optimal local suffix alignment for indices i, j.

Global alignment with one modification:
Prefixes whose scores are ≤ 0 are discarded
⇝ alignment can start anywhere.

Recurrence relation: F (i, j) = max

0

F (i− 1, j − 1) + s(xi, yj)

F (i− 1, j)− d

F (i, j − 1)− d

Finally, find indices i∗ and j∗ after which the similarity only decreases.
Stop the alignment there.

F (i∗, j∗) = max
i,j

F (i, j)
42

Traceback...

...starts at highest value until a cell with 0 is reached.

Adapted from Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
43

Local vs. Global Alignment: Biological Considerations

• Many proteins have multiple domains, or modules.

• Some domains are present (with high similarity) in many other proteins

• Local alignment can detect similar regions in otherwise
dissimilar proteins.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

44

Other gap models

• So far: linear gap model. Not ideal for biological sequences, since it penalizes
additional gap steps as much as the first. But in reality: When gaps do occur, they
are often longer than one character.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

• For a general gap cost function γ(g), we can still use the standard dynamic
programming recursion with slight modifications:

F (i, j) = max

F (i− 1, j − 1) + s(xi, yj)

F (k, j) + γ(i− k), k = 0, . . . , i− 1,

F (i, k) + γ(j − k), k = 0, . . . , j − 1.

• Problem: requires O(n3) operations to align two sequences of length n, rather than
O(n2). Why?

45

Alignment with affine gap costs

For affine gap costs, γ(g) = −d− (g − 1)e, there exists a solution:
Modify recurrence by introducing another two “states”. Denote by

• M(i, j) the best score given that xi is aligned to yj,

• Ix(i, j) the best score given that xi is aligned to a gap,

• Iy(i, j) the best score given that yj is aligned to a gap.

M(i, j) = max

M(i− 1, j − 1) + s(xi, yj)

Ix(i− 1, j − 1) + s(xi, yj)

Iy(i− 1, j − 1) + s(xi, yj)

Ix(i, j) = max

{
M(i− 1, j)− d

Ix(i− 1, j)− e

Iy(i, j) = max

{
M(i, j − 1)− d

Iy(i, j − 1)− e

(+1,+0)

(+0,+1)

(+1,+1)

-e

-e

-d

IX

IY

-d

s(xi, yj)

s(xi, yj)

s(xi, yj) M

46

Example FSA alignment

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

FSA alignment corresponds to path through states.

Probabilistic version ⇝ Hidden Markov models

47

Global Alignment in Linear Space

• Problem: genomic scale sequence analysis: comparing two large genomic sequences:
m,n ≈ 106 ⇒ space complexity 1012 is clearly unacceptable!

• Solution: linear space algorithms with space complexity O(m+ n).

• Basic idea: divide and conquer. Let u = ⌊n2⌋ be the integer part of n
2 .

– Let v be a row index such that the cell (u, v) is on the optimal alignment.
– Split dynamic programming problem into two parts:

(0, 0)→ (u, v) and (u, v)→ (n,m).
Optimal alignment will be concatenation of individual sub-alignments.

– Repeat splitting until until u = 0: trivial

v

u = n/2

Question: how can we find v?
48

Global Alignment in Linear Space

• For i ≥ u define c(i, j) such that (u, c(i, j)) is on
the optimal path from (1, 1)→ (i, j).

v

c(i,j)

j
i

u

• Let (i′, j′) be the preceding cell to (i, j) from which
F (i, j) is derived. Update c(i, j) as:

c(i, j) =

{
j , if i = u,

c(i′, j′) , else
F(i,j)

F(i−1,j−1) F(i,j−1)

F(i−1,j)

c(i,j)c(i−1,j) =

• Local operation ⇝ need to store only the previous row of c().

• Finally, v = c(n,m).

49

Global Alignment in Linear Space: Example

Computing the c matrix for the first step (i = n = 6, j = m = 4, u = 3).
The c values are written as subscripts. BLOSUM62, linear gap costs d = 8.

0 1 2 3 4 5 6
• H E A G A W

0 • 0 ← -8 ← -16 ← −240 ← −320 ← −400 ← −480
↑ ↖ ↖ ↖ ↖

1 P -8 -2 -9 −171 ← −251 −330 ← −410
↑ ↖ ↑ ↖ ↖ ↖

2 A -16 -10 -3 −42 ← −122 −201 ← −281
↑ ↑ ↖ ↖ ↖ ↖

3 W -24 -18 -11 −63 −72 −152 −51
↑ ↖ ↖ ↖ ↖ ↖ ↑

4 H -32 -14 -18 −134 −83 −92 −131

Every c(i, j) defines a row index v such that (u, c(i, j)) is on the optimal path from
(1, 1) to (i, j) ⇝ v = c(6, 4) = 1, so (3,1) is our desired element on the optimal path
form (1,1) to (6,4).

50

	 Dynamic Programming
	 Dynamic Programming
	 A Simple Example: Fibonacci numbers
	 A Simple Example (2)
	 Another Example: Optimal Binary Search Trees
	 OBST
	 OBST: Expected costs
	 OBST
	 Expected costs of tree T = Tij
	 OBST: algorithm
	 DP for an OBST
	 Computations
	 Chained Matrix Multiplication
	 Number of Multiplications / Parenthesizations
	 Number of Multiplications / Parenthesizations
	 Characterizing the Optimal Parenthesization
	 Recursive Solution
	 Efficient Computation
	 Example Showing Tables and Calculations
	 Example Showing Tables and Calculations
	 Mutations
	 Point Mutations
	 Importance of Mutations
	 Sequence Comparison: Motivation
	 Comparing sequences
	 Comparing sequences
	 Sequence Alignment
	 Optimal Alignment
	 The Scoring Model
	 Substitution Matrices
	 Substitution Matrices
	 BLOSUM62 substitution matrix
	 Gap penalties
	 Global Alignment: Needleman-Wunsch algorithm
	 Tabular Computation of Optimal Alignment
	 Global Alignment: Example
	 Example: traceback procedure
	 Time and Space Complexity
	 Local Alignments
	 Local suffix alignments
	 Smith-Waterman Algorithm
	 Traceback...
	 Local vs. Global Alignment: Biological Considerations
	 Other gap models
	 Alignment with affine gap costs
	 Example FSA alignment
	 Global Alignment in Linear Space
	 Global Alignment in Linear Space
	 Global Alignment in Linear Space: Example

