

Dynamic Programming

- Simplex for LP: Greedy algorithm, makes a locally optimal choice.
- For many problems, we need a different approach called **Dynamic Programming**
- Finds solutions for problems with lots of **overlapping sub-problems.** Essentially, we try to solve each sub-problem **only once**.
- **Optimal substructure:** optimal solutions of **subproblems** can be used to find the optimal solutions of the **overall problem**.

Example: Finding the shortest path in a graph.

Dynamic Programming

Typically, a dynamic programming solution is constructed using a series of steps:

- 1. Characterise the **structure** of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up (→ iteration) or top-down (→ recursion) fashion. That is, build it from the results of smaller solutions either iteratively from the bottom or recursively from the top.

A Simple Example: Fibonacci numbers

Fibonacci sequence: The *n*-th number is the sum of the previous two. This can be implemented using a simple recursive algorithm:

function FIBONACCI(n)

if n = 0 then return 0 if n = 1 then return 1 return FIBONACCI(n - 1) + FIBONACCI(n - 2)

Problem: Overlapping sub-problems: Computing FIBONACCI(n-1) overlaps FIBONACCI(n-2) \rightsquigarrow exponential time complexity!

A Simple Example (2)

Define **map object** m, maps each instance of FIBONACCI that has already been calculated to its result. **Modified recursion** requires only O(n) time:

var m; m[0] = 0; m[1] = 1function FIBONACCI(n) if m does not contain key nm[n] = FIBONACCI(n - 1) + FIBONACCI(n - 2)return m[n]

Or define array f and use **iteration:** f[0] = 0, f[1] = 1. FIBONACCI(n)

```
for i = 2 upto n step 1 do

f[i] = f[i-1] + f[i-2]

return f[n]
```

Another Example: Optimal Binary Search Trees

- **BST:** Tree where the key values are stored in the nodes, and the keys are ordered lexicographically.
- For each internal node all keys in the left subtree are less than the keys in the node, and all the keys in the right subtree are greater.
- Knowing the probabilities of searching each one of the keys makes it easy to compute the expected cost of accessing the tree.

An **OBST** is a BST with *minimal expected search costs*.

OBST

- Keys k_1, \ldots, k_n in lexicographical order,
- **Probabilities** of accessing keys p_1, \ldots, p_n .
- Depth $D_T(k_m)$ of node k_m in tree T. $D_T(\text{root}) = 0$
- T^{ij} : tree constructed from keys k_i, \ldots, k_j
- **Costs:** number of comparisons done in a search.
- **Expected costs:** expected number of comparisons done during search in tree, given the acess probabilities p_i

OBST: Expected costs

Definiton of expected costs of tree constructed from keys k_i, \ldots, k_j :

Probabilities 1/8 1/32 1/32 1/16 1/4 1/2 $C_{1,6} = 1 \cdot 1/16 + 2 \cdot (1/32 + 1/4) + 3 \cdot (1/8 + 1/32 + 1/2)$ = 85/32

OBST

- Key observation: each subtree of an optimal tree is itself optimal (replacing a subtree with a better one lowers the costs of entire tree)
- Consider tree T^{ij} with root node $r(T) = k_r$.

Expected costs of tree $T = T^{ij}$

$$\begin{split} C_{i,j} &= \sum_{m=i}^{j} p_m (D_T(k_m) + 1) \\ &= \sum_{m=i}^{r-1} p_m (D_T(k_m) + 1) + p_r + \sum_{m=r+1}^{j} p_m (D_T(k_m) + 1) \\ &= \sum_{m=i}^{r-1} p_m ((D_{T_L^r}(k_m) + 1) + 1) + \underbrace{p_r}_{\text{root}} + \underbrace{\sum_{m=r+1}^{j} p_m ((D_{T_R^r}(k_m) + 1) + 1)}_{\text{C(right subtree)|root=r}} \\ &= C(T_L^r) + \sum_{m=i}^{r-1} p_m + p_r + C(T_R^r) + \sum_{m=r+1}^{j} p_m \\ &= C_{i,r-1} + C_{r+1,j} + \sum_{m=i}^{j} p_m, \quad i \le r \le j. \end{split}$$

OBST: algorithm

Recursive algorithm:

- consider every node as being the root
- split rest of the keys into left and right subtrees and recursively calculate their costs.

$$C_{i,i} = p_i$$

$$C_{i,j} = 0 \forall j < i \quad (\text{tree with no nodes})$$

$$C_{i,j} = \sum_{m=i}^{j} p_m + \min_{i \le r \le j} [C_{i,r-1} + C_{r+1,j}]$$

Use **memoization** to avoid solving the same problem over and over. Or use **iterative** algorithm.

DP for an OBST

- Precompute $P_{ij} = \sum_{m=i}^{j} p_m$.
- Fill C-matrix by diagonals (start with main diagonal, move up-right)
- $\bullet\,$ Store "winning" root index in matrix R

Find tree by backtracking: start in upper right corner R_{1,n}
→ root of full tree, say root = k.
Right subtree: proceed with R(k + 1, n)
→ root of right subtree T_{k+1,n}, say R(k + 1, n) = r.
Draw edge k → r.
Left subtree: R(1, k - 1) = l → root of left subtree, edge k → l.
Recurse.

Computations

In our case:

 $E[cost] = \mathbf{1} \cdot 1/4 + \mathbf{2} \cdot (1/2 + 1/8) + \mathbf{3} \cdot (1/32) + \mathbf{4} \cdot (1/16 + 1/32) \\= 1/32[8 + 2(16 + 4) + \mathbf{3} + 4(2 + 1)] = 63/32.$

Chained Matrix Multiplication

- Problem: Given a series of n arrays (of appropriate sizes) to multiply: $A_1 \times A_2 \times \cdots \times A_n$.
- Determine where to place parentheses to minimize the number of multiplications.
- Matrix multiplication is associative: $A_1(A_2A_3) = (A_1A_2)A_3$, so all placements give same result.
- Formal problem:

Given a sequence of matrices A_1, A_2, \ldots, A_n , insert parentheses so that the product of the matrices needs the **minimal number of multiplications.**

Number of Multiplications / Parenthesizations

- Multiplying an i × j and a j × k matrix requires ijk multiplications: each element of the product requires j multiplications, and there are ik elements
- Given the matrices A_1, A_2, A_3, A_4 , assume the dimensions of $A_1 = d_0 \times d_1$, $A_2 = d_1 \times d_2$ etc.
- Below are the five possible parenthesizations of these arrays, along with the number of multiplications:

 $(A_1A_2)(A_3A_4) : d_0d_1d_2 + d_2d_3d_4 + d_0d_2d_4$ $((A_1A_2)A_3)A_4 : d_0d_1d_2 + d_0d_2d_3 + d_0d_3d_4$ $(A_1(A_2A_3))A_4 : d_1d_2d_3 + d_0d_1d_3 + d_0d_3d_4$ $A_1((A_2A_3)A_4) : d_1d_2d_3 + d_1d_3d_4 + d_0d_1d_4$ $A_1(A_2(A_3A_4)) : d_2d_3d_4 + d_1d_2d_4 + d_0d_1d_4$

Number of Multiplications / Parenthesizations

- The number of parenthesizations is at least $T(n) \ge T(n-1) + T(n-1)$:
 - Since the number with the first element removed is T(n-1), which is also the number with the last removed
 - Thus the number of parenthesizations is $\Omega(2^n)$

- The number is actually
$$T(n) = \sum_{k=1}^{n-1} T(k)T(n-k)$$

- This is because the original product can be split into 2 subproducts in k places. Each split is to be parenthesized optimally.

n = 1

Characterizing the Optimal Parenthesization

- An optimal parenthesization of $A_1 \dots A_n$ must break the product into two expressions, each of which is parenthesized or is a single array
- Assume the break occurs at position \boldsymbol{k}
- In the optimal solution, the solution to the product $A_1 \dots A_k$ must be optimal:
 - Otherwise, we could improve $A_1 \ldots A_n$ by improving $A_1 \ldots A_k$
 - But the solution to $A_1 \dots A_n$ is known to be optimal
 - Contradiction, thus the solution to $A_1 \dots A_n$ is optimal
- Use Dynamic Programming: Consider a recursive solution, then improve it's performance with memoization or by rewriting bottom up.
- Dimensions of matrix A_i is $d_{i-1} \times d_i$ $\rightsquigarrow A_i \times \cdots \times A_j$ is of size $d_{i-1} \times d_j$

Recursive Solution

- M_{ij} = number of multiplies in best way to parenthesize arrays $A_i, \ldots A_j$
- M[i, i] = 0 since no product is required
- \bullet The optimal solution of $A_i \times A_j$ must break at some point, k, with $i \leq k < j$
- $M[i,j] = M[i,k] + M[k+1,j] + d_{i-1}d_kd_j$

•
$$M[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ M[i,k] + M[k+1,j] + d_{i-1}d_kd_j \} & \text{if } i < j \end{cases}$$

• This is easily expressed as a recursive function (with exponential complexity)

Efficient Computation

- \bullet We must find a way to calculate this bottom up. Which values does M[i,j] depend on?
- Consider a $n \times n$ matrix of values M[i, j]: Diagonal is 0, build upper triangular table by diagonals
- Example: Array dimensions:

A_1: 2 x 3 A_2: 3 x 5 A_3: 5 x 2 A_4: 2 x 4 A_5: 4 x 3

Array sizes:
$$A_i = d_{i-1}$$
 by d_i : $\frac{j \ 0 \ 1 \ 2 \ 3 \ 4 \ 5}{d_j \ 2 \ 3 \ 5 \ 2 \ 4 \ 3}$

Example Showing Tables and Calculations

M_{ij}	= r	umt	oer o	f mu	ltipl	ies in best way to parenthesize arrays $A_i, \ldots A_j$:
i,j	1	2	3	4	5	
1	0	30	42	58	78	
2		0	30	54	72	
3			0	40	54	
4				0	24	
5					0	

Calculating M_{25} = number of multiplies in the optimal way to parenthesize $A_2A_3A_4A_5$:

$$M_{25} = \min \begin{cases} M_{22} + M_{35} + d_1 d_2 d_5, \\ M_{23} + M_{45} + d_1 d_3 d_5, \\ M_{24} + M_{55} + d_1 d_4 d_5 \end{cases}$$

Example Showing Tables and Calculations

$$= \min \begin{cases} 0 + 54 + 45 = 99\\ 30 + 24 + 18 = 72\\ 54 + 0 + 36 = 90 \end{cases}$$
$$= \min \begin{cases} (A_2)(A_3A_4A_5)\\ (A_2A_3)(A_4A_5)\\ (A_2A_3A_4)(A_5) \end{cases}$$

Optimal locations for parentheses:

20

DP for Aligning Biological Sequences

Histone H1 (residues 120-180)

Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=37188728

By

Mutations

- **Mutation**: Heritable change in the DNA sequence. Occur due to exposure to **ultra violet radiation** or other **environmental conditions**.
- **Two levels** at which a mutation can take place:
 - **Point mutation:** within a single gene.
 - **substitution** (change of one nucleotide),
 - insertion (addition of nucleotides),
 - deletion.
 - Chromosomal mutation: whole segments interchange, either on the same chromosome, or on different ones.

Point Mutations

- May arise from spontaneous mutations during DNA replication.
- The rate of mutation increased by mutagens
 (physical or chemical agent that changes the genetic material).
- Mutagens: Physical (UV-, X-rays or heat), or chemical (molecules misplace base pairs / disrupt helical shape of DNA).

Wikipedia. By Jonsta247 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=12481467

Importance of Mutations

 Mutations are responsible for inherited disorders & diseases.
 Sickle-cell anemia caused by missense point mutation in hemoglobin (in blood cells, responsible for oxygen transport.)
 Hydrophilic glutamic acid replaced with hydrophobic valine.
 ~> deformed red blood cells.

Sequence for Normal Hemoglobin: 6th codon: adenine (A)

AUG	GUG	CAC	CUG	ACU	CCU	G <mark>A</mark> G	GAG	AAG	UCU	GCC	GUU	ACU
START	Val	His	Leu	Thr	Pro	Glu	Glu	Lys	Ser	Ala	Val	Thr

Sickle Cell Hemoglobin: ~> thymine (DNA), uracil (RNA)

AUG	GUG	CAC	CUG	ACU	CCU	G <mark>U</mark> G	GAG	AAG	UCU	GCC	GUU	ACU
START	Val	His	Leu	Thr	Pro	Val	Glu	Lys	Ser	Ala	Val	Thr

• Mutations are the source of **phenotypic variation**

 \Rightarrow **new species** and **adaption** to environmental conditions.

Sequence Comparison: Motivation

Basic idea: similar sequences \rightsquigarrow similar proteins. Protein folding: 30 % sequence identity \Rightarrow structures similar.

Rout et al., Scientific Reports, vol 8, no 7002 (2018)

Comparing sequences

Theory: during evolution **mutations** occurred, creating differences between families of contemporary species.

Missense mutation

U.S. National Library of Medicine

 $https://commons.wikimedia.org/w/index.php?curid{=}25399199$

Comparing sequences

Comparing two sequences: looking for **evidence** that they have **diverged from a common ancestor** by a **mutation process**.

Histone H1 (residues 120-180)

Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=37188728

By

Sequence Alignment

Informal definition:

Alignment of sequences $x = x_1 \dots x_n$ and $y = y_1 \dots y_m$:

(i) insert spaces,

(ii) place resulting sequences **one above the other** so that every character or space has a counterpart.

Example: ACBCDDDB and CADBDAD. Possible alignments:

Optimal Alignment

Given: two sequences x and y over alphabet \mathcal{A} .

 $\mathcal{A} = \{ \texttt{A},\texttt{G},\texttt{C},\texttt{T} \} (\mathsf{DNA}) \\ \mathcal{A} = \{ \texttt{A},\texttt{R},\texttt{N},\texttt{D},\texttt{C},\texttt{Q},\texttt{E},\texttt{G},\texttt{H},\texttt{I},\texttt{L},\texttt{K},\texttt{M},\texttt{F},\texttt{P},\texttt{S},\texttt{T},\texttt{W},\texttt{Y},\texttt{V} \} (\mathsf{proteins})$

Formalizing **optimality of an alignment**: define

- the costs for substituting a letter by another letter
 ⇒ substitution matrix;
- the costs for **insertion** \Rightarrow **gap penalties**.

The Scoring Model

- Idea: assign a score to each alignment, choose best one.
- Additive scoring scheme: Total score = sum of all scores for pairs of letters + costs for gaps.
 Implicit assumption:

Mutations at different sites have occurred **independently**. (In most cases) reasonable for DNA and protein sequences.

- All common algorithms use additive scoring schemes.
- Modeling dependencies is possible, but at the price of significant computational complexities.

Substitution Matrices

• Expectation:

Identities in real alignments are more likely than by chance.

- Derive score for aligned pairs from a **probabilistic model**.
- Score: relative likelihood that two sequences are evolutionary related as opposed to being unrelated

 \rightarrow score = ratio of probabilities.

- First assumption: Ungapped alignment, n = m.
- *R*: Random model:

Letter a occurs **independently** with some frequency q_a

 \Rightarrow Pr(two sequences) = product of probabilities for each letter:

$$P(x, y|R) = \prod_{i} q_{x_i} \prod_{i} q_{y_i}.$$

Substitution Matrices

• M (match): aligned pairs occur with joint probability

$$P(x, y|M) = \prod_{i} p_{x_i y_i}$$

• Ratio ~> "odds ratio":

$$\frac{P(x, y|M)}{P(x, y|R)} = \prod_{i} \frac{p_{x_i y_i}}{q_{x_i} q_{y_i}}$$

• To arrive at an **additive** scoring system \rightarrow **log-odds ratio**:

$$S = \sum_{i} \log \left(\frac{p_{x_i y_i}}{q_{x_i} q_{y_i}} \right) = \sum_{i} s(x_i, y_i)$$

 s(a, b): log-likelihood ratio of pair (a, b) occurring as an aligned pair as opposed to an unaligned pair → substitution matrix.

BLOSUM62 substitution matrix

	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
Val	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
Tyr	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
Trp	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Thr	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
Ser	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Pro	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
Phe	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Met	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
Lys	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5								
Leu	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4									
lle	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
His	-2	0	1	-1	-3	0	0	-2	8											
Gly	0	-2	0	-1	-3	-2	-2	6												
Glu	-1	0	0	2	-4	2	5													
Gln	-1	1	0	0	-3	5														
Cys	0	-3	-3	-3	9															
Asp	-2	-2	1	6																
Asn	-2	0	6																	
Arg	-1	5																		
Ala	4																			

Wikipedia

Gap penalties

Gap penalty types for a gap of length g:

- Linear: $\gamma(g) = -gd$, with d being the gap weight.
- Affine: $\gamma(g) = -d (g 1)e$, gap-open penalty d, gap-extension penalty e. Usually e < d.
- Convex: e.g. $\gamma(g) = -d \log(g)$. Each additional space contributes less than the previous space.

Global Alignment: Needleman-Wunsch algorithm

The Global Alignment problem:

INPUT: two sequences $x = x_1 \dots x_n$ and $y = y_1 \dots y_m$.

TASK: Find optimal alignment for linear gap penalties $\gamma(g) = -gd$.

Let F(i, j) be the optimal alignment score of the **prefix sequences** $x_{1...i}$ and $y_{1...j}$. A zero index i = 0 or j = 0 refers to an **empty sequence**. F(i, j) has following properties:

Base conditions:
$$F(i,0) = \sum_{k=1}^{i} -d = -id$$

 $F(0,j) = \sum_{k=1}^{j} -d = -jd, \quad F(0,0) = 0.$

Recurrence relation:

for
$$1 \leq i \leq n, \ 1 \leq j \leq m$$
:

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

Tabular Computation of Optimal Alignment

Starting from F(0,0) = 0, fill the whole matrix $(F)_{ij}$:

for i = 0 or j = 0, calculate new value from left-hand (upper) value.

for $i, j \ge 1$, calculate the bottom righthand corner of each square of 4 cells from one of the 3 other cells:

keep a pointer in each cell back to the cell from which it was derived \Rightarrow **traceback pointer**.

Global Alignment: Example

x = HEAGAWGHEE, y = PAWHEAE. Linear gap costs d = 8. Scoring matrix: BLOSUM50

Durbin et al., Cambridge University Press

Example: traceback procedure

Time and Space Complexity

Theorem. The time complexity of the Needleman-Wunsch algorithm is O(nm). Space complexity is O(m), if only F(x, y) is required, and O(nm) for the reconstruction of the alignment.

Proof:

Time: when computing F(i, j), only cells (i - 1, j - 1), (i, j - 1), (i - 1, j) are examined \rightsquigarrow constant time. There are (n + 1)(m + 1) cells $\rightsquigarrow O(nm)$ **time complexity.**

Space : row-wise computation of the matrix: for computing row k, only row k - 1 must be stored $\rightsquigarrow O(m)$ **space. Reconstructing** the alignment: all traceback pointers must be stored $\rightsquigarrow O(nm)$ **space complexity.**

Local Alignments

The Local Alignment problem:

INPUT: two sequences $x = x_1, \ldots, x_n$ and $y = y_1, \ldots, y_m$. **TASK**: find subsequences a of x and b of y, whose similarity (=optimal global alignment score) is maximal (over all such pairs of subsequences). Assume linear gap penalties $\gamma(g) = -gd$.

Subsequence = **contiguous** segment of a sequence.

Consider first a simpler problem by **fixing the endpoint** of the subsequences at index pair (i, j):

Local suffix alignment problem: given x, y, i, j, find suffixes α of $x_{1,...,i}$ and β of $y = y_{1,...,j}$ such that their global alignment score is maximal.

$$(x_1, \ldots, \underbrace{x_k, \ldots, x_i}_{\alpha}), \quad (y_1, \ldots, \underbrace{y_l, \ldots, y_j}_{\beta})$$

Local suffix alignments

Consider global alignment path to cell (i, j). Where to start? Intuition: Indices (k, l) found by following the path back to (0, 0), but stopping at the first negative value.

Remark: If we consider all solutions (i.e. for all (i, j) pairs), we look at all possible subsequences (no restrictions on α, β)

Maximal solution of local suffix alignment over all pairs (i, j)= solution of local alignment problem.

Smith-Waterman Algorithm

F(i, j): optimal local suffix alignment for indices i, j.

Global alignment with one **modification**: Prefixes whose scores are ≤ 0 are **discarded** \rightsquigarrow alignment can **start anywhere**.

Recurrence relation:
$$F(i,j) = \max \begin{cases} 0\\F(i-1,j-1) + s(x_i,y_j)\\F(i-1,j) - d\\F(i,j-1) - d \end{cases}$$

Finally, find indices i^* and j^* after which the similarity only decreases. Stop the alignment there.

$$F(i^*, j^*) = \max_{i,j} F(i, j)$$

Traceback...

...starts at highest value until a cell with 0 is reached.

Adapted from Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Local vs. Global Alignment: Biological Considerations

- Many proteins have **multiple domains**, or modules.
- Some domains are present (with high similarity) in many other proteins
- **Local** alignment can detect similar regions in otherwise dissimilar proteins.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Other gap models

• So far: linear gap model. Not ideal for biological sequences, since it penalizes additional gap steps as much as the first. But in reality: When gaps do occur, they are often longer than one character.

HBA_HUMAN GSAOVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL ++ ++++H+ KV + +A ++ +L+ L+++H+ K LGB2_LUPLU NNPELOAHAGKVFKLVYEAAIOLOVTGVVVTDATLKNLGSVHVSKG

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

• For a general gap cost function $\gamma(g)$, we can still use the standard dynamic programming recursion with slight modifications:

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(k, j) + \gamma(i-k), & k = 0, \dots, i-1, \\ F(i, k) + \gamma(j-k), & k = 0, \dots, j-1. \end{cases}$$

• **Problem:** requires $O(n^3)$ operations to align two sequences of length n, rather than $O(n^2)$. Why?

Alignment with affine gap costs

For affine gap costs, $\gamma(g) = -d - (g - 1)e$, there exists a **solution**: Modify recurrence by introducing another two "states". Denote by

- M(i,j) the best score given that x_i is aligned to y_j ,
- $I_x(i,j)$ the best score given that x_i is aligned to a gap,
- $I_y(i,j)$ the best score given that y_j is aligned to a gap.

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases} \overset{s(x_i, y_j)}{\underset{(+1,+1)}{}} \overset{s(x_i, y_j)}{\underset{(+1,+1)}{}} \overset{-e}{\underset{(x_i, y_j)}{}} \\ I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \\ I_y(i,j-1) - e \end{cases} \overset{s(x_i, y_j)}{\underset{(+1,+1)}{}} \overset{-e}{\underset{(x_i, y_j)}{}} \overset{f_x(x_i, y_j)}{\underset{(+1,+1)}{}} \overset{-e}{\underset{(x_i, y_j)}{}} \end{aligned}$$

Example FSA alignment

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

FSA alignment corresponds to path through states.

Probabilistic version ~> Hidden Markov models

Global Alignment in Linear Space

- Problem: genomic scale sequence analysis: comparing two large genomic sequences: $m, n \approx 10^6 \Rightarrow$ space complexity 10^{12} is clearly unacceptable!
- Solution: linear space algorithms with space complexity O(m+n).
- Basic idea: divide and conquer. Let $u = \lfloor \frac{n}{2} \rfloor$ be the integer part of $\frac{n}{2}$.
 - Let v be a row index such that the cell (u, v) is on the optimal alignment.
 - Split dynamic programming problem into two parts: $(0,0) \rightarrow (u,v)$ and $(u,v) \rightarrow (n,m)$.

Optimal alignment will be concatenation of individual sub-alignments.

– Repeat splitting until until u = 0: trivial

Global Alignment in Linear Space

• For $i \ge u$ define c(i, j) such that (u, c(i, j)) is on the optimal path from $(1, 1) \rightarrow (i, j)$.

• Let (i', j') be the preceding cell to (i, j) from which F(i, j) is derived. Update c(i, j) as:

$$c(i,j) = \begin{cases} j & , \text{ if } i = u, \\ c(i',j') & , \text{else} \end{cases}$$

- Local operation \rightsquigarrow need to store only the previous row of c().
- Finally, v = c(n, m).

Global Alignment in Linear Space: Example

Computing the c matrix for the first step (i = n = 6, j = m = 4, u = 3). The c values are written as subscripts. BLOSUM62, linear gap costs d = 8.

		0		1		2		3		4		5		6
		•		Н		Е		А		G		А		W
0	٠	0	\leftarrow	-8	\leftarrow	-16	\leftarrow	-24_{0}	\leftarrow	-32_{0}	\leftarrow	-40_{0}	\leftarrow	-48_{0}
		\uparrow	ĸ		$\overline{\mathbf{x}}$		ĸ				$\overline{\mathbf{x}}$			
1	Р	-8		-2		-9		-17 <mark>1</mark>	\leftarrow	-25_{1}		-33_{0}	\leftarrow	-41_{0}
		\uparrow	ĸ	\uparrow	$\overline{\mathbf{x}}$		ĸ				ĸ			
2	А	-16		-10		-3		-4_{2}	\leftarrow	-12_{2}		-20_{1}	\leftarrow	-28_{1}
		\uparrow		\uparrow			ĸ		×,		$\overline{\mathbf{x}}$		ĸ	
3	W	-24		-18		-11		-6_{3}		-7_{2}		-152		-5_{1}
		\uparrow	ĸ		$\overline{\mathbf{x}}$		ĸ		×,		$\overline{\mathbf{x}}$			\uparrow
4	Н	-32		-14		-18		-13_{4}		-8_{3}		-9_{2}		-13 ₁

Every c(i, j) defines a row index v such that (u, c(i, j)) is on the optimal path from (1, 1) to $(i, j) \rightsquigarrow v = c(6, 4) = 1$, so (3,1) is our desired element on the optimal path form (1,1) to (6,4).