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Rémi Bignalet An introduction to the Cayley-Bacharach theorems 2 / 1



Pappus’s Theorem

Theorem (First version of the Cayley-Bacharach theorem, IVth

century AC)
Lest L and M be two lines in the plane. Lest p1, p2 and p3 be
distinct points of L and let q1, q2 and q3 be distinct points on M
all distinct from the point L∩M. If for each j 6= l ∈ {1,2,3} we let
rjk be the point of intersection of the lines pjqk and pkqj , then the
three points rjk are colinear.
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Rémi Bignalet An introduction to the Cayley-Bacharach theorems 4 / 1



Pascal’s theorem

q1

q2

q3

p1

p2

p3

r12
r13

r23
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Pascal’s Theorem

Theorem (Pascal’s theorem, 1640)
If a hexagon is inscribed in a conic in the projective plane, the
opposite sides of the hexagon meet in three collinear points.
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Projective Geometry

Definition

P2(C) = C3\{0}/(x ,y ,z)∼ (λx ,λy ,λz)

Homogeneous coordinates: (x : y : z) = (λx : λy : λz)

Remark

Given f = ∑
i+j+k=d

αijkx iy jzkhomogeneous polynomial of degree

d in three variables:

{(x0 : y0 : z0) ∈ P2(C), f (x0,y0,z0) = 0}

makes sense as a subset of P2(C).
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Pappus’ theorem as deformation

{y2 + xz = 0}

{ 1
2 y2 + xz = 0}

{ 1
4 y2 + xz = 0}

{ 1
8 y2 + xz = 0}

{xz = 0}
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A first limit case
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Chasles’ Theorem

Theorem (Chasles’ Theorem)

Let X1 and X2 ⊂ Pn(C) be two cubic plane curve meeting in
nine points p1, . . . ,p9. If X ⊂ Pn(C) is any cubic containing a
priori p1, . . . ,p8, then X contains p9 as well.
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Application

Application (Pascal’s theorem)
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Terminology

Definition

If Γ⊂ P2(C) is a set of distinct points, we say that Γ imposes l
conditions on the polynomial of degree d if the subspace
C[x ,y ,z]hd vanishing at p1, . . . ,pm has codimension l.

The number of condition imposed by Γ on polynomials of degree
d is denoted by

hΓ(d).

Example

The set Γ of 3 collinear points imposes two conditions on
polynomials of degree 1 i.e. hΓ(1) = 2.
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Chasles’ theorem

Theorem

Given Γ = {p1, . . . ,p9}= X1∩X2 where X1 and X2 are plane
cubics,

then for all Γ′ = {p1, . . . ,p8},

hΓ(3) = hΓ′(3)

Remark

Proof is actually showing that hΓ(3) = hΓ′(3) = 8.

Rémi Bignalet An introduction to the Cayley-Bacharach theorems 13 / 1



Chasles’ theorem

Theorem

Given Γ = {p1, . . . ,p9}= X1∩X2 where X1 and X2 are plane
cubics, then for all Γ′ = {p1, . . . ,p8},

hΓ(3) = hΓ′(3)

Remark

Proof is actually showing that hΓ(3) = hΓ′(3) = 8.
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A lemma

Lemma

Let Ω = {p1, . . . ,pn} ⊂ P2 be a set of n distinct points and let an
integer d such that n ≤ 2d + 2.

Ω fail to impose independent conditions on curves of degree d if
and only if either d + 2 points of Ω are collinear or n = 2d + 2
and Ω is contained in a conic.
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One idea

Theorem (Bézout’s theorem)

Let X1 and X2 ⊂ P2(C) be plane curves of degree d and e
respectively.
If X1 and X2 have no common component then they meet in
d×e points.

Example

y = x2

y = 1

y = x2

y = 0

y = x2

y =−1
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The theory of curves (XIXth century)

Theorem (Cayley-Bacharach theorem, version 4)

Let X1 and X2 ⊂ P2(C) be plane curves of degree d and e
respectively, meeting in a collection of d×e distinct points
Γ = X1∩X2 = {p1, . . . ,pde}. If C ⊂ Pn(C) is any plane curve of
degree d + e−3 containing all but one point of Γ, then C
contains all of Γ.
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The theory of curves (XIXth century)

Theorem (Cayley-Bacharach theorem, version 5)

Let X1 and X2 ⊂ P2(C) be plane curves of degree d and e
respectively, meeting in a collection of d×e distinct points
Γ = X1∩X2 = {p1, . . . ,pde} and suppose that Γ is the disjoint
union of susbsets Γ′ and Γ′′.

Set s = d + e−3.

If k ≤ s is a nonnegative integer, then the dimension of the
vector space of polynomials of degree k, vanishing on Γ′

(modulo those containing all of Γ) is equal to the failure of Γ′′ to
impose independent conditions on polynomials of degree s− k.
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A last XIXth century version

Theorem (Cayley-Bacharach theorem, version 6)

Let X1, . . . ,Xn be hypersurfaces in Pn(C) of degrees d1, . . . ,dn

respectively, meeting transversely,

and suppose that the
intersection Γ = X1∩ . . .∩Xn is the disjoint union of subsets Γ′

and Γ′′. Set s = ∑di −n−1. If k ≤ s is a nonnegative
integer,then the dimension of the family of curves of degree k
containing Γ′ (modulo those containing all of Γ) is equal to the
failure of Γ′′ to impose independent conditions of curves of
“complementary” degree s− k.
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and Γ′′. Set s = ∑di −n−1. If k ≤ s is a nonnegative
integer,then the dimension of the family of curves of degree k
containing Γ′ (modulo those containing all of Γ)

is equal to the
failure of Γ′′ to impose independent conditions of curves of
“complementary” degree s− k.
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The XXth century

Definition
Let A be an Artinian ring with residue field C. The ring A is
Gorenstein if there exists a C-linear map A→ C such that the
composition

Q : A×A→ A→ C

where the first map is multiplication in A, is a non degenerate
pairing on the C-vector space A.
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A last version

Theorem (Cayley-Bacharach theorem, version 7)

Let X1, . . . ,Xn be hypersurfaces in Pn(C) of degrees d1, . . . ,dn

and suppose that the intersection Γ = X1∩ . . .∩Xn is
zero-dimensional.

Let Γ′ and Γ′′ be subschemes residual to one
another in Γ,and set s = ∑di −n−1.If k ≤ s is a nonnegative
integer, then the dimension of the familiy of curves of degree k
containing Γ′ (modulo those containing all of Γ) is equal to he
failure of Γ′′ to impose independent conditions of curves of
complementary degree s− k.
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Rémi Bignalet An introduction to the Cayley-Bacharach theorems 20 / 1



Thanks for your attention!

Rémi Bignalet An introduction to the Cayley-Bacharach theorems 21 / 1


