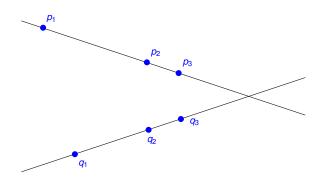
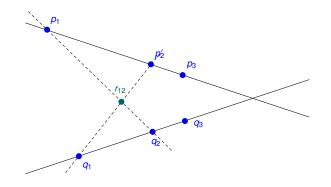
An introduction to the Cayley-Bacharach theorems

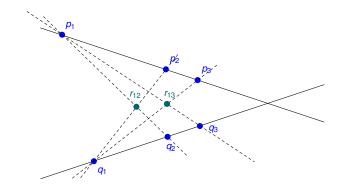
following Eisenbud, Green, Harris, Cayley-Bacharach theorems and conjectures

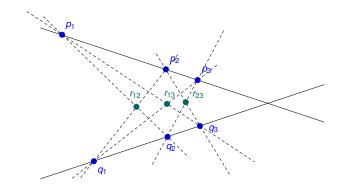
Rémi Bignalet

May 17, 2018





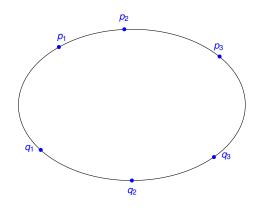


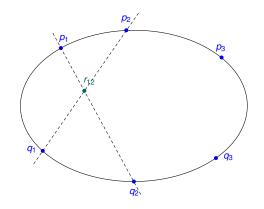


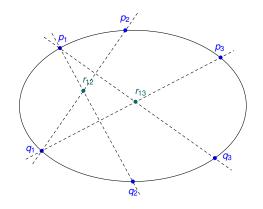


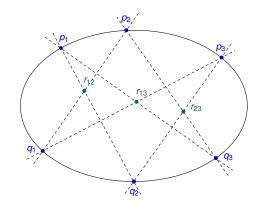
Theorem (First version of the Cayley-Bacharach theorem, IVth century AC)

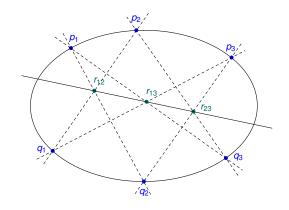
Lest L and M be two lines in the plane. Lest p_1 , p_2 and p_3 be distinct points of L and let q_1 , q_2 and q_3 be distinct points on M all distinct from the point $L \cap M$. If for each $j \neq l \in \{1,2,3\}$ we let r_{jk} be the point of intersection of the lines $\overline{p_jq_k}$ and $\overline{p_kq_j}$, then the three points r_{jk} are colinear.





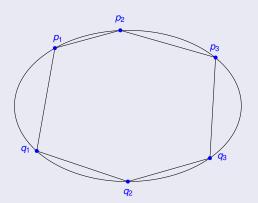






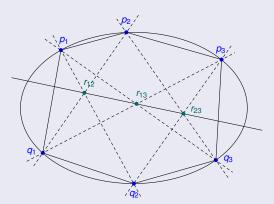
Theorem (Pascal's theorem, 1640)

If a hexagon is inscribed in a conic in the projective plane, the opposite sides of the hexagon meet in three collinear points.



Theorem (Pascal's theorem, 1640)

If a hexagon is inscribed in a conic in the projective plane, the opposite sides of the hexagon meet in three collinear points.



Definition

$$\mathbb{P}^{2}(\mathbb{C}) = \mathbb{C}^{3} \setminus \{0\}/(x,y,z) \sim (\lambda x, \lambda y, \lambda z)$$

Definition

$$\mathbb{P}^{2}(\mathbb{C}) = \mathbb{C}^{3} \setminus \{0\}/(x, y, z) \sim (\lambda x, \lambda y, \lambda z)$$

Homogeneous coordinates: $(x : y : z) = (\lambda x : \lambda y : \lambda z)$

Definition

$$\mathbb{P}^{2}(\mathbb{C}) = \mathbb{C}^{3} \setminus \{0\}/(x,y,z) \sim (\lambda x, \lambda y, \lambda z)$$

Homogeneous coordinates: $(x : y : z) = (\lambda x : \lambda y : \lambda z)$

Remark

Given
$$f = \sum_{i+j+k=d} \alpha_{ijk} x^i y^j z^k$$

Definition

$$\mathbb{P}^{2}(\mathbb{C}) = \mathbb{C}^{3} \setminus \{0\}/(x, y, z) \sim (\lambda x, \lambda y, \lambda z)$$

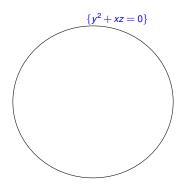
Homogeneous coordinates: $(x : y : z) = (\lambda x : \lambda y : \lambda z)$

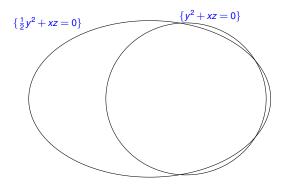
Remark

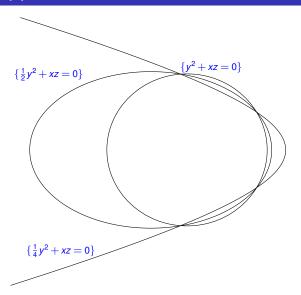
Given $f = \sum_{i+j+k=d} \alpha_{ijk} x^i y^j z^k$ homogeneous polynomial of degree d in three variables:

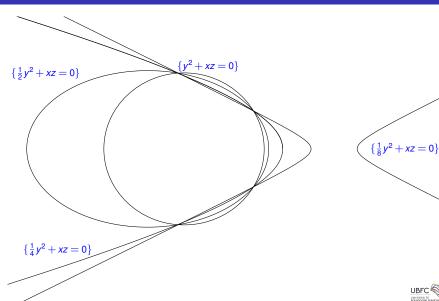
$$\{(x_0:y_0:z_0)\in\mathbb{P}^2(\mathbb{C}), f(x_0,y_0,z_0)=0\}$$

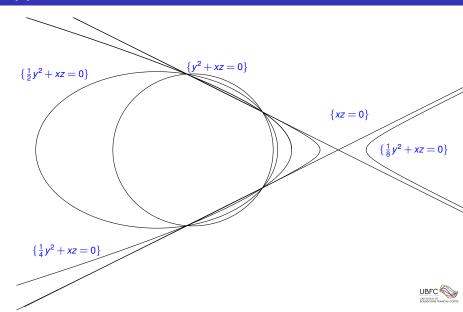
makes sense as a subset of $\mathbb{P}^2(\mathbb{C})$.

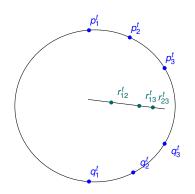




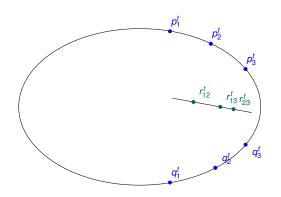




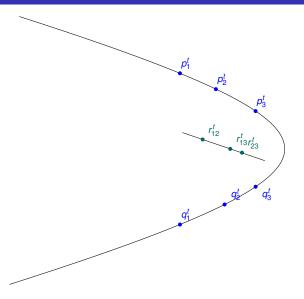




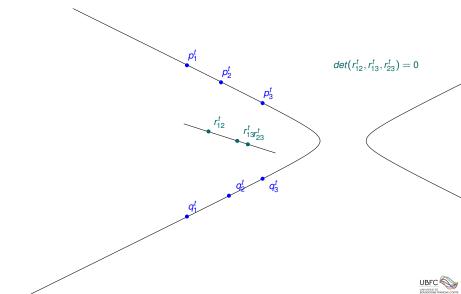
$$det(r_{12}^t, r_{13}^t, r_{23}^t) = 0$$

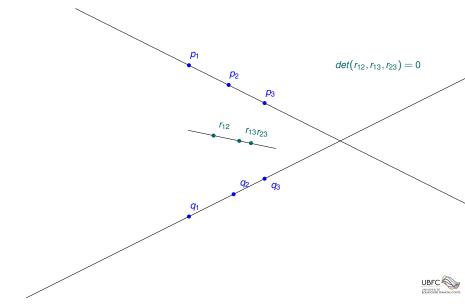


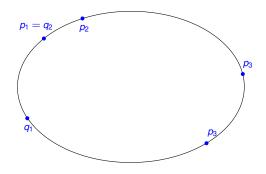
$$det(r_{12}^t, r_{13}^t, r_{23}^t) = 0$$

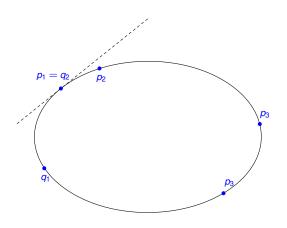


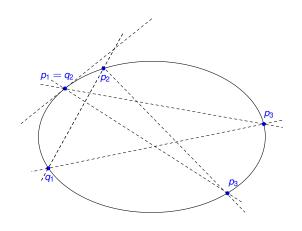
$$\det(r_{12}^t, r_{13}^t, r_{23}^t) = 0$$

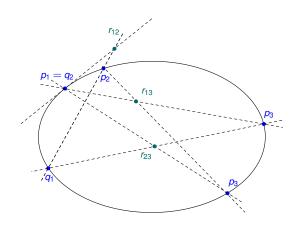


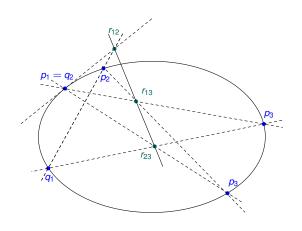












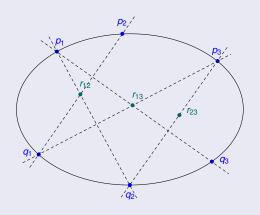
Chasles' Theorem

Theorem (Chasles' Theorem)

Let X_1 and $X_2 \subset \mathbb{P}^n(\mathbb{C})$ be two cubic plane curve meeting in nine points p_1, \ldots, p_9 . If $X \subset \mathbb{P}^n(\mathbb{C})$ is any cubic containing a priori p_1, \ldots, p_8 , then X contains p_9 as well.

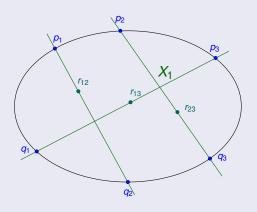
Application

Application (Pascal's theorem)



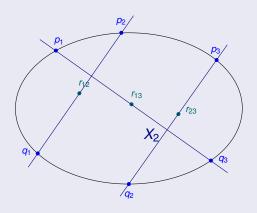
Application

Application (Pascal's theorem)



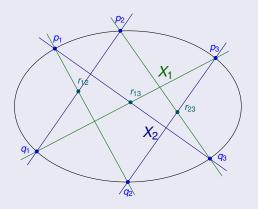
Application

Application (Pascal's theorem)



Application

Application (Pascal's theorem)



Terminology

Definition

If $\Gamma \subset \mathbb{P}^2(\mathbb{C})$ is a set of distinct points, we say that Γ imposes I conditions on the polynomial of degree d if the subspace $\mathbb{C}[x,y,z]_d^h$ vanishing at p_1,\ldots,p_m has codimension I.

Terminology

Definition

If $\Gamma \subset \mathbb{P}^2(\mathbb{C})$ is a set of distinct points, we say that Γ imposes I conditions on the polynomial of degree d if the subspace $\mathbb{C}[x,y,z]_d^h$ vanishing at p_1,\ldots,p_m has codimension I.

The number of condition imposed by Γ on polynomials of degree d is denoted by

 $h_{\Gamma}(d)$.

Terminology

Definition

If $\Gamma \subset \mathbb{P}^2(\mathbb{C})$ is a set of distinct points, we say that Γ imposes I conditions on the polynomial of degree d if the subspace $\mathbb{C}[x,y,z]_d^h$ vanishing at p_1,\ldots,p_m has codimension I.

The number of condition imposed by Γ on polynomials of degree d is denoted by

$$h_{\Gamma}(d)$$
.

Example

The set Γ of 3 collinear points imposes two conditions on polynomials of degree 1 i.e. $h_{\Gamma}(1) = 2$.

Theorem

Given $\Gamma = \{p_1, \dots, p_9\} = X_1 \cap X_2$ where X_1 and X_2 are plane cubics,

Theorem

Given $\Gamma = \{p_1, \dots, p_9\} = X_1 \cap X_2$ where X_1 and X_2 are plane cubics, then for all $\Gamma' = \{p_1, \dots, p_8\}$,

Theorem

Given $\Gamma = \{p_1, \dots, p_9\} = X_1 \cap X_2$ where X_1 and X_2 are plane cubics, then for all $\Gamma' = \{p_1, \dots, p_8\}$,

$$h_{\Gamma}(3) = h_{\Gamma'}(3)$$

Theorem

Given $\Gamma = \{p_1, \dots, p_9\} = X_1 \cap X_2$ where X_1 and X_2 are plane cubics, then for all $\Gamma' = \{p_1, \dots, p_8\}$,

$$h_{\Gamma}(3) = h_{\Gamma'}(3)$$

Remark

Proof is actually showing that $h_{\Gamma}(3) = h_{\Gamma'}(3) = 8$.

A lemma

Lemma

Let $\Omega = \{p_1, \dots, p_n\} \subset \mathbb{P}^2$ be a set of n distinct points and let an integer d such that $n \leq 2d + 2$.

A lemma

Lemma

Let $\Omega = \{p_1, \dots, p_n\} \subset \mathbb{P}^2$ be a set of n distinct points and let an integer d such that $n \leq 2d + 2$.

 Ω fail to impose independent conditions on curves of degree d if and only if either d + 2 points of Ω are collinear or n = 2d + 2 and Ω is contained in a conic.

Theorem (Bézout's theorem)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively.

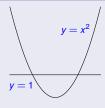
If X_1 and X_2 have no common component then they meet in $d \times e$ points.

Theorem (Bézout's theorem)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively.

If X_1 and X_2 have no common component then they meet in $d \times e$ points.

Example

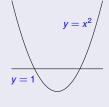


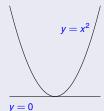
Theorem (Bézout's theorem)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively.

If X_1 and X_2 have no common component then they meet in $d \times e$ points.

Example



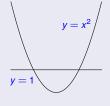


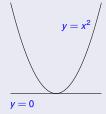
Theorem (Bézout's theorem)

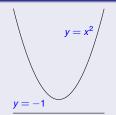
Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively.

If X_1 and X_2 have no common component then they meet in $d \times e$ points.

Example







Theorem (Cayley-Bacharach theorem, version 4)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively, meeting in a collection of $d \times e$ distinct points $\Gamma = X_1 \cap X_2 = \{p_1, \dots, p_{de}\}$. If $C \subset \mathbb{P}^n(\mathbb{C})$ is any plane curve of degree d + e - 3 containing all but one point of Γ , then C contains all of Γ .

Theorem (Cayley-Bacharach theorem, version 5)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively, meeting in a collection of $d \times e$ distinct points $\Gamma = X_1 \cap X_2 = \{p_1, \dots, p_{de}\}$ and suppose that Γ is the disjoint union of susbsets Γ' and Γ'' .

Theorem (Cayley-Bacharach theorem, version 5)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively, meeting in a collection of $d \times e$ distinct points $\Gamma = X_1 \cap X_2 = \{p_1, \dots, p_{de}\}$ and suppose that Γ is the disjoint union of susbsets Γ' and Γ'' . Set s = d + e - 3.

Theorem (Cayley-Bacharach theorem, version 5)

Let X_1 and $X_2 \subset \mathbb{P}^2(\mathbb{C})$ be plane curves of degree d and e respectively, meeting in a collection of $d \times e$ distinct points $\Gamma = X_1 \cap X_2 = \{p_1, \dots, p_{de}\}$ and suppose that Γ is the disjoint union of susbsets Γ' and Γ'' . Set s = d + e - 3.

If $k \leq s$ is a nonnegative integer, then the dimension of the vector space of polynomials of degree k, vanishing on Γ' (modulo those containing all of Γ) is equal to the failure of Γ'' to impose independent conditions on polynomials of degree s-k.

Theorem (Cayley-Bacharach theorem, version 6)

Let $X_1, ..., X_n$ be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees $d_1, ..., d_n$ respectively, meeting transversely,

Theorem (Cayley-Bacharach theorem, version 6)

Let $X_1, ..., X_n$ be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees $d_1, ..., d_n$ respectively, meeting transversely, and suppose that the intersection $\Gamma = X_1 \cap ... \cap X_n$ is the disjoint union of subsets Γ' and Γ'' .

Theorem (Cayley-Bacharach theorem, version 6)

Let X_1, \ldots, X_n be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees d_1, \ldots, d_n respectively, meeting transversely, and suppose that the intersection $\Gamma = X_1 \cap \ldots \cap X_n$ is the disjoint union of subsets Γ' and Γ'' . Set $s = \sum d_i - n - 1$. If $k \leq s$ is a nonnegative integer,

Theorem (Cayley-Bacharach theorem, version 6)

Let X_1, \ldots, X_n be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees d_1, \ldots, d_n respectively, meeting transversely,and suppose that the intersection $\Gamma = X_1 \cap \ldots \cap X_n$ is the disjoint union of subsets Γ' and Γ'' . Set $s = \sum d_i - n - 1$. If $k \leq s$ is a nonnegative integer,then the dimension of the family of curves of degree k containing Γ' (modulo those containing all of Γ)

Theorem (Cayley-Bacharach theorem, version 6)

Let X_1,\ldots,X_n be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees d_1,\ldots,d_n respectively, meeting transversely,and suppose that the intersection $\Gamma=X_1\cap\ldots\cap X_n$ is the disjoint union of subsets Γ' and Γ'' . Set $s=\sum d_i-n-1$. If $k\leq s$ is a nonnegative integer,then the dimension of the family of curves of degree k containing Γ' (modulo those containing all of Γ) is equal to the failure of Γ'' to impose independent conditions of curves of "complementary" degree s-k.

The XXth century

Definition

Let A be an Artinian ring with residue field $\mathbb C$. The ring A is Gorenstein if there exists a $\mathbb C$ -linear map $A \to \mathbb C$ such that the composition

$$Q: A \times A \rightarrow A \rightarrow \mathbb{C}$$

where the first map is multiplication in A, is a non degenerate pairing on the \mathbb{C} -vector space A.

Theorem (Cayley-Bacharach theorem, version 7)

Let $X_1, ..., X_n$ be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees $d_1, ..., d_n$ and suppose that the intersection $\Gamma = X_1 \cap ... \cap X_n$ is zero-dimensional.

Theorem (Cayley-Bacharach theorem, version 7)

Let $X_1, ..., X_n$ be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees $d_1, ..., d_n$ and suppose that the intersection $\Gamma = X_1 \cap ... \cap X_n$ is zero-dimensional.Let Γ' and Γ'' be subschemes residual to one another in Γ .

Theorem (Cayley-Bacharach theorem, version 7)

Let X_1, \ldots, X_n be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees d_1, \ldots, d_n and suppose that the intersection $\Gamma = X_1 \cap \ldots \cap X_n$ is zero-dimensional.Let Γ' and Γ'' be subschemes residual to one another in Γ , and set $s = \sum d_i - n - 1$.

Theorem (Cayley-Bacharach theorem, version 7)

Let X_1,\ldots,X_n be hypersurfaces in $\mathbb{P}^n(\mathbb{C})$ of degrees d_1,\ldots,d_n and suppose that the intersection $\Gamma=X_1\cap\ldots\cap X_n$ is zero-dimensional.Let Γ' and Γ'' be subschemes residual to one another in Γ , and set $s=\sum d_i-n-1$. If $k\leq s$ is a nonnegative integer, then the dimension of the familiy of curves of degree k containing Γ' (modulo those containing all of Γ) is equal to he failure of Γ'' to impose independent conditions of curves of complementary degree s-k.

Thanks for your attention!

