Bernoullis Tafelrunde

Graduate Student Seminar

Thursday, 17 May 2018, 12:15-13:00
Seminarraum 00.003, Spiegelgasse 1

Rémi Bignalet-Cazalet
Université de Bourgogne (Dijon)

An introduction to Cayley-Bacharach theorems

Abstract

In the projective plane, a curve C is the zero-set of a homogeneous polynomial P in three variables and when P has degree 3 , the curve C is called a cubic. Moreover, we say that two curves C_{1} and C_{2} meet in a point p if their associated polynomials P_{1} and P_{2} both vanish at the coordinates of p.

A theorem of Chasles states that, given two cubics in the projective complex plane meeting only in nine distinct points $\left\{p_{1}, \ldots, p_{9}\right\}$, any other cubic passing a priori through eight of the nine points, for example $\left\{p_{1}, \ldots, p_{8}\right\}$, passes necessarily through the ninth point p_{9}.

This is a version of what is called now Cayley-Bacharach theorems. In my talk, after getting into the previous versions of Chasles' theorem and re-explaining all these notions, I will explain a current version of Cayley-Bacharach theorems which extends the result of Chasles.

