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Gaussian white noise

Intuitively one would like to construct a random function £ on
(let's say) RY s.t.

(&(x))xecre are i.i.d. Gaussian random variables.
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Gaussian white noise

Intuitively one would like to construct a random function £ on
(let's say) RY s.t.

(&(x))yera are i.i.d. Gaussian random variables.
This turns out to be useless!

Space time white noise captures this intuition (up to one caveat).
@ We give a probabilistic definition.
@ A more analytic definition.

© An intuitive construction and a useful analytic one
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Definitions of space time white noise

A probabilistic definition:

Definition

Space-time white noise on R is the centred Gaussian random field
€ on L2(R9) with covariance:

E[g(f)f(g)] = <f7g>L2(]Rd).
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Definitions of space time white noise

A probabilistic definition:

Definition

Space-time white noise on R is the centred Gaussian random field
€ on L2(R9) with covariance:

E[é(f)é(g)] = <f7g>L2(]Rd).

A more analytic definition:

Definition

Space time white noise on R9 is the S’(R9)-valued random
variable satisfying for any ¢ € S(RY):

Elexp(i(€, 8))] = e 211z,
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More intuitive construction of White noise

o Let (Xk)xezs be an i.i.d. family of coin tosses
(ile P[Xx = 1] = P[Xx = —1] = 1). Set

kezd
@ Denote the rescaled functions

&) = Z Xiljo,1ya (- — k).

€n() = — gy
2713

2—")'
@ Then £" — £ in distribution as n — oo.

An alternative:

we can define:

o Alternatively, let (X,)nen be i.i.d. A(0,1) random
variables,let (f,)nen be an orthonormal basis of L2(R9). Then

neN

=) Xo-foeS(RY)
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Motivation and examples

Examples of Stochastic ordinary and partial differential equations
(SDEs and SPDEs).

Physical Brownian motion

Black-Scholes model from mathematical finance

Stochastic heat equation

KPZ-equation

% and ®3-equation

Space time white noise is present in all of these equations.
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Physical Brownian motion

Model of a small particle

Small particle of mass m has position x(t) € R3 determined by
Newton's equations:

mx = —Mx + &,

where M € R3*3, M > 0, symmetric models friction, each (¢); is
1-d white noise. )
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1-d white noise.
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Physical Brownian motion

Model of a small particle

Small particle of mass m has position x(t) € R3 determined by
Newton's equations:

mx = —Mx + &,

where M € R3*3, M > 0, symmetric models friction, each (¢); is
1-d white noise.

Remarks:

@ For m=0 and M = id, we recover mathematical Brownian
motion.
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Physical Brownian motion

Model of a small particle

Small particle of mass m has position x(t) € R3 determined by
Newton's equations:

mx = —Mx + &,

where M € R3*3, M > 0, symmetric models friction, each (¢); is
1-d white noise.

Remarks:
@ For m=0 and M = id, we recover mathematical Brownian
motion.

@ In general M could depend on x(t) (incorporating
inhomogeneity of the underlying space).
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Models in mathematical finance

Black-Scholes model

The market is modelled by (let's say) two assets (Sp, S1),

satisfying:
dSo dS;
— =rd = d dB
5 rdt, 5(1) p(t)dt + o(t)

So is called Numéraire (e.g. a bank account with interest rate r)
and Sp is a risky asset with drift p and volatility o.
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A linear SPDE
Stochastic heat equation

The stochastic heat equation on (T? let's say) is given by:
Oru=(A—-1u+¢,

where u = u(x, t) is a function of space-time and ¢ is space time
white noise.
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A linear SPDE

Stochastic heat equation

The stochastic heat equation on (T? let's say) is given by:
8tu = (A — ]_)U +§,

where u = u(x, t) is a function of space-time and ¢ is space time
white noise.

@ d = 1: It arises as scaling limit of symmetric interface models
(e.g. the SOS model). It's stationary is solution is (essentially)
BM. It has Holder regularity % — € in space and % — e in time.
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A linear SPDE

Stochastic heat equation

The stochastic heat equation on (T? let's say) is given by:
8tu = (A — ]_)U +§,

where u = u(x, t) is a function of space-time and ¢ is space time
white noise. )

@ d = 1: It arises as scaling limit of symmetric interface models
(e.g. the SOS model). It's stationary is solution is (essentially)
BM. It has Holder regularity % — € in space and % — e in time.

@ d = 2: this is related to the Gaussian free field. The solution
can be seen as a continuous map [0, T] — C%~¢(T?)
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A linear SPDE
Stochastic heat equation

The stochastic heat equation on (T? let's say) is given by:

8tu = (A — ].)U—i—g,

where u = u(x, t) is a function of space-time and ¢ is space time
white noise.

@ d = 1: It arises as scaling limit of symmetric interface models
(e.g. the SOS model). It's stationary is solution is (essentially)
BM. It has Holder regularity % — € in space and % — e in time.

@ d = 2: this is related to the Gaussian free field. The solution
can be seen as a continuous map [0, T] — C%~¢(T?)

@ Inhomogeneous scaling s = (1, ..,1,2), i.e. time counts
double. Then & has regularity — d+2 — ¢ and the heat-kernel

regularises by 2. Thus u is % — ¢ Holder regular.



A semi-linear SPDE

The KPZ-equation

The KPZ-equation on T is formally given by

Oru = 02u + (Ou)® + &.
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@ It arises as scaling limit of (barely) asymmetric interface
models.
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A semi-linear SPDE

The KPZ-equation

The KPZ-equation on T is formally given by

Oru = O2u+ (Ou)? + €.

@ It arises as scaling limit of (barely) asymmetric interface
models.

@ Lies in the “crossover regime” between the “Gaussian
universality class” and the "KPZ-fixed point”.
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A semi-linear SPDE

The KPZ-equation

The KPZ-equation on T is formally given by

Oru = O2u+ (Ou)? + €.

@ It arises as scaling limit of (barely) asymmetric interface
models.

@ Lies in the “crossover regime” between the “Gaussian
universality class” and the "KPZ-fixed point”.

o Problem: (9yu)? not canonically definable.
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A semi-linear SPDE

The KPZ-equation

The KPZ-equation on T is formally given by

Oru = O2u+ (Ou)? + €.

@ It arises as scaling limit of (barely) asymmetric interface
models.
@ Lies in the “crossover regime” between the “Gaussian
universality class” and the "KPZ-fixed point”.
o Problem: (9yu)? not canonically definable.
@ Hopf Cole solution: Z = e formally solves
0nZ =027 + Z-¢
—~~
makes sense by " Ito”
Set
u=logZ.
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®3 and ®3-equation

The ®3 equation

This equation reads:
O = Au— >+ &,

where u is a generalised function on [0, T) x T? and ¢ is again
space time white noise.
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®3 and ®3-equation

The ®3 equation

This equation reads:
O = Au— >+ &,

where u is a generalised function on [0, T) x T? and ¢ is again
space time white noise.

@ Interest arising from from quantum field theory: The invariant
measure for this equation is related to bosonic euclidean
quantum field theory.
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®3 and ®3-equation

The ®3 equation

This equation reads:
O = Au— >+ &,

where u is a generalised function on [0, T) x T? and ¢ is again
space time white noise.

@ Interest arising from from quantum field theory: The invariant
measure for this equation is related to bosonic euclidean
quantum field theory.

@ It is also related to the Ising model.
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®3 and ®3-equation

The ®3 equation

This equation reads:
O = Au— >+ &,

where u is a generalised function on [0, T) x T? and ¢ is again
space time white noise.

@ Interest arising from from quantum field theory: The invariant
measure for this equation is related to bosonic euclidean
quantum field theory.

@ It is also related to the Ising model.

@ In dimension 3 it is called ¢§, two new prominent solution
theories: the “Theory of regularity structures” and the
“Theory of paracontrolled distributions”.



Section 3

«Or «Fr <=

<

Q>




What's a regularity structure and a model?

A vast generalisation of the relationship between Hélder (and
Besov) functions and Taylor Polynomials.



What's a regularity structure and a model?

A vast generalisation of the relationship between Holder (and
Besov) functions and Taylor Polynomials.

@ Recall: Let f : RY — R be a smooth function. Fix v € R\ N

Then the Taylor polynomial )[:Y](f) of f at x € RY of order
[v] € N is the unique polynomial, such that

|(F = PY(F), o) S A
We write ¢(+) := )\—10,¢(_TX)

~
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What's a regularity structure and a model?

A vast generalisation of the relationship between Holder (and
Besov) functions and Taylor Polynomials.
@ Recall: Let f : RY — R be a smooth function. Fix v € R\ N.
Then the Taylor polynomial P)[(AY](f) of f at x € R? of order
[v] € N is the unique polynomial, such that

[(F = PDF), )| S A7

We write ¢3(-) == 35¢(5%).

@ A regularity structure 7 together with a model Z give a way
to make the same kind of approximation for certain
distributions.
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What's a regularity structure and a model?

A vast generalisation of the relationship between Holder (and
Besov) functions and Taylor Polynomials.
@ Recall: Let f : RY — R be a smooth function. Fix v € R\ N.

Then the Taylor polynomial P)[(AY](f) of f at x € R? of order
[v] € N is the unique polynomial, such that

[(F = PDF), )| S A7

~

We write ¢3(-) == 35¢(5%).
@ A regularity structure 7 together with a model Z give a way

to make the same kind of approximation for certain
distributions.

@ Of course not possible for any distribution (as with Taylor
polynomials).
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Interplay between regularity structure and model

@ A regularity structure T plays the role of the abstract
Polynomials.

@ The model gives the abstract polynomials 7 € T analytic
meaning, generalising the map:

Abstract polynomials — (generalised) functions on RY.

@ One could say, a regularity structure is an algebraic structure,
and a model is its analytic 'flesh’.

Let us now give some rigorous definitions!
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Definition: Regularity structure

A regularity structure is a triple 7 = (A, T, G) consisting of the
following elements:
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A regularity structure is a triple 7 = (A, T, G) consisting of the
following elements:

@ A discrete index set A C R which is bounded from below and
contains zero.
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Definition: Regularity structure

A regularity structure is a triple 7 = (A, T, G) consisting of the

following elements:

@ A discrete index set A C R which is bounded from below and
contains zero.

® A graded vector space T = @ Ta, Where To = (1) ® R
and all T, are finite dimensional. We call T the model space.
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Definition: Regularity structure

A regularity structure is a triple 7 = (A, T, G) consisting of the

following elements:

@ A discrete index set A C R which is bounded from below and
contains zero.

® A graded vector space T = @ Ta, Where To = (1) ® R
and all T, are finite dimensional. We call T the model space.

@ A group G of linear operators acting on T, such that for every
I € G the following holds: The restriction I'|, is the identity
map and for all 7 € T,:

rr—re@Ta‘

This group G is called the structure group of 7.
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The example of Taylor Polynomials:
polynomials.

o We take A =N, corresponding to the "homogeneities’ of
o Weset T=6p

nen T where

d
To=({X" .- X} ni €N, ni=n})
i=1
@ What's the meaning of the group G?
It corresponds to the natural action of translating polynomials.
In this example it is given by the maps

Xk s (X+nk,
XL ( )
=TT (i)

=TI (X6
where h € R?. Thus it is isomorphic to RY.

[m]

=
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Definition: Regularity structure

A regularity structure is a triple 7 = (A, T, G) consisting of the

following elements:

@ A discrete index set A C R which is bounded from below and
contains zero.

® A graded vector space T = @, Ta, Where To = (1) ® R
and all T, are finite dimensional. We call T the model space.

@ A group G of linear operators acting on T, such that for every
I € G the following holds: The restriction I'|, is the identity
map and for all 7 € T,:

rr—re@Ta‘

This group G is called the structure group of 7.
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Definition: Model

Given a regularity structure 7 = (A, T, G) and r > |min A|, a
model for 7 is a pair Z = (I1,T), consisting of
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Definition: Model

Given a regularity structure 7 = (A, T, G) and r > |min A|, a

model for 7 is a pair Z = (I1,T), consisting of
@ amap M:RY — [(T,S'), x+ M, such that

|<nX7—a ¢>>(\>| S )‘av

for 7 € T, and uniformly over A € [0,1] and
{¢ € C°[ l|¢ller S 1,5uppe C Bi}.
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Definition: Model

Given a regularity structure 7 = (A, T, G) and r > |min A|, a

model for 7 is a pair Z = (I1,T), consisting of
@ amap M:RY — [(T,S'), x+ M, such that
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Definition: Model

Given a regularity structure 7 = (A, T, G) and r > |min A|, a
model for 7 is a pair Z = (I1,T), consisting of

@ amap M:RY — [(T,S'), x+ M, such that
|<nX7—a ¢>>(\>| S )‘av

for 7 € T, and uniformly over A € [0,1] and
{¢ € C| l|$ller < 1,supps C Bi}.
o and I : R x RY — G, (x,y) + Ty, satisfying the conditions:

Milx, =M,

and fort € T,

My ls S Ix = y|*77.
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Back to the polynomial example
follows:

In the case of the polynomial model, the maps (I1,I) are given as

@ The map I, realises an abstract monomial X* as:

(MXF) () = (v = %),

Note that the analytic bound [(M, Xk, ¢2)| < MKl holds
@ And the map 'y, is by:

Moy X = (X + (x = y)".



Back to the polynomial example
follows:

In the case of the polynomial model, the maps (I1,I) are given as

@ The map I, realises an abstract monomial X* as:

(MXF) () = (v = %),

Note that the analytic bound (M, X*, ¢2)| < A%l holds.
@ And the map 'y, is by:

Fay X = (X + (x = y))~.
Clearly NIy, =T, holds. The bound

Ty XK m < |x — y|IKI=m follows from the formula:

X+ (x—y))i=>"

e

[m]

=



L e S e
Modelled distributions

How can we describe distributions locally using regularity
structures?

This is again done in analogy to Holder functions.
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Modelled distributions
as follows:

A slightly more convoluted looking definition of C7 functions goes

(F — PV gy < AT

C'(RY) ={f € §'|¥x € R? 3Pl 5 Polynomial of order[y] :

When defining modelled distributions, one defines the generalised
‘polynomials” first:
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Modelled distributions

A slightly more convoluted looking definition of C7 functions goes
as follows:

C'(RY) ={f € §'|Vx e R? =)= Polynomial of order[y] :
[(F = P&} < A7),

When defining modelled distributions, one defines the generalised
“polynomials” first:

Definition

Given a regularity structure 7 = (A, T, G) and a model Z = (I1,T)
for it, we define D7 as the space of all maps f : RY — T~ such
that the following bound holds:

F(x+ B) = Fesnf(3)]a S A7,

for all « € AN (—o00,7).
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Reconstruction theorem

The following theorem is a lynch pin in this theory:

Theorem (Hairer 14)

Let T = (A, T, G) be a regularity structure and Z = ([,T) a
model for it. Set o = min A. Then, for v > 0, there exists a
unique continuous linear map R : DV — C*, such that:

[(Rf — Mif(x), 32)] S N (1)

for all f € DY and all models Z = (1,T). Furthermore, the map
Z — R is continuous (in an appropriate sense).
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Reconstruction theorem

The following theorem is a lynch pin in this theory:

Theorem (Hairer 14)

Let T = (A, T, G) be a regularity structure and Z = ([,T) a
model for it. Set o = min A. Then, for v > 0, there exists a
unique continuous linear map R : DV — C*, such that:

[(Rf — Mif(x), 32)] S N (1)

for all f € DY and all models Z = (1,T). Furthermore, the map
Z — R is continuous (in an appropriate sense).

@ For the polynomial regularity structure and v ¢ N the
reconstruction map R is an isomorphism between D” and C7.



Section 4

A very rough outline!
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there is a notion of product on regularity structures.)
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the BPHZ-lift instead! (Renormalisation!), then there is
convergence.
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Type of result from regularity structures

One obtains the following type of result:

Theorem (Hairer 14)

Let & = p. *x & denote the regularisation of space-time white noise
with a compactly supported smooth mollifier p.. Denote by u. the
solutions to

Orue = Aue + Coue — ue3 + &e.

Then, there exist choices of constants C. diverging as ¢ — 0, as
well as a processes u such that u. — u in probability. Furthermore,
while the constants C. do depend crucially on the choice of
mollifiers pe, the limit u does not.
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Some comments on the existence theorem

In several ways this result is stated incompletely.
@ Some indeterminacy: For example replace C, by C, + 1.
e What initial conditions make sense?

@ The convergence in probability takes place in a Besov space
C* where o < 0.

@ This result is only finite in time. But there exist a priory

“energy estimates” guaranteeing global in time existence.
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