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ETH Zürich
hasingh@student.ethz.ch

12.04.2018



Space time white noise Examples of SDEs and SPDEs Regularity structures: Definitions and a theorem How to solve subcritical SPDEs using regulartiy structures

Content

1 Space time white noise

2 Examples of SDEs and SPDEs

3 Regularity structures: Definitions and a theorem

4 How to solve subcritical SPDEs using regulartiy structures



Space time white noise Examples of SDEs and SPDEs Regularity structures: Definitions and a theorem How to solve subcritical SPDEs using regulartiy structures

Section 1

Space time white noise
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Gaussian white noise

Intuitively one would like to construct a random function ξ on
(let’s say) Rd s.t.

(ξ(x))x∈Rd are i.i.d. Gaussian random variables.

This turns out to be useless!
Space time white noise captures this intuition (up to one caveat).

1 We give a probabilistic definition.

2 A more analytic definition.

3 An intuitive construction and a useful analytic one.
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Definitions of space time white noise

A probabilistic definition:

Definition

Space-time white noise on Rd is the centred Gaussian random field
ξ on L2(Rd) with covariance:

E [ξ(f )ξ(g)] = 〈f , g〉L2(Rd ).

A more analytic definition:

Definition

Space time white noise on Rd is the S ′(Rd)-valued random
variable satisfying for any φ ∈ S(Rd):

E [exp(i〈ξ, φ〉)] = e−
1
2
‖φ‖2

L2 .
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More intuitive construction of White noise

Let (Xk)k∈Zd be an i.i.d. family of coin tosses
(i.e P[Xk = 1] = P[Xk = −1] = 1

2 ). Set

ξ1(·) :=
∑
k∈Zd

Xk1[0,1)d (· − k).

Denote the rescaled functions

ξn(·) :=
1

2−n
d
2

ξ1(
·

2−n
).

Then ξn → ξ in distribution as n→∞.

An alternative:

Alternatively, let (Xn)n∈N be i.i.d. N (0, 1) random
variables,let (fn)n∈N be an orthonormal basis of L2(Rd).Then
we can define:

ξ =
∑
n∈N

Xn · fn ∈ S ′(Rd).
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Section 2

Examples of SDEs and SPDEs
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Motivation and examples

Examples of Stochastic ordinary and partial differential equations
(SDEs and SPDEs).

Physical Brownian motion

Black-Scholes model from mathematical finance

Stochastic heat equation

KPZ-equation

Φ4
2 and Φ4

3-equation

Space time white noise is present in all of these equations.



Space time white noise Examples of SDEs and SPDEs Regularity structures: Definitions and a theorem How to solve subcritical SPDEs using regulartiy structures

Physical Brownian motion

Model of a small particle

Small particle of mass m has position x(t) ∈ R3 determined by
Newton’s equations:

mẍ = −Mẋ + ξ,

where M ∈ R3×3, M > 0, symmetric models friction, each (ξ)i is
1-d white noise.

Remarks:

For m = 0 and M = id , we recover mathematical Brownian
motion.

In general M could depend on x(t) (incorporating
inhomogeneity of the underlying space).
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Models in mathematical finance

Black-Scholes model

The market is modelled by (let’s say) two assets (S0,S1),
satisfying:

dS0

S0
= rdt,

dS1

S1(t)
= µ(t)dt + σ(t)dB

S0 is called Numéraire (e.g. a bank account with interest rate r)
and S1 is a risky asset with drift µ and volatility σ.
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A linear SPDE

Stochastic heat equation

The stochastic heat equation on (Td let’s say) is given by:

∂tu = (∆− 1)u + ξ,

where u = u(x , t) is a function of space-time and ξ is space time
white noise.

d = 1: It arises as scaling limit of symmetric interface models
(e.g. the SOS model). It’s stationary is solution is (essentially)
BM. It has Hölder regularity 1

2 − ε in space and 1
4 − ε in time.

d = 2: this is related to the Gaussian free field. The solution
can be seen as a continuous map [0,T ]→ C0−ε(T2)

Inhomogeneous scaling s = (1, .., 1, 2), i.e. time counts
double. Then ξ has regularity −d+2

2 − ε and the heat-kernel

regularises by 2. Thus u is 2−d
2 − ε Hölder regular.
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BM. It has Hölder regularity 1

2 − ε in space and 1
4 − ε in time.

d = 2: this is related to the Gaussian free field. The solution
can be seen as a continuous map [0,T ]→ C0−ε(T2)

Inhomogeneous scaling s = (1, .., 1, 2), i.e. time counts
double. Then ξ has regularity −d+2

2 − ε and the heat-kernel

regularises by 2. Thus u is 2−d
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A semi-linear SPDE

The KPZ-equation

The KPZ-equation on T is formally given by

∂tu = ∂2
xu + (∂xu)2 + ξ.

It arises as scaling limit of (barely) asymmetric interface
models.

Lies in the “crossover regime” between the “Gaussian
universality class” and the “KPZ-fixed point”.

Problem: (∂xu)2 not canonically definable.

Hopf Cole solution: Z = eu formally solves

∂tZ = ∂2
xZ + Z · ξ︸︷︷︸

makes sense by ”Ito”

.

Set
u = log Z .
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Φ4
2 and Φ4

3-equation

The Φ4
2 equation

This equation reads:

∂tu = 4u − u3 + ξ,

where u is a generalised function on [0,T )× T2 and ξ is again
space time white noise.

Interest arising from from quantum field theory: The invariant
measure for this equation is related to bosonic euclidean
quantum field theory.

It is also related to the Ising model.

In dimension 3 it is called Φ4
3, two new prominent solution

theories: the “Theory of regularity structures” and the
“Theory of paracontrolled distributions”.
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Section 3

Regularity structures: Definitions and a theorem
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What’s a regularity structure and a model?

A vast generalisation of the relationship between Hölder (and
Besov) functions and Taylor Polynomials.

Recall: Let f : Rd → R be a smooth function. Fix γ ∈ R \ N.

Then the Taylor polynomial P [γ]
x (f ) of f at x ∈ Rd of order

[γ] ∈ N is the unique polynomial, such that

|〈f − P [γ]
x (f ), φλx 〉| . λγ .

We write φλx (·) := 1
λd
φ( ·−xλ ).

A regularity structure T together with a model Z give a way
to make the same kind of approximation for certain
distributions.

Of course not possible for any distribution (as with Taylor
polynomials).
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Besov) functions and Taylor Polynomials.

Recall: Let f : Rd → R be a smooth function. Fix γ ∈ R \ N.

Then the Taylor polynomial P [γ]
x (f ) of f at x ∈ Rd of order

[γ] ∈ N is the unique polynomial, such that

|〈f − P [γ]
x (f ), φλx 〉| . λγ .

We write φλx (·) := 1
λd
φ( ·−xλ ).

A regularity structure T together with a model Z give a way
to make the same kind of approximation for certain
distributions.

Of course not possible for any distribution (as with Taylor
polynomials).
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Interplay between regularity structure and model

A regularity structure T plays the role of the abstract
Polynomials.

The model gives the abstract polynomials τ ∈ T analytic
meaning, generalising the map:

Abstract polynomials→ (generalised) functions on Rd .

One could say, a regularity structure is an algebraic structure,
and a model is its analytic ’flesh’.

Let us now give some rigorous definitions!
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Definition: Regularity structure

Definition

A regularity structure is a triple T = (A,T ,G ) consisting of the
following elements:

A discrete index set A ⊂ R which is bounded from below and
contains zero.

A graded vector space T =
⊕

α∈A Tα, where T0 = 〈1〉 ≈ R
and all Tα are finite dimensional. We call T the model space.

A group G of linear operators acting on T, such that for every
Γ ∈ G the following holds: The restriction Γ|T0 is the identity
map and for all τ ∈ Tα:

Γτ − τ ∈
⊕
β<α

Tα.

This group G is called the structure group of T .
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The example of Taylor Polynomials:

We take A = N, corresponding to the ”homogeneities” of
polynomials.

We set T =
⊕

n∈N Tn, where

Tn = 〈{X n1
1 · ... · X

nd
d |ni ∈ N,

d∑
i=1

ni = n}〉

What’s the meaning of the group G ?
It corresponds to the natural action of translating polynomials.
In this example it is given by the maps

X k︸︷︷︸
:=

∏d
i=1(Xi )

ki

7→ (X + h)k︸ ︷︷ ︸
:=

∏d
i=1(Xi+hi )

ki

,

where h ∈ Rd . Thus it is isomorphic to Rd .
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Definition: Model

Definition

Given a regularity structure T = (A,T ,G ) and r > |min A|, a
model for T is a pair Z = (Π, Γ), consisting of

a map Π : Rd → L(T ,S ′), x 7→ Πx , such that

|〈Πxτ, φ
λ
x 〉| . λα,

for τ ∈ Tα and uniformly over λ ∈ [0, 1] and
{φ ∈ C∞c | ‖φ‖Cr . 1, suppφ ⊂ B1}.
and Γ : Rd ×Rd → G , (x , y) 7→ Γx ,y satisfying the conditions:

ΠxΓx ,y = Πy

and for τ ∈ Tα
|Γx ,yτ |β . |x − y |α−β.
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Back to the polynomial example

In the case of the polynomial model, the maps (Π, Γ) are given as
follows:

The map Πx realises an abstract monomial X k as:

(ΠxX k)(y) = (y − x)k .

Note that the analytic bound |〈ΠxX k , φλx 〉| . λ|k| holds.

And the map Γx ,y is by:

Γx ,yX k = (X + (x − y))k .

Clearly ΠxΓx ,y = Πy holds. The bound
|Γx ,yX k |m . |x − y ||k|−m follows from the formula:

(X + (x − y))k =
∑
l≤k

(
k

l

)
(x − y)k−lX l .
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Modelled distributions

How can we describe distributions locally using regularity
structures?
This is again done in analogy to Hölder functions.
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Modelled distributions

A slightly more convoluted looking definition of Cγ functions goes
as follows:

Cγ(Rd) ={f ∈ S ′|∀x ∈ Rd ∃P
[γ]
x a Polynomial of order[γ] :

|〈f − P
[γ]
x , φλx 〉| . λγ}.

When defining modelled distributions, one defines the generalised
“polynomials” first:

Definition

Given a regularity structure T = (A,T ,G ) and a model Z = (Π, Γ)
for it, we define Dγ as the space of all maps f : Rd → T<γ such
that the following bound holds:

|f (x + h)− Γx+h,x f (x)|α . ‖h‖γ−α,

for all α ∈ A ∩ (−∞, γ).
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Reconstruction theorem

The following theorem is a lynch pin in this theory:

Theorem (Hairer 14)

Let T = (A,T ,G ) be a regularity structure and Z = (Π, Γ) a
model for it. Set α = min A. Then, for γ > 0, there exists a
unique continuous linear map R : Dγ → Cα, such that:

|〈Rf − Πx f (x), φλx 〉| . λγ (1)

for all f ∈ Dγ and all models Z = (Π, Γ). Furthermore, the map
Z 7→ R is continuous (in an appropriate sense).

For the polynomial regularity structure and γ /∈ N the
reconstruction map R is an isomorphism between Dγ and Cγ .
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Section 4

How to solve subcritical SPDEs using regulartiy
structures

A very rough outline!
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How to solve ∂tu = ∆u − u3 + ξ on T3

It turns out this equation is subcritical! (This is essential!)

Interpret the equation in mild form: u = K ? (ξ − u3), started
with 0 initial condition. (Which still doesn’t make sense!)

Build a regularity structure adapted to the equation. It consist
of formal expressions arising in the Picard iteration (roughly
speaking).

Solve the equation on the level of modelled distributions, the
solution map is continuous. (One can lift the heat Kernel and
there is a notion of product on regularity structures.)

For each mollified noise ξε there is a canonical model.
Unfortunately, these models don’t converge as ε→ 0. Take
the BPHZ-lift instead! (Renormalisation!), then there is
convergence.

Renormalisation corresponds to a change of non linearity in
the equation.
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Type of result from regularity structures

One obtains the following type of result:

Theorem (Hairer 14)

Let ξε = ρε ? ξ denote the regularisation of space-time white noise
with a compactly supported smooth mollifier ρε. Denote by uε the
solutions to

∂tuε = ∆uε + Cεuε − u3
ε + ξε.

Then, there exist choices of constants Cε diverging as ε→ 0, as
well as a processes u such that uε → u in probability. Furthermore,
while the constants Cε do depend crucially on the choice of
mollifiers ρε, the limit u does not.
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Some comments on the existence theorem

In several ways this result is stated incompletely.

Some indeterminacy: For example replace Cε by Cε + 1.

What initial conditions make sense?

The convergence in probability takes place in a Besov space
Cα where α < 0.

This result is only finite in time. But there exist a priory
“energy estimates” guaranteeing global in time existence.
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Thank you!

Before I end:

Questions?

Reference: Martin Hairer’s website.

Thank you again!
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