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Cubic surfaces
Let’s look at smooth cubic surfaces in P3 over an algebraically
closed field.

Example
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x3 + y3 + z3 + 1 = (x + y + z + 1)3 (Clebsch surface)
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Let’s look at smooth cubic surfaces in P3 over an algebraically
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Example

x3 + y3 + z3 = 1 (Fermat cubic)



Cubic surfaces

Theorem (Cayley-Salmon, 1849)
I Such a surface contains exactly 27 lines.
I Any point on the surface is contained in at most three of

those lines.

Clebsch surface
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Cubic surfaces

A point on a smooth cubic surface in P3 that is contained in three
lines is called an Eckardt point.

Lemma (Hirschfeld, 1967)
There are at most 45 Eckardt points on a cubic surface.

Example

The Clebsch surface has 10 Eckardt points; the Fermat cubic has
18 Eckardt points.
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More general: del Pezzo surfaces

A smooth cubic surface is a surface given by an equation of
degree 3 in 3-dimensional space. This is an example of a del Pezzo
surface.

More general: surfaces of degree d in d-dimensional space.

Definition
A del Pezzo surface X is a ’nice’ surface over a field k that has an
embedding in some Pn

k , such that −aKX is linearly equivalent to a
hyperplane section for some a. The degree is the self intersection
(−KX )2 of the anticanonical divisor.

Question:
What do we know about lines on del Pezzo surfaces of other
degrees? Generalizations of Eckardt points?



More general: del Pezzo surfaces

A smooth cubic surface is a surface given by an equation of
degree 3 in 3-dimensional space. This is an example of a del Pezzo
surface.

More general: surfaces of degree d in d-dimensional space.

Definition
A del Pezzo surface X is a ’nice’ surface over a field k that has an
embedding in some Pn

k , such that −aKX is linearly equivalent to a
hyperplane section for some a. The degree is the self intersection
(−KX )2 of the anticanonical divisor.

Question:
What do we know about lines on del Pezzo surfaces of other
degrees? Generalizations of Eckardt points?



More general: del Pezzo surfaces

A smooth cubic surface is a surface given by an equation of
degree 3 in 3-dimensional space. This is an example of a del Pezzo
surface.

More general: surfaces of degree d in d-dimensional space.

Definition
A del Pezzo surface X is a ’nice’ surface over a field k that has an
embedding in some Pn

k , such that −aKX is linearly equivalent to a
hyperplane section for some a. The degree is the self intersection
(−KX )2 of the anticanonical divisor.

Question:
What do we know about lines on del Pezzo surfaces of other
degrees? Generalizations of Eckardt points?



More general: del Pezzo surfaces

A smooth cubic surface is a surface given by an equation of
degree 3 in 3-dimensional space. This is an example of a del Pezzo
surface.

More general: surfaces of degree d in d-dimensional space.

Definition
A del Pezzo surface X is a ’nice’ surface over a field k that has an
embedding in some Pn

k , such that −aKX is linearly equivalent to a
hyperplane section for some a. The degree is the self intersection
(−KX )2 of the anticanonical divisor.

Question:
What do we know about lines on del Pezzo surfaces of other
degrees? Generalizations of Eckardt points?



Another way of defining del Pezzo surfaces

Let P be a point in the plane. The construction blowing up
replaces P by a line E , called the exceptional curve above P; each
point on this line E is identified with a direction through P.

We often do this to resolve a singularity.
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Let P be a point in the plane. The construction blowing up
replaces P by a line E , called the exceptional curve above P; each
point on this line E is identified with a direction through P.
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From: Robin Hartshorne, Algebraic Geometry.



Some facts about blow-ups of points

Let P be a point in the plane that we blow up, and let E be the
exceptional curve above P. We call the resulting surface X .

I We say that X lies above the plane.

I On X (so after blowing up), P is no longer a point, but a line.

I Two lines that intersect in the plane in P do not intersect in
X ! They both intersect the exceptional curve E , but in
different points.

I Outside P, everything stays the same.
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’Del Pezzo surfaces are blow-ups’

Instead of blowing up singular points, we can also blow up ’normal’
points in the plane. Doing this in a specific way gives us exactly
the del Pezzo surfaces!

Theorem
Let X be a del Pezzo surface of degree d over an algebraically
closed field. Then X is isomorphic to either the product of two
lines (only for degree 8), or P2 blown up in 9− d points in general
position.

where general position means

I no three points on a line;

I no six points on a conic;

I no eight points on a cubic that is singular at one of them.
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Lines on a del Pezzo surface

Let X be a del Pezzo surface constructed by blowing up the plane
in r points P1, . . . ,Pr . The ’lines’ (exceptional curves) on X are
given by

I the exceptional curves above P1, . . . ,Pr ;

the strict transform of

I lines through two of the points;

I conics through five of the points;

I cubics through seven of the points, singular at one of them;

I quartics through eight of the points, singular at three of them;

I quintics through eight of the points, singular at six of them;

I sextics through eight of the points, singular at all of them,
containing one of them as a triple point.
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Degree 7

Blow up 2 points
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d 1 2 3 4 5 6 7 8

lines on X 240 56 27 16 10 6 3 1



Back to degree three

We blow up 6 points. So the 27 lines are:
- 6 exceptional curves above the blown-up points;
- strict transforms of

(6
2

)
= 15 lines through 2 of the 6 points;

- strict transforms of 6 conics through 5 of the 6 points.

Recall: at most 3 of these 27 lines can go through the same point.
How can we see this?

The intersection graph of the
lines is the complement of the
Schläfli graph.
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full subgraph (clique) of size n.

=⇒ maximal size of cliques
gives an upper bound for the
number of lines through one
point.
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Back to degree three

Every line intersects ten other lines, which split in five disjoint pairs
of intersecting lines.

=⇒ The maximal size of a clique is three; the upper bound given
by the graph is sharp!

We also saw that there are at most 45 Eckardt points on a cubic
surface; we can see this from the graph as well. 27·5

3 = 45.
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Degree two

A del Pezzo surface of degree two has 56 ’lines’ (exceptional
curves).

Fact
Any line l intersects exactly one other line l ′ with multiplicity two,
and 27 other lines with multiplicity one. These 27 lines do not
intersect l ′, and they form again the complement of the Schläfli
graph.

=⇒ the maximal size of a clique in the intersection graph is 4.
Again sharp!

Point in four lines: generalized Eckardt point.
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Degree one

To get a del Pezzo surface X of degree one we blow up the plane
in 8 points P1, . . . ,P8 in general position. We obtain the following
’lines’ (exceptional curves):

- 8 lines above the Pi

-
(8
2

)
= 28 lines through 2 of the Pi

-
(8
5

)
= 56 conics through 5 of the Pi

- 7 ·
(8
7

)
= 56 cubics through 7 of the Pi with a singular point at

one of them
- . . .

We find a total of 240 lines on X !

How can we study the configurations of these 240 lines?
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The root system E8

Consider the lattice in R8 given by

Λ =
{

(xi ) ∈ Z8 ∪
(
Z + 1

2Z
)8 | ∑ xi ∈ 2Z

}
.

In Λ we have a root system E8:

E8 =
{
x ∈ Λ | ‖x‖ =

√
2
}
.

Fact
The 240 lines on a del Pezzo surface of degree one are isomorphic
to the root system E8.

({exceptional curves on X} −→ K⊥X , e 7−→ e + KX )
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Symmetries in the graph on the 240 lines

I The graph G on the 240 lines on a DP1 is isomorphic to the
graph on the 240 roots in E8.

I Contrary to del Pezzo surfaces of degree ≥ 3, this is now a
weighted graph.

I The symmetry group of this graph is W8, the Weyl group.

I To study the different cliques in G we use this symmetry.
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The graph G on the 240 lines
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How many lines can go through the same point on a DP1?

As we saw in other degrees, the size of the maximal cliques in G
gives an upper bound.

For geometric reasons, it is interesting to distinguish between
cliques that have edges of weight 3 in them, and cliques that do
not.
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Maximal cliques in G
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ei · e ′i = 3

Cliques with edges of weight 3: maximal size 16. There are 2025
such cliques.



Maximal cliques in G

e ′1

e1

e ′2

e2

e ′3

e3

e ′4

e4

e ′5

e5

e ′6

e6

e ′7

e7

e ′8

e8

f1 g1

e1

f3 g3

e3

f4 g4

e4
f2 g2

e2

ei · e ′i = 3 ei · fi = ei · gi = fi · gi = 2

Cliques without edges of weight 3: maximal size 12. There are
179200 such cliques.



Sharp upperbound?

We have seen that for a del Pezzo surface X of degree ≥ 2, the
maximal number of lines on X that go through the same point is
given by the maximal size of the cliques in the graph on the lines;
the upper bound given by the graph is sharp.

Naive check if the upper bounds for a DP1 are sharp: go through
all 2025 cliques of size 16 and all 179200 cliques of size 12 to see if
the lines in such a clique actually go through the same point on
the surface.

We have greatly reduced this computation by showing that all
these maximal cliques of sizes 16 and 12 are ’the same’; we only
have to check one of each.

I turns out that for a DP1, the upper bound given by the graph is
(almost) never sharp, making this case different from all other
degrees.
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Classical geometry - the case of cliques of size 16

Proposition
Let Q1, . . . ,Q8 be eight points in the plane (over a field with
char 6= 2) in general position.

Let Li be the line through Q2i and
Q2i−1 for i ∈ {1, 2, 3, 4}, and Ci ,j the unique cubic through
Q1, . . . ,Qi−1,Qi+1, . . . ,Q8 that is singular in Qj .
Assume that the four lines L1, L2, L3 and L4 all intersect in one
point P. Then the three cubics C7,8, C8,7, and C6,5 do not all go
through P.

Corollary
No six pairs of ’lines’ intersecting with multiplicity three go
through one point, hence a point on a del Pezzo surface of
degree 1 lies on at most ten lines in characteristic 6= 2 (in the case
that we consider lines intersecting with multiplicity 3).
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Classical geometry - the case of cliques of size 16

Proposition
Let Q1, . . . ,Q8 be eight points in the plane (over a field with
char 6= 2) in general position. Let Li be the line through Q2i and
Q2i−1 for i ∈ {1, 2, 3, 4}, and Ci ,j the unique cubic through
Q1, . . . ,Qi−1,Qi+1, . . . ,Q8 that is singular in Qj .
Assume that the four lines L1, L2, L3 and L4 all intersect in one
point P. Then the three cubics C7,8, C8,7, and C6,5 do not all go
through P.

Corollary
No six pairs of ’lines’ intersecting with multiplicity three go
through one point, hence a point on a del Pezzo surface of
degree 1 lies on at most ten lines in characteristic 6= 2 (in the case
that we consider lines intersecting with multiplicity 3).



Actual statement of the theorem

Del Pezzo surfaces of degree one are double covers of a cone in P3,
ramified over a smooth sextic curve.

Theorem (Van Luijk, W.)
Let X be a del Pezzo surface of degree one over an algebraically
closed field k .
Any point on the ramification curve is contained in at most 16
lines for chark = 2, and in at most 10 lines for chark 6= 2.
Any point outside the ramification curve is contained in at most 12
lines for chark = 3, and in at most 10 lines for chark 6= 3.

The upper bounds are sharp in all characteristics, except possibly
in characteristic 5 outside the ramification curve.
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Thank you!


