March 28, 2019

On (Hilbert, Isabelle) and universal pairs

Conte	ext	
1900	ICM in Paris: Hilbert's list of 23 problems	
1970	Yuri Matiyasevich publishes answer to the tenth problem	
2017	Start of the formalization & universal pairs project	
08/03/18	First universal pair $(11, \delta)_{\mathbb{Z}}$ in the integers	
24/05/18	"Matiyasevich meets Isabelle"	

Hilbert's Tenth Problem

Formalization

Hilbert's Tenth Problem

The problem

Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl von rationalen Operationen entscheiden lässt, ob die Gleichung in ganzen Zahlen lösbar ist.

DEF A diophantine equation is a polynomial equation with integer coefficients

Examples:

$$5x - 10 = 0 \qquad x_1^2 - 4x_2 = x_3 \qquad x^3 + y^3 = z^3$$

Hilbert's Tenth Problem

Formalization

Diophantine equations and sets

Hilbert's Tenth Problem

Formalization

DEF A set $A \subseteq \mathbb{N}$ is called a **diophantine set** if there is a polynomial $P(a, y_1, ..., y_{\nu})$ with integer coefficients such that

$$a \in A \iff \exists y_1, \dots, y_{\nu} : P(a, y_1, \dots, y_{\nu}) = 0$$

Hilbert's Tenth Problem

Formalization

recursively enumerable

DPRM Theorem.

Every recursively enumerable set is diophantine.

Hilbert's Tenth Problem

ТНМ

Formalization

Hilbert's Tenth Problem

Formalization

Exponential diophantine equations simulate computational model → Here: Register Machines Diophantine equation with exponentially growing solutions \rightarrow Polynomial representation of $a = b^c$

Hilbert's Tenth Problem

Formalization

Questions?

The formalization of the DPRM Theorem or

Hilbert meets Isabelle

Proofs with computers

Proofs using computations Computations carried out by a computer **Computer verified proofs** Full verification of all logical steps down to the axioms

Automated Theorem Provers

The computer comes up with a formal proof

 $a^2 + b^2 = c^2$

Pythagorean triples problem

Interactive Theorem Provers

A proof is manually implemented

Kepler conjecture and Four Colour theorem

Hilbert's Tenth Problem

Formalization

Formalizing a Hilbert Problem

Fall 2017

Yuri Matiyasevich on visit in Bremen: suggests **formalization** of the DPRM theorem

Students had knowledge from previous project

Theorem Prover: Isabelle

Online available at

isabelle.in.tum.de/website-Isabelle2018

Hilbert's Tenth Problem

Formalization

Universal Pairs

Tools have advanced

Isabelle / HOL

Interactive Theorem Prover

- Small logic core
- Fixed types

Live Demo

Hilbert's Tenth Problem

Formalization

Formalizing the DPRM Theorem

Splitting up the work:

recursively enumerable

diophantine

Team II

Formalization still in progress

Formalization completed

Hilbert's Tenth Problem

Formalization

exponential

diophantine

Universal Pairs

Team I

Register machines

Program with instructions:

Active state

Registers that store natural numbers

Challenge for the formalization

	Time								
	$\ q$		t+1	$\mid t$	•••	0	-		
S1	$s_{1,q}$		$s_{1,t+1}$	$s_{1,t}$		$s_{1,0}$	s_1		
÷		÷	:	÷	:	÷	:		
$\mathbf{S}k$	$s_{k,q}$	•••	$s_{k,t+1}$	$s_{k,t}$		$s_{k,0}$	s_k		
:		÷	:	:	÷	:			
$\mathbf{S}m$	$ s_{m,q}$	•••	$s_{m,t+1}$	$s_{m,t}$	•••	$s_{m,0}$	$ s_m $		
R1	$ r_{1,q}$		$r_{1,t+1}$	$r_{1,t}$		$r_{1,0}$	$\begin{vmatrix} r_1 \end{vmatrix}$		
:		:	•	:		:			
$\mathbf{R}l$	$r_{l,q}$		$r_{l,t+1}$	$r_{l,t}$		$r_{l,0}$	r_l		
:		:	:	:	:	÷	:		
$\mathbf{R}n$	$r_{n,q}$	•••	$r_{n,t+1}$	$r_{n,t}$	•••	$r_{n,0}$	r_n		

Formalization

Universal Pairs

Hilbert's Tenth Problem

Lessons learned and outlook

- Formalizing mathematics is feasible
- Isabelle can be learned and handled by nonexperts!
- The exact implementation matters a lot
- Spending 10 hours on its proof don't correct the lemma

What do you think about formalizing mathematics?

Hilbert's Tenth Problem

Formalization

On universal pairs

Complicated diophantine equations

Prime numbers are recursively enumerable → What is their diophantine representation?

$$\begin{split} (k+2) \Big\{ 1 - [wz+h+j-q]^2 \\ &- [(gk+2g+k+1)(h+j)+h-z]^2 \\ &- [2n+p+q+z-e]^2 \\ &- [16(k+1)^3(k+2)(n+1)^2+1-f^2]^2 \\ &- [16(k+1)^3(k+2)(n+1)^2+1-f^2]^2 \\ &- [16(k+1)^3(k+2)(n+1)^2+1-f^2]^2 \\ &- [e^3(e+2)(a+1)^2+1-a^2]^2 \\ &- [(a^2-1)y^2+1-x^2]^2 \\ &- [(a^2-1)y^2+1-x^2]^2 \\ &- [(a+l+v-y]^2 \\ &- [((a+l+v-y)^2)^2 - 1)(n+4dy)^2+1 - (x+cl)^2]^2 \\ &- [(a^2-1)l^2+1-m^2]^2 \\ &- [(a^2-1)l^2+1-m^2]^2 \\ &- [q+y(a-p-1)+s(2ap+2a-p^2-2p-2)-x]^2 \\ &- [x+pl(a-p)+t(2ap-p^2-1)-pm]^2 \\ &- [a+k+1-l-i]^2 \\ &- [p+l(a-n-1)+b(2an+2a-n^2-2n-2)-m]^2 \end{split}$$

Hilbert's Tenth Problem

Formalization

Are there "simpler" equations?

Universal pairs as one measure of complexity

DEF A tuple $(\nu, \delta)_{\mathbb{N}}$ is called a **universal pair** if any diophantine set A can be represented by a diophantine equation in ν variables with degree δ

that is there exists a polynomial $P(a, y_1, ..., y_\nu)$ of degree δ such that $a \in A \Leftrightarrow \exists y_1, ..., y_\nu \in \mathbb{N}^\nu$: $P(a, y_1, ..., y_\nu) = 0$

DEF One defines universal pairs $(v, \delta)_{\mathbb{Z}}$ with variables y_1, \dots, y_v in \mathbb{Z} analogously.

Alternatively: Consider number of operations

Hilbert's Tenth Problem

Formalization

How to find universal pairs

An equation $U(a, i, y_1, ..., y_{\nu}) = 0$ is called a **universal diophantine equation**,

if for any diophantine set A there is a natural number I such that

 $U(a, I, y_1, \dots, y_{\nu})$ represents A.

Already known and constructed in \mathbb{N} \rightarrow obtain universal pairs e.g. (58, 4)_N and (10, 8.6 × 10⁴⁴)_N

Four squares theorem:

Any $n \in \mathbb{N}$ is given by $x^2 + y^2 + z^2 + w^2$

Stronger theorem:

Any $n \in \mathbb{N}$ is given by $x^2 + y^2 + z^2 + z$ Using substitution in the integers one has: (174,4) (114,16) (96,24) (84,40) (78,48) (75,56) (63,192) (57,5336) (42,4 × 10^5) (36,2.6 × 10^{44}) (33,9.2 × 10^{44}) (30,1.7 × 10^{45})

The universal pair $(11, \delta)_{\mathbb{Z}}$

THM

Any diophantine set can be represented using only 11 integer valued variables (Zhi-Wei Sun).

- Proof uses Matiyasevich's *Masking* approach
- Inequalities are avoided
- The necessity to be positive-valued is eliminated for all but one variable

BUT: No calculation of needed degree

(11, 8076888866620090410969193621724091494276416) $_{\mathbb{Z}}$ is a universal pair

Hilbert's Tenth Problem

Formalization

Thank you for your attention!

And a lot of thanks to

- Malte Haßler and Simon Dubischar who worked on universal pairs
- Everyone involved in the formalization workgroup: Deepak Aryal, Bogdan Ciurezu, Yiping Deng, Marco David, Prabhat Devkota, Simon Dubischar, Malte Sophian Haßler, Yufei Liu, Maria Oprea, Abhik Pal and Benedikt Stock
- Abhik Pal, Marco David and Benedikt Stock in particular for their promotion of the formalization project at Jugend forscht, EUCYS and many other places
- Dierk Schleicher, our project mentor
- Mathias Fleury, Christoph Benzmüller and everyone else from the theorem proving community who supported us
- Yuri Matiyasevich, who initiated these projects
- Rebecca Wilhelm for the great illustrations of Hilbert, Matiyasevich and the Isabelle logo

Resources

The full proof by Yuri Matiyasevich:

Matiyasevich, Y.: Hilbert's tenth problem. MIT Press (1993)

A tutorial/introduction to Isabelle:

Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014) One can also find an up to date version as a PDF document in Isabelle ("prog-prove" in the menu on the right)

Universal pairs:

Jones, J. P.: Universal Diophantine Equations. In *The journal of Symbolic Logic, Vol. 47, No. 3 (Sep., 1982), pp. 549-571* Zhi-Wei, S.: Further results on Hilbert's tenth problem. Only on arXiv:1704.03504