Jonas Bayer

On (Hilbert, Isabelle)

 and universal pairs
Context

1970 Yuri Matiyasevich publishes answer to the tenth problem

2017 Start of the formalization \& universal pairs project

08/03/18 First universal pair $(11, \delta)_{\mathbb{Z}}$ in the integers

24/05/18 "Matiyasevich meets Isabelle"

From Hilbert's tenth problem to its solution

II From its solution to its formalization

III To universal pairs

Hilbert's Tenth Problem

The problem

Abstract

Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl von rationalen Operationen entscheiden lässt, ob die Gleichung in ganzen Zahlen lösbar ist.

DEF A diophantine equation is a polynomial equation with integer coefficients

Examples:

$$
5 x-10=0 \quad x_{1}^{2}-4 x_{2}=x_{3} \quad x^{3}+y^{3}=z^{3}
$$

Diophantine equations and sets

Parametric diophantine equation

Diophantine equations and sets

Parametric diophantine equation

$$
a-\left(y_{1}+2\right)\left(y_{2}+2\right)=0
$$

$$
a=\left(y_{1}+2\right)\left(y_{2}+2\right)
$$

Composite numbers

DEF
A set $A \subseteq \mathbb{N}$ is called a diophantine set if there is a polynomial $P\left(a, y_{1}, \ldots, y_{v}\right)$ with integer coefficients such that

$$
a \in A \Leftrightarrow \exists y_{1}, \ldots, y_{v}: P\left(a, y_{1}, \ldots, y_{v}\right)=0
$$

Undecidability of Hilbert's problem

1900

diophantine

decidable

1950 Julia Robinson and Martin Davis conjecture undecidability

Undecidability of Hilbert's problem

diophantine

recursively enumerable

decidable

THM

DPRM Theorem.

Every recursively enumerable set is diophantine.

Undecidability of Hilbert's problem

diophantine

recursively enumerable

decidable

THM
 DPRM Theorem.

Every recursively enumerable set is diophantine.

Structure of the DPRM Theorem

recursively enumerable

diophantine

exponential diophantine

Exponential diophantine equations simulate computational model \rightarrow Here: Register Machines

Diophantine equation with exponentially growing solutions \rightarrow Polynomial representation of $a=b^{c}$

Questions?

The formalization of the DPRM Theorem or

Hilbert meets Isabelle

Proofs with computers

Proofs using computations
Computations carried out
by a computer

Computer verified proofs
Full verification of all logical steps down to the axioms

Automated Theorem Provers

The computer comes up with a formal proof

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean triples problem

Interactive Theorem Provers
A proof is manually implemented

Kepler conjecture and Four Colour theorem

Formalizing a Hilbert Problem

Fall 2017

Yuri Matiyasevich on visit in Bremen: suggests formalization of the DPRM theorem

Students had knowledge from previous project

Tools have advanced

Theorem Prover: Isabelle

Online available at isabelle.in.tum.de/website-Isabelle2018

Isabelle / HOL

Interactive Theorem Prover

- Small logic core
- Fixed types

Live Demo

Formalizing the DPRM Theorem

Splitting up the work:
recursively enumerable
diophantine

Team II

exponential diophantine

Formalization still in progress
Formalization completed

Register machines

Program with instructions:

Active state
Registers that store natural numbers

Challenge for the formalization

Lessons learned and outlook

- Formalizing mathematics is feasible
- Isabelle can be learned and handled by nonexperts!
- The exact implementation matters a lot
- Spending 10 hours on its proof don't correct the lemma

What do you think about formalizing mathematics?

On universal pairs

Complicated diophantine equations

Prime numbers are recursively enumerable
\rightarrow What is their diophantine representation?

$$
\begin{aligned}
(k+2)\{ & 1 \\
& -[w z+h+j-q]^{2} \\
& -[(g k+2 g+k+1)(h+j)+h-z]^{2} \\
& -[2 n+p+q+z-e]^{2} \\
& -\left[16(k+1)^{3}(k+2)(n+1)^{2}+1-f^{2}\right]^{2} \\
& -\left[e^{3}(e+2)(a+1)^{2}+1-o^{2}\right]^{2} \\
& -\left[\left(a^{2}-1\right) y^{2}+1-x^{2}\right]^{2} \\
& -\left[16 r^{2} y^{4}\left(a^{2}-1\right)+1-u^{2}\right]^{2} \\
& -[n+l+v-y]^{2} \\
& -\left[\left(\left(a+u^{2}\left(u^{2}-a\right)\right)^{2}-1\right)(n+4 d y)^{2}+1-(x+c u)^{2}\right]^{2} \\
& -\left[\left(a^{2}-1\right) l^{2}+1-m^{2}\right]^{2} \\
& -\left[q+y(a-p-1)+s\left(2 a p+2 a-p^{2}-2 p-2\right)-x\right]^{2} \\
& -\left[z+p l(a-p)+t\left(2 a p-p^{2}-1\right)-p m\right]^{2} \\
& -[a i+k+1-l-i]^{2} \\
& \left.-\left[p+l(a-n-1)+b\left(2 a n+2 a-n^{2}-2 n-2\right)-m\right]^{2}\right\} .
\end{aligned}
$$

Are there "simpler" equations?

Universal pairs as one measure of complexity

DEF A tuple $(v, \delta)_{\mathbb{N}}$ is called a universal pair if any diophantine set A can be represented by a diophantine equation in v variables with degree δ that is there exists a polynomial $P\left(a, y_{1}, \ldots, y_{v}\right)$ of degree δ such that

$$
a \in A \Leftrightarrow \exists y_{1}, \ldots, y_{v} \in \mathbb{N}^{v}: P\left(a, y_{1}, \ldots, y_{v}\right)=0
$$

DEF One defines universal pairs $(v, \delta)_{\mathbb{Z}}$ with variables y_{1}, \ldots, y_{v} in \mathbb{Z} analogously.
Alternatively: Consider number of operations

How to find universal pairs

An equation $U\left(a, i, y_{1}, \ldots, y_{v}\right)=0$ is called a universal diophantine equation, if for any diophantine set A there is a natural number I such that
$U\left(a, I, y_{1}, \ldots, y_{v}\right)$ represents A.

Already known and constructed in \mathbb{N}
\rightarrow obtain universal pairs e.g. $(58,4)_{\mathbb{N}}$ and $\left(10,8.6 \times 10^{44}\right)_{\mathbb{N}}$

Four squares theorem:
Any $n \in \mathbb{N}$ is given by

$$
x^{2}+y^{2}+z^{2}+w^{2}
$$

Stronger theorem:
Any $n \in \mathbb{N}$ is given by

$$
x^{2}+y^{2}+z^{2}+z
$$

Using substitution in the integers one has:
$(174,4)(114,16)(96,24)(84,40)(78,48)$
$(75,56)(63,192)(57,5336)\left(42,4 \times 10^{5}\right)$
$\left(36,2.6 \times 10^{44}\right) \quad\left(33,9.2 \times 10^{44}\right) \quad\left(30,1.7 \times 10^{45}\right)$

The universal pair $(11, \delta)_{\mathbb{Z}}$

Any diophantine set can be represented using only 11 integer valued variables (Zhi-Wei Sun).

- Proof uses Matiyasevich's Masking approach
- Inequalities are avoided
- The necessity to be positive-valued is eliminated for all but one variable BUT: No calculation of needed degree
$(11,8076888866620090410969193621724091494276416)_{\mathbb{Z}}$ is a universal pair

How can we improve this?

Questions?

Thank you for your attention!

And a lot of thanks to

- Malte Haßler and Simon Dubischar who worked on universal pairs
- Everyone involved in the formalization workgroup:

Deepak Aryal, Bogdan Ciurezu, Yiping Deng, Marco David, Prabhat Devkota, Simon Dubischar, Malte Sophian Haßler, Yufei Liu, Maria Oprea, Abhik Pal and Benedikt Stock

- Abhik Pal, Marco David and Benedikt Stock in particular for their promotion of the formalization project at Jugend forscht, EUCYS and many other places
- Dierk Schleicher, our project mentor
- Mathias Fleury, Christoph Benzmüller and everyone else from the theorem proving community who supported us
- Yuri Matiyasevich, who initiated these projects
- Rebecca Wilhelm for the great illustrations of Hilbert, Matiyasevich and the Isabelle logo

Resources

The full proof by Yuri Matiyasevich:
Matiyasevich, Y. : Hilbert's tenth problem. MIT Press (1993)

A tutorial/introduction to Isabelle:

Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014)
One can also find an up to date version as a PDF document in Isabelle ("prog-prove" in the menu on the right)

Universal pairs:

Jones, J. P.: Universal Diophantine Equations. In The journal of Symbolic Logic, Vol. 47, No. 3 (Sep., 1982), pp. 549-571
Zhi-Wei, S.: Further results on Hilbert's tenth problem. Only on arXiv:1704.03504

