Bogoliubov Theory in the Gross-Pitaevskii Limit

Severin Schraven

University of Zurich

Bernoulli's Tafelrunde March 21, 2019

Severin Schraven Bogoliubov Theory in the Gross-Pitaevskii Limit

2 Idea of the Proof

Preliminaries

Goal of this talk:

Understanding the asymptotic of "small" eigenvalues of the operator

$$H_N = \sum_{j=1}^{N} -\Delta_{x_j} + \kappa \sum_{1 \le i < j \le N} N^2 V(N(x_i - x_j))$$

for $N \to \infty$. Based on the Paper: "Bogoliubov Theory in the Gross-Pitaevskii Limit" by C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein.

The Copenhagen Interpretation:

Bose-Einstein condensation

We always consider $\Lambda = \left[-\frac{1}{2}, \frac{1}{2}\right]^{\times 3}$ with periodic boundary conditions. The **bosonic Fock space** is defined as

$$\mathcal{F} = \bigoplus_{n \ge 0} L^2_s(\Lambda^n) = \bigoplus_{n \ge 0} L^2(\Lambda)^{\otimes_s n}$$

with scalar product given by

$$\langle \Phi, \Psi \rangle_{\mathcal{F}} = \sum_{n \ge 0} \langle \Phi^{(n)}, \Psi^{(n)} \rangle_{L^2(\Lambda^n)}.$$

For $g \in L^2(\Lambda)$ we introduce the **creation operator** $a^{\star}(g)$ and the **annihilation operator** a(g)

$$(a^{\star}(g)\Psi)^{(n)}(x_1,\ldots,x_n) = \frac{1}{\sqrt{n}} \sum_{j=1}^n g(x_j)\Psi^{(n-1)}(x_1,\ldots,\hat{x}_j,\ldots,x_n)$$
$$(a(g)\Psi)^{(n)}(x_1,\ldots,x_n) = \sqrt{n+1} \int dx \ \overline{g}(x)\Psi^{(n+1)}(x,x_1,\ldots,x_n)$$

We have the commutation relation

$$[a(g),a^{\star}(h)]=\langle g,h\rangle,\quad [a(g),a(h)]=[a^{\star}(g),a^{\star}(h)]=0.$$

Fock space

We define $\Lambda^* = 2\pi \mathbb{Z}^3$ and $\Lambda^*_+ = 2\pi \mathbb{Z}^3 \setminus \{0\}$. Furthermore, we set $\varphi_p(x) = e^{-ip \cdot x}$ for $p \in \Lambda^*$ and

$$a_p^{\star} = a^{\star}(\varphi_p), \quad \text{and} \quad a_p = a(\varphi_p).$$

The number of particles operator is

$$(\mathcal{N}\Psi)^{(n)} = n\Psi^{(n)}.$$

We can write

$$\mathcal{N} = \sum_{p \in \Lambda^{\star}} a_p^{\star} a_p$$

Fock space

We set

$$\mathcal{F}_+ = \bigoplus_{n \ge 0} L^2_{\perp}(\Lambda)^{\otimes_s n}$$

where $L^2_{\perp}(\Lambda)$ is the orthogonal complement of φ_0 . Also we define

$$\mathcal{F}_{+}^{\leq N} = \bigoplus_{n=0}^{N} L^{2}_{\perp}(\Lambda)^{\otimes_{s} n}$$

We denote by \mathcal{N}_+ the restriction of \mathcal{N} to \mathcal{F}_+ . We can write

$$\mathcal{N}_+ = \sum_{p \in \Lambda_+^\star} a_p^\star a_p$$

For $p \in \Lambda_+^{\star}$ we define the modified annihilation and creation operator

$$b_p^{\star} = a_p^{\star} \sqrt{\frac{N - \mathcal{N}_+}{N}}, \qquad b_p = \sqrt{\frac{N - \mathcal{N}_+}{N}} a_p$$

The scattering length a_0 of an interaction potential κV is defined via the zero-energy scattering equation

$$\begin{cases} \left[-\Delta + \frac{\kappa}{2}V\right]f &= 0\\ \lim_{|x| \to \infty} f(x) &= 1. \end{cases}$$

For |x| outside the support of V we have

$$f(x) = 1 - \frac{a_0}{|x|}$$

Alternative definition

$$8\pi a_0 = \kappa \int dx \ V(x) f(x)$$

The scattering length of $V(N \cdot)$ is a_0/N .

Theorem (Boccato, Brennecke, Cenatiempo, Schlein, 2018)

Let $V \in L^3(\mathbb{R}^3)$ be non-negative, spherically symmetric, compactly supported and assume that the coupling constant $\kappa \geq 0$ is small enough. Then, in the limit $N \to \infty$, the ground state energy E_N of the Hamilton operator

$$H_N = \sum_{j=1}^{N} -\Delta_{x_j} + \kappa \sum_{1 \le i < j \le N} N^2 V(N(x_i - x_j))$$

is given by

$$E_N = 4\pi (N-1)a_N$$

- $\frac{1}{2} \sum_{p \in \Lambda^*_+} \left[p^2 + 8\pi a_0 - \sqrt{|p|^4 + 16\pi a_0 p^2} - \frac{(8\pi a_0)^2}{2p^2} \right] + \mathcal{O}(N^{-\frac{1}{4}})$

Statement of the Theorem continued

continued

where

$$8\pi a_N = \kappa \hat{V}(0) + \sum_{k=1}^{\infty} \frac{(-1)^k \kappa^{k+1}}{(2N)^k} \sum_{p_1,\dots,p_k \in \Lambda_+^*} \frac{\hat{V}(p_1/N)}{p_1^2} \\ \times \left(\prod_{i=1}^{k-1} \frac{\hat{V}((p_i - p_{i+1})/N)}{p_{i+1}^2}\right) \hat{V}(p_k/N)$$

Moreover, the spectrum of $H_N - E_N$ below a threshold ζ consists of eigenvalues given, in the limit $N \to \infty$, by

$$\sum_{p \in \Lambda_+^*} n_p \sqrt{|p|^4 + 16\pi a_0 p^2} + \mathcal{O}(N^{-1/4}(1+\zeta^3))$$

Here $n_p \in \mathbb{N}$ for all $p \in \Lambda_+^*$ and $n_p \neq 0$ for only finitely many p.

Idea of the Proof

Strategy: Find a unitary transformation U such that

$$UH_N U^{\star} = D + \mathcal{E},$$

where D is a diagonal operator and such that \mathcal{E} is small on "low-energy states".

Main fact: If U is a unitary transform and A an operator, then

$$\sigma(UAU^{\star}) = \sigma(A)$$

and ξ is an eigenfunction of A iff $U\xi$ is an eigenfunction of UAU^{\star} .

We will conjugate several times to achieve our goal:

1. U_N : Factoring out the condensate

2. Quadratic Bogoliubov transformation $e^{B(\eta)}$:

Extracting some relevant contributions out of the cubic and quartic terms

3. Cubic transformation e^A :

Eliminating the cubic term

4. Quadratic Bogoliubov transform $e^{B(\tau)}$:

Diagonalizing the quadratic term

A first conjugation: factoring out the condensate

We can rewrite our Hamiltonian using annihilation and creation operators

$$H_N = \sum_{p \in \Lambda^*} p^2 a_p^* a_p + \frac{\kappa}{2N} \sum_{p,q,r \in \Lambda^*} \hat{V}(r/N) a_p^* a_q^* a_{q-r} a_{p+r}$$

First we will conjugate with the following unitary map

$$U_N: L^2_s(\Lambda^N) \to \mathcal{F}^{\leq N}_+ = \bigoplus_{n=0}^N L^2_\perp(\Lambda)^{\otimes_s n}$$

where

$$U_N\left(\sum_{n=0}^N \alpha^{(n)} \otimes_s \varphi_0^{\otimes (N-n)}\right) = (\alpha_0, \dots, \alpha_N)$$

Excitation Hamiltonian

One obtains the excitation Hamiltonian

$$\mathcal{L}_N = U_N H_N U_N^\star : \mathcal{F}_+^{\leq N} \to \mathcal{F}_+^{\leq N}, \qquad \mathcal{L}_N = \mathcal{L}_N^{(0)} + \mathcal{L}_N^{(2)} + \mathcal{L}_N^{(3)} + \mathcal{L}_N^{(4)}$$

where

$$\begin{split} \mathcal{L}_{N}^{(0)} &= \frac{N-1}{2N} \kappa \hat{V}(0) (N - \mathcal{N}_{+}) + \frac{\kappa \hat{V}(0)}{2N} \mathcal{N}_{+} (N - \mathcal{N}_{+}) \\ \mathcal{L}_{N}^{(2)} &= \sum_{p \in \Lambda_{+}^{\star}} p^{2} a_{p}^{\star} a_{p} + \sum_{p \in \Lambda_{+}^{\star}} \kappa \hat{V}(p/N) \left[b_{p}^{\star} b_{p} - \frac{1}{N} a_{p}^{\star} a_{p} \right] \\ &+ \frac{\kappa}{2} \sum_{p \in \Lambda_{+}^{\star}} \hat{V}(p/N) [b_{p}^{\star} b_{-p}^{\star} + b_{p} b_{-p}] \\ \mathcal{L}_{N}^{(3)} &= \frac{\kappa}{\sqrt{N}} \sum_{p,q \in \Lambda^{\star}: p+q \neq 0} \hat{V}(p/N) [b_{p+q}^{\star} a_{-p}^{\star} a_{q} + a_{q}^{\star} a_{-p} b_{p+q}] \\ \mathcal{L}_{N}^{(4)} &= \frac{\kappa}{2N} \sum_{p,q \in \Lambda^{\star}: r \neq -p, -q} \hat{V}(r/N) a_{p+r}^{\star} a_{q}^{\star} a_{p} a_{q+r} \end{split}$$

Bogoliubov transform: standard vs generalized

Let $\eta \in l^2(\Lambda^*_+)$ with $\eta_p = \eta_{-p}$. The standard Bogoliubov transformation associated with η is

$$e^{\bar{B}(\eta)} = \exp\left[\frac{1}{2}\sum_{p\in\Lambda_+^\star}(\eta_p a_p^\star a_{-p}^\star - \overline{\eta}_p a_p a_{-p})\right]$$

Not suited for our purpose, as it does not leave $\mathcal{F}^{\leq N}_+$ invariant. But the generalized Bogoliubov transformation

$$e^{B(\eta)} = \exp\left[\frac{1}{2}\sum_{p\in\Lambda_+^\star} (\eta_p b_p^\star b_{-p}^\star - \overline{\eta}_p b_p b_{-p})\right]$$

does leave $\mathcal{F}_{+}^{\leq N}$ invariant.

Drawback: we don't get identities for the conjugation. For the standard Bogoliubov transformation we have

$$e^{-\tilde{B}(\eta)}a_p e^{\tilde{B}(\eta)} = \cosh(\eta_p)a_p + \sinh(\eta_p)a_{-p}^*$$

On the other hand we only get

$$e^{-B(\eta)}b_p e^{B(\eta)} = \cosh(\eta_p)b_p + \sinh(\eta_p)b^*_{-p} + d_p$$

where d_p is some error. Luckily one gets nice enough estimates for the error terms.

Second conjugation: quadratic Bogoliubov transformation

We introduce the notation

$$\mathcal{K} = \sum_{p \in \Lambda_{+}^{\star}} p^{2} a_{p}^{\star} a_{p}$$
$$\mathcal{V}_{N} = \frac{\kappa}{2N} \sum_{p,q \in \Lambda^{\star}, r \in \Lambda^{\star}: \ r \neq -p, -q} \hat{V}(p/N) a_{p+r}^{\star} a_{q}^{\star} a_{q+r} a_{p}$$
$$\mathcal{H}_{N} = \mathcal{K} + \mathcal{V}_{N}$$

We define the new excitation Hamiltonian to be

$$\mathcal{G}_N = e^{-B(\eta)} \mathcal{L}_N e^{B(\eta)} = e^{-B(\eta)} U_N H_N U_N^{\star} e^{B(\eta)} : \mathcal{F}_+^{\leq N} \to \mathcal{F}_+^{\leq N}$$

All the estimates are in terms of powers of the number of particles operator and the energy operator \mathcal{H}_N . This will eventually be small by the following proposition:

Proposition

Let $V \in L^3(\mathbb{R}^3)$ be non-negative, compactly supported and spherically symmetric and assume that the coupling constant $\kappa \geq 0$ is small enough. Let E_N be the ground state energy of H_N . Let $\psi_N \in L^2_s(\Lambda^N)$ with $\|\psi_N\| = 1$ belong to the spectral subspace of H_N with energies below $E_N + \zeta$, for some $\zeta > 0$, i.e.

$$\psi_N = \mathbb{1}_{(-\infty; E_N + \zeta]}(H_N)\psi_N.$$

For any $k \in \mathbb{N}$ there exists C = C(k) > 0 such that for all N

$$\langle e^{-B(\eta)}U_N\psi_N, (\mathcal{N}_++1)^k(\mathcal{H}_N+1)e^{-B(\eta)}U_N\psi_N \rangle \le C(1+\zeta^{k+1})$$

Second conjugation: quadratic Bogoliubov transformation

Proposition

Let $V \in L^3(\mathbb{R}^3)$ be non-negative, compactly supported and spherically symmetric and assume that the coupling constant $\kappa \geq 0$ is small enough. Then we have

$$\mathcal{G}_N = C_{\mathcal{G}_N} + \mathcal{Q}_{\mathcal{G}_N} + \mathcal{H}_N + C_N + \mathcal{E}_{\mathcal{G}_N}$$

and there exists C > 0 such that

$$\pm \mathcal{E}_{\mathcal{G}_N} \leq \frac{C}{\sqrt{N}} (\mathcal{H}_N + \mathcal{N}_+^2 + 1)(\mathcal{N}_+ + 1)$$

as quadratic forms on $\mathcal{F}_{+}^{\leq N} \times \mathcal{F}_{+}^{\leq N}$.

Third conjugation: cubic transformation

Let
$$P_L = \{ p \in \Lambda_+^* : |p| \le N^{1/2} \}$$
 and $P_H = \Lambda_+^* \setminus P_L$ and define

$$A = \frac{1}{\sqrt{N}} \sum_{r \in P_H, v \in P_L} \eta_r [\sinh(\eta_v) b^{\star}_{r+v} b^{\star}_{-r} b^{\star}_{-v} + \cosh(\eta_v) b^{\star}_{r+v} b^{\star}_{-r} b_v - h.c.]$$

Proposition

Let $V \in L^3(\mathbb{R}^3)$ be non-negative, compactly supported and spherically symmetric and assume that the coupling constant $\kappa > 0$ is small enough. Then we have for $\mathcal{I}_N = e^{-A} \mathcal{G}_N e^A$

$$\mathcal{I}_N = C_{\mathcal{I}_N} + \mathcal{Q}_{\mathcal{I}_N} + \mathcal{V}_N + \mathcal{E}_{\mathcal{I}_N}$$

and there exists C > 0 such that

$$\pm \mathcal{E}_{\mathcal{I}_N} \le \frac{C}{N^{1/4}} [(\mathcal{H}_N + 1)(\mathcal{N}_+ + 1) + (\mathcal{N}_+ + 1)^3]$$

as quadratic forms on $\mathcal{F}_{+}^{\leq N} \times \mathcal{F}_{+}^{\leq N}$.

Diagonalize $\mathcal{Q}_{\mathcal{I}_N}$ via quadratic Bogoliubov transformation

Proposition

Let $V \in L^3(\mathbb{R}^3)$ be non-negative, compactly supported and spherically symmetric and assume that the coupling constant $\kappa > 0$ is small enough. Then we have for $\mathcal{M}_N = e^{-B(\tau)} \mathcal{I}_N e^{B(\tau)}$

$$\begin{aligned} \mathcal{M}_N &= 4\pi (N-1)a_N \\ &+ \frac{1}{2} \sum_{p \in \Lambda_+^\star} \left[-p^2 - 8\pi a_0 + \sqrt{p^4 + 16\pi a_0 p^2} + \frac{(8\pi a_0)^2}{2p^2} \right] \\ &+ \sum_{p \in \Lambda_+^\star} \sqrt{p^4 + 16\pi a_0 p^2} a_p^\star a_p + \mathcal{V}_N + \mathcal{E}_{\mathcal{I}_N} \end{aligned}$$

and there exists C > 0 such that as quadratic forms on $\mathcal{F}_+^{\leq N} \times \mathcal{F}_+^{\leq N}$ we have

$$\pm \mathcal{E}_{\mathcal{I}_N} \le \frac{C}{N^{1/4}} [(\mathcal{H}_N + 1)(\mathcal{N}_+ + 1) + (\mathcal{N}_+ + 1)^3]$$

Further Discussion

One uses the smallness of κ at different spots in the proof. Mainly to obtain $\|\eta\| \sim \kappa$ small. In "Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime" by C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein got rid of this assumption.

Main idea:

Exploiting some other parameter to make $\|\eta\|$ small and applying localization techniques.

Extension to \mathbb{R}^3

To ensure existence of a ground state we need to add a "confining external potential", i.e. we look at

$$H_N = \sum_{j=1}^{N} (-\Delta_{x_j} + V_{ext}(x_j)) + \kappa \sum_{1 \le i < j \le N} N^2 V(N(x_i - x_j))$$

where $V_{ext} \in L^{\infty}_{loc}(\mathbb{R}^3, \mathbb{R}_{\geq 0})$ such that

$$\lim_{|x| \to \infty} |V_{ext}(x)| = \infty.$$

Difficulties:

- Our functions are no longer periodic (external potential breaks translation-invariance), hence, cannot use discrete Fourier transform
- Ground state φ_0 cannot be determined explicitly

Thank you