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Problem (Disquisitiones Arithmeticae, Art. 314):

Let p # 2,5 be a prime number. How long is the period in the
decimal expansion of %?
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Problem (Disquisitiones Arithmeticae, Art. 314):
Let p # 2,5 be a prime number. How long is the period in the
decimal expansion of %?

Example:
; = 0.142857
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Problem (Disquisitiones Arithmeticae, Art. 314):
Let p # 2,5 be a prime number. How long is the period in the
decimal expansion of %?

Example:
1 S 1 _
7= 0.142857 = 0.09
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p #2,5=-10 (mod p) € F}. Let k be the order of 10 modulo p.
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p #2,5=-10 (mod p) € F}. Let k be the order of 10 modulo p.

10f=1mod p= 3beN:pb=10" -1
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p #2,5=-10 (mod p) € F}. Let k be the order of 10 modulo p.
10f=1mod p= 3beN:pb=10" -1

Hence
oo

1 .10k .
1__ b 510 :Zb-loﬂk.
j=1

p 10k—1 1-—10*
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p #2,5=-10 (mod p) € F}. Let k be the order of 10 modulo p.
10f=1mod p= 3beN:pb=10" -1

Hence

1 b b-107k & o
pzlok—1:1—1ok:jz_;b'10 "

So k is greater or equal to the the length of the period of %. By
reversing the argument one sees that in fact equality holds.
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p #2,5=-10 (mod p) € F}. Let k be the order of 10 modulo p.
10f=1mod p= 3beN:pb=10" -1

Hence

1 b b-107k & o
pzlok—1:1—1ok:jz_;b'10 "

So k is greater or equal to the the length of the period of %. By
reversing the argument one sees that in fact equality holds.

Answer: The length of the period of % is the order of 10 mod p.
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For instance:

ordr: (10) = 6 ordp; (10) = 2
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For instance:
ordr: (10) = 6 ordp; (10) = 2

In particular if 10 mod p generates %, the length of the period of

% is maximal (= p —1).
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For instance:
ordr: (10) = 6 ordp; (10) = 2

In particular if 10 mod p generates %, the length of the period of

L is maximal (= p — 1).

|

Definition
Let a be an integer. We say that a is a primitive root modulo p if
a mod p generates [}, i.e. (a mod p) =},
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For instance:
ordr: (10) = 6 ordp; (10) = 2

In particular if 10 mod p generates %, the length of the period of

L is maximal (= p — 1).

|

Definition
Let a be an integer. We say that a is a primitive root modulo p if
a mod p generates [}, i.e. (a mod p) =},

Question
Let a == 41 be a non-zero integer. For how many primes p is a a
primitive root modulo p?
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Some experiments

We consider all the primes up to 10°.

] a ‘ ” primitive root” primes | Fraction
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Some experiments

We consider all the primes up to 10°.

a | " primitive root” primes

Fraction

2 29341

0.3737
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Some experiments

We consider all the primes up to 10°.

a | " primitive root” primes | Fraction
2 29341 0.3737
3 29393 0.3744
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Some experiments

We consider all the primes up to 10°.

a | " primitive root” primes | Fraction
2 29341 0.3737
3 29393 0.3744
4 0 0
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Some experiments

We consider all the primes up to 10°.

a | " primitive root” primes | Fraction
2 29341 0.3737
3 29393 0.3744
4 0 0

5 30885 0.3934
6 29348 0.3739
7 29434 0.3749
8 17623 0.2245
9 1 0.0000
10 29500 0.3758
11 29433 0.3749
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Natural densities

Let S be a subset of prime numbers. If the limit

_ #{peS:p<x}
) '_xh—>n<lo#{p€Z:p§x}

exists, then we call §(S) the natural density of S.
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Natural densities

Let S be a subset of prime numbers. If the limit

_ #{peS:p<x}
) '_xh—>n<lo#{p€Z:p§x}

exists, then we call §(S) the natural density of S.

Example 1: If S is a finite set then 6(S) = 0.
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Natural densities

Let S be a subset of prime numbers. If the limit

o #PESIp<x}
) _xh—>n<lo#{p€Z:p§x}

exists, then we call §(S) the natural density of S.

Example 1: If S is a finite set then 6(S) = 0.
Example 2: If g is a prime number and

S={pprime: p=1mod q}

then 6(S) = ﬁ.
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Artin’s primitive root conjecture

Artin's problem

Fix a non-zero integer a = +1. What is the density of the set of
primes p for which a is a primitive root modulo p?
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Artin’s primitive root conjecture

Artin's problem

Fix a non-zero integer a = +1. What is the density of the set of
primes p for which a is a primitive root modulo p?

Artin’s conjecture: Let a 7 +1 be a non-zero integer that is not
a square. Then there exist infinitely many primes p for which a is a
primitive root modulo p. Moreover if we write a = b" with b € Z
not a perfect power then the density A(a) exists and its value is

Tl )

Itn IIn
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What does it mean for an integer a to be a primitive root mod p?
Assume p £ 2a:
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What does it mean for an integer a to be a primitive root mod p?
Assume p £ 2a:

(amod p) =F, < AT # 1 (mod p) for any prime /

p=1(mod /)
& b1 don't occur for any prime /
aT =1 (mod p)
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What does it mean for an integer a to be a primitive root mod p?
Assume p £ 2a:

(amod p) =F, < AT # 1 (mod p) for any prime /

don't occur for any prime /

{ p=1(mod /)
-

el (mod p)

The last condition is equivalent to p not splitting completely in any
Fi == Q(¢,+/a) for any | prime.
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By Chebotarev Density Theorem the density of the primes that do
not split completely in F;is 1 — ﬁ
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By Chebotarev Density Theorem the density of the primes that do
not split completely in F;is 1 — ﬁ

I(—1) if ais not an /-th power in Q
[Fr: Q] = :
-1 otherwise
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By Chebotarev Density Theorem the density of the primes that do
not split completely in F;is 1 — ﬁ

I(—1) if ais not an /-th power in Q
[Fr: Q] = :
-1 otherwise

If we assume the splitting conditions all independent we recover

the formula
(i) 0 2)

Iln
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Theorem (Hooley)

Assuming the Generalized Riemann Hypothesis, the density of the
set of primes p for which a given integer a is a primitive root
modulo p equals

m)

o
oa) = Z[@fm.l

Moreover when disc(Q(v/a)/Q) # 1 mod 4, this density has the
product factorization

o0 =T1( ) T4~ 73)

Itn IIn
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Elliptic curves analogues

Let E be an elliptic curve defined over a number field Q:
E:y>=x>+Ax+B ABeZ

with Ag = —16(4A3 + 27B2) # 0.
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Elliptic curves analogues

Let E be an elliptic curve defined over a number field Q:
E:y>=x>+Ax+B ABeZ

with Ag = —16(4A3 + 27B2) # 0.

For every prime p in Q we can reduce E modulo p ~ E/IFP.
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Elliptic curves analogues

Let E be an elliptic curve defined over a number field Q:
E:y>=x>+Ax+B ABeZ

with Ag = —16(4A3 + 27B2) # 0.
For every prime p in Q we can reduce E modulo p ~ E/IFP.

o For p of bad reduction (dividing Ag) ~ E/F, is singular.
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Elliptic curves analogues

Let E be an elliptic curve defined over a number field Q:
E:y>=x>+Ax+B ABeZ

with Ag = —16(4A3 + 27B2) # 0.

For every prime p in Q we can reduce E modulo p ~ E/IFP.

o For p of bad reduction (dividing Ag) ~ E/F, is singular.

@ For p of good reduction ~~ E/Fp is an elliptic curve.
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Elliptic curves analogues

Let E be an elliptic curve defined over a number field Q:
E:y>=x>+Ax+B ABeZ

with Ag = —16(4A3 + 27B2) # 0.

For every prime p in Q we can reduce E modulo p ~ E/IFP.
o For p of bad reduction (dividing Ag) ~ E/F, is singular.
@ For p of good reduction ~~ E/Fp is an elliptic curve.

cyclic

The group E(F,) =
group E(F) { product of two cyclic groups
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Elliptic curves analogues

Immediate elliptic curve analogue of Artin’s primitive root problem:

Problem: Let E be an elliptic curve defined over Q and let

R € E(Q) be a point of infinite order. What is the density of the
set of primes p such that £(F,) is cyclic, generated by the
reduction of R modulo p?
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Elliptic curves analogues

Immediate elliptic curve analogue of Artin’s primitive root problem:

Problem: Let E be an elliptic curve defined over Q and let

R € E(Q) be a point of infinite order. What is the density of the
set of primes p such that £(F,) is cyclic, generated by the
reduction of R modulo p?

We call in this case R a primitive point mod p.
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Elliptic curves analogues

Immediate elliptic curve analogue of Artin’s primitive root problem:

Problem: Let E be an elliptic curve defined over Q and let

R € E(Q) be a point of infinite order. What is the density of the
set of primes p such that £(F,) is cyclic, generated by the
reduction of R modulo p?

We call in this case R a primitive point mod p.

Conjecture (Lang-Trotter)

The density of the set of primes for which R is a primitive point
always exist.
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Simpler problem:

What is the density of the primes of good reduction for which
E(Fp) is cyclic?
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Simpler problem:

What is the density of the primes of good reduction for which
E(Fp) is cyclic?

Equation for £ Primes up to 10° of cyclic reduction for £ | d(E)

y?2 =x3—19x + 30 0 0
y2=x3-3x+1 49024 0.6510
y2=x>+2x+3 38383 0.4889
y? = x3 — 12096x — 544752 32652 0.4159
vy =x+x+3 63910 0.8141
y2=x3-1 39265 0.5002
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Cyclic reduction problem

The cyclic reduction problem can be tackled in the same way as
Artin’s primitive root problem!
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Cyclic reduction problem

The cyclic reduction problem can be tackled in the same way as
Artin’s primitive root problem!

If E/Q is an elliptic curve

E[m|(Q) = {P = (x.y) € E(Q) : mP = 0} U {0}
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Cyclic reduction problem

The cyclic reduction problem can be tackled in the same way as
Artin’s primitive root problem!

If E/Q is an elliptic curve

E[m|(Q) = {P = (x.y) € E(Q) : mP = 0} U {0}

Definition

For E/Q an elliptic curve and m € N the m-division field over Q is

Km = Q(E[m](Q))
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Cyclic reduction problem

Proposition

Let E/ @ be an elliptic curve and p a prime of good reduction.
Then E(Fp) is cyclic if and only if p does not split completely in
any division field K; with | prime.
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Cyclic reduction problem

Proposition

Let E/ @ be an elliptic curve and p a prime of good reduction.
Then E(Fp) is cyclic if and only if p does not split completely in
any division field K; with | prime.

d({p prime : p does not split completely in Kj, | prime})

|
5({p prime : E(F,) is cyclic})
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Cyclic reduction problem

Theorem (Serre)

Let E be an elliptic curve defined over Q and let
S = {p prime: E(F},) is cyclic}.

Then, subject to GRH, the density of S equals
o p(m)
0(E) = —
B)=2. 5. q

with p the Mobius function and K, the m-division field of E over

Q.
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Thanks for your attention




