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Introduction

- the thesis deals with a simple application of the reflection method to the
exploration of oil and gas fields

- full waveform inversion (FWI) is the technique used in reflection seismology to
recover the information from observed seismograms

- FWI consists of an efficient solution of the forward problem and iterative
improvement of a subsurface model by minimisation a misfit between observed
and synthetic seismic waveforms
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Introduction

- the least squares (L*) norm is a classically used misfit functional in FWI, but it
usually provides multiple local minima

- Wasserstein metric is another misfit functional we want to use in this work,
because it has some desirable properties like convexity and insensitivity to noise

- the goal of this work is to create an example of a two-dimensional seismic
problem and to solve it with FWI technique once with L* norm and once with
Wasserstein metric
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Introduction

Elastic waves in two-dimensional space can be modelled by the following wave equation in
order to obtain the resulting wavefield u(x,z,t) for a given wave velocity c(x,z)

wt(z,2,t) — V - (¢*(x, 2)Vu(z, 2,t)) = s(z,z,t)

where s(x,z,t) is the source function.

observed data: g = u(xy,0,1)

modelled data: f(e) = u(zy,0,t)

minimisation problem:

¢ = argmin d( f(c), g).

c

where d(f,g) is a misfit functional for two signals
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The forward problem
The seismic reflection experiment
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The forward problem
The problem statement

(1= 1(0,a) x (0,b), a,b>0
uge (x,z,t) — V - (cz{:z:,z]‘?u(;c,z,t)}

ugt(z, z,t) — EAu(z, 2, t)

E*u[:u:1 z,t)

on

lim wu(zx,z,t)
(z,z)—oo

u(x, z,0)

u(x, z,0)

u(x,z,t) — wave field
s(x,z,t) — source

c(x,z) — wave velocity
u, v, — initial conditions

Qoo = {(z,2) e R? | 2

s(x,z,t)  (z,2) €9, >0,

0 (r,2) € D\, t >0,
0 (r,2) € 0, t >0,
0 t >0,

ug(x, 2), (x,2) € QQ,

vo(z, z) (z,2) € .

> 0}
(2.1a)
(2.1b)
(2.1c)

(2.1d)

(2.1e)

(2.1f)
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The forward problem
The problem statement

The PML modified wave equation (2.5) replace the conditions 2.1a, 2.1b and 2.1d.

F

wt + (C+n)u+¢nu = V-(c*Vu)+s+V- q)
..Illl.f:'
5 0
* b = —~Ch+An—C)g (2.5)
£
| | , )
be = —mb+cA(C )
. =

¢, Y — auxiliary functions
, n — damping profiles

((z)=0 mQ and ((z) >0 in QF,

n(z)=0 inQ and n(z) >0 in Q°.
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The forward problem
Discretisation

r; =1-Ar and z; = j - Az,

1 1
i=0,1,...k+1and Az = ——,
k+1'1 y 1y + 1l and Az (11

j=0,1,...1+1

where Ar =

-u,’%}l ~ u(Ti, 2j, tm)

m+1 m m—1 m i i
wi = 2 pu (wi+1_~j e N

ij _ 2 Wi 1 — 2wij + w%—l)
(At)?2 H (Ax)?

(Az)?

CFL stability condition for equal mesh size h = Ax = Az:

()<
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The forward problem
Numerical experiments
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Snapshots of the numerical solutions at different times in Q = [-0.5, 0.5JF enclosed by a
PML of width L = 0.1
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The forward problem
Numerical experiments

surface
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lllustration of the two-layers model. The regular computation domain Q is surrounded by
absorbing layers in which the plane waves decay rapidly as they approach the boundary.
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The forward problem
Numerical experiments
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Numerical solution of the two-layers model in Q = (0, 3) x (0, 1) with wave velocities ¢, = 1
in the upper layer, ¢, = 3 in the lower layer and the depth of the upper layer d = 0.4
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Different misfit functionals
Least-squares (L?) norm

For observed data g and simulated data f recorded in the time interval (0, T) at receiver
position x , the conventional full waveform inversion defines L? norm misfit functional as

2 _ . T o 2
LA(f(m),g) = [ 1f(zrst,m) - glar,t)dt.
0

where m is the model parameter.

For numerical approximation of the L? norm, we subdivide the interval (0, T) in
N equal subintervals [t, t_] of the length h. In each subinterval we use the

Simpson's formula

h

SIfl = g (Fe) + 475 4 fleaw)) ~ [ Fop,

where f(t) = (f(z,,t,m) — g(z,,1))>.
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Different misfit functionals
Quadratic Wasserstein metric W,

Wasserstein metric computes the lowest cost of rearranging one distribution into another
given a cost function.

For two probability density functions f,g the quadratic Wasserstein metric is given by

Wi(f.9) = jnf | |z —T(2)]"f(z)de,

where M is the set of all maps that rearrange finto g.

F)= [ fwd, 6w = [ gl

Theorem 3.4 Let 0 < f,g < oo be two probability density functions, each supported on a
connected subset of R. Then the optimal map from f tog isT =G 'oF.

T
Wi(f.9) = [ It =G E @)t
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Different misfit functionals
Quadratic Wasserstein metric W,

Convexity of W, metric with respect to shift:

Theorem 3.7 [9] Let T : X ¢ R" - Y c R" be an optimal transference plan rearanging f
into g, where f and g are two density functions. Then the optimal transference plan from
a shifted density function fs(z) = f(z — sn), n € R™ into g is Ts = T(x — sn). Moreover,
W3(fs,g) is convex with respect to the shift size s.

Data normalisation:

- fT =max{f,0}, f~ = max{—f,0}, (f) = fX f(z)dzx

2 T2 fr 9" o FT 9
W2l ~W: (<f+>’ <g+>) W ((f‘>’ <g—>)

R RN EY.
W9~ (g Grea)
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Different misfit functionals
Numerical experiments
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Different misfit functionals
Numerical experiments
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Minimisation methods
The Method of Steepest Descent

Algorithm 1: Method of Steepest Descent

Input: 0 =0
Output: zx € R"?
1 Initialize &k «+ 0
2 while Vf(p) # 0 do
3 1. Determine a direction of steepest descent di € R™, so that Vf(mk)Tdk <0

4 2. Solve the problem ay ~ argminf(zy 4+ ady)
ack

5 actualise rp1 + T + apdi
6 set k+— k41

7 return ri

Armijo-Goldstein rule:

f(p+ adp) < f(p) + acV f(p) ép
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Minimisation methods
Newton's Method

Algorithm 3: Newton algorithm

Input: function f: R"™ — R and start approximation xg € R"
Output: sequence of iterations {xx }ren
1 Initialisation: set k := 0

2 Calculate the Newton-direction by solving the linear equation system
2 . _ -
Vef(xg)dr = =V f(xz)

3 Set Xgy1 = X + dk

4 Increase k := k + 1 and go to 2.
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Computational results
FWI with I* and W_mistfit functionals
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Computational results
FWI with I* and W_mistfit functionals
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Misfit function in L? for varying layer thickness d,
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Computational results
FWI with I* and W_mistfit functionals

Using the Method of Steepest
Descent

Using the Newton's Method
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Computational results
FWI with I* and W_mistfit functionals
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Lower value region of misfit function in W_ for varying layer thickness d,
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Computational results
FWI with I* and W_mistfit functionals
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Computational results

Extension to many observation points

Misfit function in L?

One observation point
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Computational results

Extension to many observation points

Misfit function in W2
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Computational results
Extension to three-layers model

error in LZ norm

Misfit function in L? norm
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Computational results
Extension to three-layers model
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Conclusion

Wasserstein metric is a good candidate to replace the commonly used L norm in
the full waveform inversion
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