

Wasserstein metric based full waveform inversion

Anna Karpova, 20.09.18

Contents

- Introduction
- The forward problem
- Different misfit functionals
- Minimisation methods
- Computational results
- Conclusion

Introduction

- the thesis deals with a simple application of the reflection method to the exploration of oil and gas fields
- full waveform inversion (FWI) is the technique used in reflection seismology to recover the information from observed seismograms
- FWI consists of an efficient solution of the forward problem and iterative improvement of a subsurface model by minimisation a misfit between observed and synthetic seismic waveforms

Introduction

- the least squares (L²) norm is a classically used misfit functional in FWI, but it usually provides multiple local minima
- Wasserstein metric is another misfit functional we want to use in this work, because it has some desirable properties like convexity and insensitivity to noise
- the goal of this work is to create an example of a two-dimensional seismic problem and to solve it with FWI technique once with L² norm and once with Wasserstein metric

Introduction

Elastic waves in two-dimensional space can be modelled by the following wave equation in order to obtain the resulting wavefield u(x,z,t) for a given wave velocity c(x,z)

$$u_{tt}(x,z,t) - \nabla \cdot (c^2(x,z)\nabla u(x,z,t)) = s(x,z,t),$$

where s(x,z,t) is the source function.

observed data:

$$g = u(x_r, 0, t)$$

modelled data:

$$f(c) = u(x_r, 0, t)$$

minimisation problem:

$$\tilde{c} = \underset{c}{\operatorname{argmin}} d(f(c), g),$$

where d(f,g) is a misfit functional for two signals

The forward problem The seismic reflection experiment

Cartoon of the land seismic experiment

The problem statement

$$\Omega = (0, a) \times (0, b), \ a, b > 0$$

$$\Omega_{\infty} = \{(x, z) \in \mathbb{R}^2 \mid z \ge 0\}$$

$$u_{tt}(x,z,t) - \nabla \cdot (c^2(x,z)\nabla u(x,z,t)) = s(x,z,t) \quad (x,z) \in \Omega, \ t > 0, \tag{2.1a}$$

$$u_{tt}(x,z,t) - c^2 \Delta u(x,z,t) = 0 \qquad (x,z) \in \Omega_{\infty} \backslash \Omega, \ t > 0, \tag{2.1b}$$

$$\frac{\partial}{\partial n}u(x,z,t) = 0 \qquad (x,z) \in \partial\Omega_{\infty}, \ t > 0, \tag{2.1c}$$

$$\lim_{(x,z)\to\infty} u(x,z,t) = 0 \qquad t > 0, \tag{2.1d}$$

$$u(x, z, 0) = u_0(x, z), (x, z) \in \Omega,$$
 (2.1e)

$$u_t(x, z, 0) = v_0(x, z) (x, z) \in \Omega.$$
 (2.1f)

u(x,z,t) – wave field

s(x,z,t) – source

c(x,z) – wave velocity

 $u_{o'}$, v_{o} – initial conditions

The forward problem The problem statement

The PML modified wave equation (2.5) replace the conditions 2.1a, 2.1b and 2.1d.

$$\begin{cases} u_{tt} + (\zeta + \eta) u_t + \zeta \eta u &= \nabla \cdot (c^2 \nabla u) + s + \nabla \cdot \begin{pmatrix} \phi \\ \psi \end{pmatrix}, \\ \phi_t &= -\zeta \phi + c^2 (\eta - \zeta) \frac{\partial u}{\partial x}, \\ \psi_t &= -\eta \psi + c^2 (\zeta - \eta) \frac{\partial u}{\partial z}. \end{cases}$$
(2.5)

 ϕ , ψ – auxiliary functions ζ , η – damping profiles

$$\zeta(x) = 0$$
 in Ω and $\zeta(x) > 0$ in Ω^{C} ,

$$\eta(z) = 0 \quad \text{in } \Omega \text{ and } \eta(z) > 0 \text{ in } \Omega^{\mathcal{C}}.$$

Discretisation

$$x_i = i \cdot \Delta x \text{ and } z_j = j \cdot \Delta z,$$
 where $\Delta x = \frac{1}{k+1}, i = 0, 1, \dots k+1 \text{ and } \Delta z = \frac{1}{l+1}, j = 0, 1, \dots l+1$
$$w_{ij}^m \simeq \ u(x_i, z_j, t_m)$$

$$\frac{w_{ij}^{m+1} - 2w_{ij}^{m} + w_{ij}^{m-1}}{(\Delta t)^{2}} = c_{ij}^{2} \left(\frac{w_{i+1,j}^{m} - 2w_{ij}^{m} + w_{i-1,j}^{m}}{(\Delta x)^{2}} + \frac{w_{i,j+1}^{m} - 2w_{ij}^{m} + w_{i,j-1}^{m}}{(\Delta z)^{2}} \right)$$

CFL stability condition for equal mesh size $h = \Delta x = \Delta z$:

$$c\left(\frac{\Delta t}{h}\right) \le \frac{1}{\sqrt{2}}.$$

Numerical experiments

Snapshots of the numerical solutions at different times in $\Omega = [-0.5, 0.5]^2$ enclosed by a PML of width L = 0.1

Numerical experiments

Illustration of the two-layers model. The regular computation domain Ω is surrounded by absorbing layers in which the plane waves decay rapidly as they approach the boundary.

Numerical experiments

Numerical solution of the two-layers model in $\Omega = (0, 3) \times (0, 1)$ with wave velocities $c_{_1} = 1$ in the upper layer, $c_2 = 3$ in the lower layer and the depth of the upper layer $d_1 = 0.4$

Different misfit functionals

Least-squares (L^2) norm

For observed data g and simulated data f recorded in the time interval (0, T) at receiver position x_i , the conventional full waveform inversion defines L^2 norm misfit functional as

$$L^{2}(f(m),g) = \int_{0}^{T} |f(x_{r},t,m) - g(x_{r},t)|^{2} dt,$$

where *m* is the model parameter.

For numerical approximation of the L^2 norm, we subdivide the interval (0, T) in N equal subintervals $[t_i, t_{i+1}]$ of the length h. In each subinterval we use the Simpson's formula

$$S[\tilde{f}] = \frac{h}{6} \left(\tilde{f}(t_i) + 4\tilde{f} \frac{t_i + t_{i+1}}{2} + \tilde{f}(t_{i+1}) \right) \simeq \int_{t_i}^{t_{i+1}} \tilde{f}(t) dt,$$

where $\tilde{f}(t) = (f(x_r, t, m) - g(x_r, t))^2$.

Different misfit functionals

Quadratic Wasserstein metric W_{a}

Wasserstein metric computes the lowest cost of rearranging one distribution into another given a cost function.

For two probability density functions f,g the quadratic Wasserstein metric is given by

$$W_2^2(f,g) = \inf_{T \in \mathcal{M}} \int_X |x - T(x)|^2 f(x) dx,$$

where M is the set of all maps that rearrange f into g.

$$F(x) = \int_{-\infty}^{x} f(t)dt, \quad G(y) = \int_{-\infty}^{y} g(t)dt$$

Theorem 3.4 Let $0 < f, g < \infty$ be two probability density functions, each supported on a connected subset of \mathbb{R} . Then the optimal map from f to g is $T = G^{-1} \circ F$.

$$W_2^2(f,g) = \int_0^T |t - G^{-1}(F(t))|^2 f(t) dt.$$

Different misfit functionals Quadratic Wasserstein metric W_{a}

Convexity of W_{2} metric with respect to shift:

Theorem 3.7 \bigcirc Let $T:X\subset\mathbb{R}^n\to Y\subset\mathbb{R}^n$ be an optimal transference plan rearranging finto g, where f and g are two density functions. Then the optimal transference plan from a shifted density function $f_s(x) = f(x - s\eta), \eta \in \mathbb{R}^n$ into g is $T_s = T(x - s\eta)$. Moreover, $W_2^2(f_s,g)$ is convex with respect to the shift size s.

Data normalisation:

$$f^{+} = \max\{f, 0\}, \qquad f^{-} = \max\{-f, 0\}, \qquad \langle f \rangle = \int_{X} f(x) dx$$

$$W_{2}^{2}(f, g) \approx W_{2}^{2} \left(\frac{f^{+}}{\langle f^{+} \rangle}, \frac{g^{+}}{\langle g^{+} \rangle}\right) + W_{2}^{2} \left(\frac{f^{-}}{\langle f^{-} \rangle}, \frac{g^{-}}{\langle g^{-} \rangle}\right)$$

-
$$W_2^2(f,g) \approx W_2^2\left(\frac{f+c}{\langle f+c\rangle}, \frac{g+c}{\langle g+c\rangle}\right)$$

Different misfit functionals

Numerical experiments

Different misfit functionals

Numerical experiments

Minimisation methods

The Method of Steepest Descent

Algorithm 1: Method of Steepest Descent

```
Input: x_0 \equiv 0
Output: x_k \in \mathbb{R}^n
```

- 1 Initialize $k \leftarrow 0$
- 2 while $\nabla f(p) \neq 0$ do
- 1. Determine a direction of steepest descent $d_k \in \mathbb{R}^n$, so that $\nabla f(x_k)^{\top} d_k < 0$ 3
- 2. Solve the problem $\alpha_k \approx \operatorname{argmin} f(x_k + \alpha d_k)$ 4 $\alpha \in \mathbb{R}$
- actualise $x_{k+1} \leftarrow x_k + \alpha_k d_k$ 5
- set $k \leftarrow k+1$ 6
- 7 return x_k

Armijo-Goldstein rule:

$$f(p + \alpha \delta p) \le f(p) + \alpha \sigma \nabla f(p)^{\top} \delta p$$

Minimisation methods

Newton's Method

Algorithm 3: Newton algorithm

Input: function $f: \mathbb{R}^n \to \mathbb{R}$ and start approximation $\mathbf{x}_0 \in \mathbb{R}^n$

Output: sequence of iterations $\{x_k\}_{k\in\mathbb{N}}$

1 Initialisation: set k := 0

2 Calculate the Newton-direction by solving the linear equation system

$$\nabla^2 f(\mathbf{x}_k) \mathbf{d}_k = -\nabla f(\mathbf{x}_k)$$

- 3 Set $x_{k+1} := x_k + d_k$
- 4 Increase k := k + 1 and go to 2.

FWI with L^2 and W_2 misfit functionals

$$d_{1} = 0.5$$

$$d_{1} = 1.0$$

$$d_{1} = 1.5$$

FWI with L^2 and W_2 misfit functionals

Misfit function in L^2 for varying layer thickness d_1

Computational results EWI with L² and W misfit fund

FWI with L^2 and W_2 misfit functionals

Using the Method of Steepest Descent

Using the Newton's Method

FWI with L^2 and W_{g} misfit functionals

Lower value region of misfit function in W_2 for varying layer thickness d_1

FWI with L^2 and W_g misfit functionals

Using the Method of Steepest Descent

Extension to many observation points

One observation point

Six observation points

Extension to many observation points

One observation point

Six observation points

Extension to three-layers model

Misfit function in L^2 norm

Extension to three-layers model

Misfit function in W_2 norm

Conclusion

Wasserstein metric is a good candidate to replace the commonly used L_2 norm in the full waveform inversion

Acknowledgements

- Prof. Dr. Markus Grote
- Jet Hoe Tang

Thank you for your attention.