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What is local time-stepping?

Local times-stepping, i.e advancing elements by their maximum
locally defined time step, is used when the elements in the mesh
differ greatly in size. This helps to reduce the computing time. But
to ensure the stability of the method, one must then select the
time step depending on the smallest local step.
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What is local time-stepping?

Figure: geometric features
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Model problem

The (Damped) Wave Equation

We now consider the time-dependent wave equation,

utt + σut −∇ · (c2∇u) = f in Ω× (0,T )

u(·, t) = 0 on ∂Ω× (0,T )

u(·, 0) = u0, ut(·, 0) = v0 in Ω.

(1)

a standard model problem for wave phenomena.

Ω bounded domain in R, c(x) > 0, σ(x) ≥ 0

f ∈ L2
(
0,T ; L2(Ω)

)
a (known) source term

u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω) prescribed initial conditions
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Model problem

Weak formultaion

We now multiply our problem (1) with a test function v ∈ C∞0 (Ω):
Find u : [0,T ]→ H1

0 (Ω) such that

(utt , v) + (σut , v) + (c∇u, c∇v) = (f , v) ∀v ∈ H1
0 (Ω), t ∈ (0.T ),

u|t=0
= u0 in Ω,

ut |t=0 = v0 in Ω
(2)
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Semi-Discrete Galerkin FE Formulation

Semi-Discrete Galerkin FE Formulation

The discretization in space leads to a system of ODE’s

M
d2U

dt2
(t) + Mσ

dU

dt
(t) + KU(t) = R(t), t ∈ (0,T ),

MU(0) = uh
0 , M

dU

dt
(0) = vh

0 ,

(3)

where uh
0 , vh

0 are suitable approximations to the initial conditions.
The stiffness matrix K and the mass matrix M are sparse.
Moreover, the mass matrix M is SPD and (block-)diagonal.
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Semi-Discrete Galerkin FE Formulation

Advantages of RK method

One-step method, no starting procedure

Time adaptivity straightforward

Larger stability regions (but more work per step)
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Derivation

To apply a RK method to (2), we first need to rewrite it as a
first-order system.

Multiply (3) with M
1
2 and M−

1
2 to get:

d2z

dt2
(t) + D

dz

dt
(t) + Az(t) = R̃(t) (4)

where z(t) = M
1
2U(t), D = M−

1
2MσM

1
2 , A = M−

1
2KM−

1
2 ,

R̃(t) = M−
1
2R(t) and
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Derivation

The matrix A is sparse, symmetric, and positive semidefinite. We
now rewrite (4) as a first-order system

dy

dt
(t) = By(t) + F(t), t ∈ (0,T ),

y(0) = y0,
(5)

where we have introduced

y(t) =

(
z(t),

dz

dt
(t)

)T

, B =

(
0 I
−A −D

)
, F(t) =

(
0

R̃(t)

)
.
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Derivation

RK-methods and numerical integration

y′(t) = By(t) + F(t)

k1 = Byn + F(tn),

k2 = B

(
yn + ∆t

k1

2

)
+ F

(
tn +

∆t

2

)
,

k3 = B

(
yn + ∆t

k2

2

)
+ F

(
tn +

∆t

2

)
,

k4 = B (yn + ∆t k3) + F (tn + ∆t) ,

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) . Figure: Coefficients of the classical

RK4 (order 4)
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Derivation

Derivation

Let us now split y and F in two parts

y = (I− P)y + Py, P2 = P

F = (I− P)F + PF, P2 = P

Then, we have

d

dt
y = By + F = B(I− P)y + BPy + (I− P)F + PF

or

y(tn + ξ∆t) = y(tn) +

∫ tn+ξ∆t

tn

By[c](t) + F[c](t) dt

+

∫ tn+ξ∆t

tn

By[f ](t) + F[f ](t) dt, 0 ≤ ξ ≤ 1
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Derivation

Coarse part

∫ tn+ξ∆t

tn

By[c](t) + F[c](t) dt

∫ tn+ξ∆t

tn

By[c](t) ' ξ∆tB

(
4∑

i=1

biy
[c](t)(tn + ciξ∆t)

)

≈ ξ∆tB(I− P)

 4∑
i=1

bi

3∑
j=0

c j
i (ξ∆t)j

j!
y(j)(t)(tn)


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Derivation

Repeated use of (5) to evaluate the derivatives yj of y above then
leads to∫ tn+ξ∆t

tn

B(I− P)y(t)

' ξ∆tB(I− P)

 4∑
i=1

bi

3∑
j=0

c j
i (ξ∆t)j

j!

(
Bjyn +

j∑
l=1

Bj−lF(l−1)(tn)

) .
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Derivation

To avoid the derivatives of F(t), we also interpolate F(t) by a
quadratic polynomial trough the points (tn,Fn), (tn+ 1

2
,Fn+ 1

2
), and

(tn+1,Fn+1). Since the nodes ci ,i.e. c1 = 0, c2 = c3 = 1
2 and

c4 = 1 for RK4, the degree of q may be strictly less then 4− 1 = 3.

q(tn + τ) = Fn +
τ

∆t

(
−3Fn + 4Fn+ 1

2
− Fn+1

)
+

τ2

2∆t2

(
4Fn − 8Fn+ 1

2
+ 4Fn+1

) (6)
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Derivation

Now, we replace the derivatives of F above by the corresponding
derivatives of q to obtain

y(tn + ξ∆t)

' yn + B(I− P)

 4∑
i=1

bi

3∑
j=0

c j
i (ξ∆t)j

j!

(
Bjyn +

j∑
l=1

Bj−lq(l−1)(tn)

)
+ (I− P)(q̂(tn + ξ∆t)− q̂(tn)) +

∫ tn+ξ∆t

tn

(BPy(t) + PF(t)) dt,

where q̂′(tn) = q(t). Because, F is known, so are q and q̂, and
thus all terms needed involving F[c](t), for advancing the solution
are explicitly known.
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Derivation

Fine part

∫ tn+ξ∆t

tn

(BPy(t) + PF(t)) dt '
∫ ξ∆t

0

(BPŷ(τ) + PF(tn + τ)) dt

where ŷ(τ) solves the following differential equation for 0 < τ ≤ ∆t:

dỹ

dτ
(τ) = B(I− P) [yn + τ(Byn + Fn)

+
τ 2

2

(
B2yn + BFn +

−3Fn + 4F
n+ 1

2
− Fn+1

∆t

)

+
τ 3

6

(
B2yn + BFn + B

−3Fn + 4F
n+ 1

2
− Fn+1

∆t

+
4Fn − 8F

n+ 1
2

+ 4Fn+1

∆t2

)]

+ (I− P)

[
Fn + τ

−3Fn + 4F
n+ 1

2
− Fn+1

∆t
+
τ 2

2

4Fn − 8F
n+ 1

2
+ 4Fn+1

∆t2

]
+ BPỹ(τ) + PF(tn + τ),

ỹ(0) = yn.

(7)
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Derivation

Hence, to adavance y from tn to tn + ∆t, we shall solve (7) by
using the RK4 scheme with a smaller time-step ∆τ = ∆t/p. In
summary, given yn, the LTS algorithm based on the classical
explicit RK4 method for the solution of (5) computes
yn+1 ' y(tn + ∆t) as follows.
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Derivation

Algorithm: LTS-RK4(p)
1 Set ỹ0 := yn.
2 Compute

wn,0 := B(I− P)yn + (I− P)Fn,

wn,1 := B(I− P)(Byn + Fn) + (I− P)
−3Fn + 4Fn+ 1

2
− Fn+1

∆t
,

wn,2 := B(I− P)

(
B2yn + BFn +

−3Fn + 4Fn+ 1
2
− Fn+1

∆t

)

+ (I− P)
4Fn − 8Fn+ 1

2
+ 4Fn+1

∆t2
,

wn,3 := B(I− P)

(
B3yn + B2Fn + B

−3Fn + 4Fn+ 1
2
− Fn+1

∆t

+
4Fn − 8Fn+ 1

2
+ 4Fn+1

∆t2

)
.
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Derivation

3 For m = 0,...p-1, compute

k
1,m+1

p
:= wn,0 + m∆τwn,1 +

m2

2
∆τ 2wn,2 +

m3

6
∆τ 3wn,3

+ BPỹ m
p

+ PFn,m,

k
2,m+1

p
:= wn,0 +

(
m +

1

2

)
∆τwn,1 +

1

2

(
m +

1

2

)2

∆τ 2wn,2

+
1

6

(
m +

1

2

)3

∆τ 3wn,3 + BP

(
ỹ m

p
+

∆τ

2
k

1,m+1
p

)
+ PF

n,m+ 1
2
,

k
3,m+1

p
:= wn,0 +

(
m +

1

2

)
∆τwn,1 +

1

2

(
m +

1

2

)2

∆τ 2wn,2

+
1

6

(
m +

1

2

)3

∆τ 3wn,3 + BP

(
ỹ m

p
+

∆τ

2
k

2,m+1
p

)
+ PF

n,m+ 1
2
,

k
4,m+1

p
:= wn,0 + (m + 1) ∆τwn,1 +

1

2
(m + 1)2 ∆τ 2wn,2

+
1

6
(m + 1)3 ∆τ 3wn,3 + BP

(
ỹ m

p
+ ∆τk

3,m+1
p

)
+ PFn,m+1,

ỹ m+1
p

:= ỹ m
p

+
1

6
∆τ

(
k

1,m+1
p

+ 2k
2,m+1

p
+ 2k

3,m+1
p

+ k
4,m+1

p

)
4 Set yn+1 := ỹ1.
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Derivation

1D examples

We consider (1) with

Source data

f (x , t) = cos(πx)
((
π2 − 1

)
sin(t) + σ cos(t)

)
Exact solution: ( c ≡ 1)

u(x , t) = sin(t) cos(πx).

Computational domain:
Ω = [0, 6], Ωcoarse = [0, 2] ∪ [4, 6], Ωfine = [2, 4], p > 1

Damping coefficient: σ ≡ 0.1

Homogeneous Neumann boundary condition
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Derivation

local refinement p = 2,∆t = ∆tRK4

Figure: Numerical and exact solution for LTS-RK4 combined with P3 FE
with hcoarse = 0.025 at time T = 10.
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Derivation

Figure: Errors of the LTS-RK4 schemes at time T = 10 as functions of
H = hcoarse . In the left figure the L2-norm and in the right figure the
H1-norm.
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Derivation

We now consider (1) with Neumann boundary, with c = 1 and
σ = 0 on the interval Ω = [0, 1] with end time T = 0.5 and the
initial conditions u0 = 0, v0 = 0. This yields the following two
exact solutions

1 u(x , t) = g(x) · h
(

t−τ
t0

)
, named quasistatic

2 u(x , t) = h
(

t−τ
t1

)
, named spatially constant

where

g(x) =

{
(x − 1

2 )2 x2, for x < 1
2 ,

(x − 1
2 )2 (x − 1)2, for x > 1

2 ,

h(t) =


0, for t ≤ 0,

1

1+ e
1
t + 1

t−1
, for t ∈ (0, 1),

1, for t ≥ 1,

(8)

with τ = 0.1, t0 = 0.25 and t1 = 0.8.
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Derivation

Example 1:

Figure: Numerical and exact solution of the quasistatic example for LTS-
RK4 combined with P3 FE with hcoarse = 0.04, hc

hf
= 2 at time T = 0.5

and dt = 0.3 · hf .
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Derivation

Figure: Errors of the LTS-RK4 schemes at time T = 0.05 as functions of
H = hcoarse for the quasistatic example. In the left figure the L2-norm
and in the right figure the H1-norm.

Carina Santos University of Basel

Runge-Kutta based local time-stepping methods for forced wave equations



Local time-stepping Runge-Kutta 4 based local time-stepping (LTS-RK4) Numerical results Concluding remarks

Derivation

Example 2:

Figure: Numerical and exact solution of the spatially constant example
for LTS- RK4 combined with P3 FE with hcoarse = 0.2, hc

hf
= 2 at time

T = 0.5 and dt = 0.3 · hf .
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Derivation

Figure: Errors of the LTS-RK4 schemes at time T = 0.05 as functions of
H = hcoarse for the spatially constant example. In the left figure the
L2-norm and in the right figure the H1-norm.
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Concluding remarks

Wave equation with (or without) damping

Mass-lumped ⇒ block diagonal mass matrix ⇒ explicit time
integration

support an arbitrary level and depth of refinement while
maintaining the order of accuracy of the underlying
Runge-Kutta method in the L2 and H1 norms for almost every
example
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THANK YOU FOR YOUR ATTENTION!
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