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Some Diophantine Equations

Goal: present a method of solving Diophantine equations of certain type.

Theorem (Wiles 1995, " Fermat's Last Theorem™)
Suppose that p/geq5 is a prime number. Then the equation

xP+yP+2P =0

has no solutions in Q with xyz # 0.

More generally:

Theorem (Wiles (r = 0); Ribet (r > 2); Darmon, Merel (r = 1))
Suppose p > 5 prime. Then the equation

xP4+2"yP+ 2P =0

has no solutions with xyz = 0 and x, y, z pairwise coprime except r = 1 and
(x,y,z) = £(-1,1,-1).
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Fermat's Last theorem

Suppose that
P +bP+cP=0 (1)

has a solution for a, b, c € Q with abc # 0. We can assume that p > 5,
a,b,c €Z, gcd(a, b,c) =1 and that

b=0 (mod2) and a=-1 (mod4).
This means we can define the following elliptic curve over Q:
E:y? =x(x—aP)(x + b°) 2)

By studying properties of E, one can see that E behaves strangely. Idea: Show
that E cannot exist! How?

@ Show that E is not modular

@ Prove that all elliptic curves are modular
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Elliptic curves - Weirstrass equation

Definition
An elliptic curve E over a field K is a smooth, projective, algebraic curve of genus
1, with a specified point O € E(K).

Every elliptic curve E can be written as a projective curve
satisfying a Weirstrass equation:

Y2Z + a1 XYZ 4 a3YZ? = X3 + apX?Z + ay XZ? + a6 Z°.

y?=x3-X

If char(K) # 2, E can be given by

N

y? =x*+ax? + bx + c = f(x) (with O =[0:1:0]).

y2=x"-x+1
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Elliptic curves - Discriminant

E:y’=x*+ax®> + bx+c=f(x)

E smooth <= f has no multiple roots in K <= Disc(f) # 0
Discriminant of E is

A(E) = 16 Disc(f) = 16(a*b? — 4a°c — 4b> — 27¢? + 18ac).
If f(x) = (x — e1)(x — &)(x — e3), then A(E) = 16(e; — €2)%(e1 — €3)?(e2 — €3)°.

Example

Let E: y? = x(x — A)(x + B), with A, B, C := A+ B # 0. Then E is an elliptic
curve with discriminant

A(E) = 16A2B?(A + B)? = 16(ABC)?
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Elliptic curves - group law

We can define an operation (addition) on an elliptic curve E by a process of
chords and tangents:

With this operation (E,+) is an abelian group. What is known about its
structure?
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Elliptic curves - Group structure

Theorem (Mordell - Weil)
If K is a number field, then E(K) is a finitely generated abelian group. J

E(K) = E(K)™*® x 7"

For K = Q all possibilities for the torsion of E(K) are known, by Mazur's theorem.
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Elliptic curves - Reduction modulo p

Consider an elliptic curve E over Q. We can make a change of coordinates so that
all a; € Z and |A(E)| is minimal.

This is a minimal model for E and A, := A(E) is the minimal discriminant.
We can look at this equation modulo some prime p. We get a curve E over Fp,

E:y2:x3—|—§x2+5x+5.
Could be singular! Depending on the type of curve E we have cases:
@ Good reduction - if E is non-singular (< pt A(E) )

@ Bad reduction - if E is singular (< p | A(E) ), with subcases:

@ Additive reduction - if E has a cusp
©Q Multiplicative reduction - if E has a node

If E has everywhere good or multiplicative reduction, then E is semistable.
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Conductor of an elliptic curve

n= ] »%®,

p prime

0 if E has good reduction at p
where f,(E) =< 1 if E has multiplicative reduction at p
2 if E has additive reduction at p and p # 2, 3.

For p = 2,3 f,(E) more complicated, but f,(E) > 2 if E has additive reduction p.
N stores information about reduction of E at all primes (finer than A ;).

E is semistable if and only if the conductor N of E is squarefree.
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An important example

Example

Let E: y? = x(x — A)(x — B) with A,B € Z, gcd(A,B) =1 and A= -1
(mod 4), B=0 (mod 32). Set C := A+ B.

(ABC)?
Bmin = ey N= [T »
p prime
p|ABC
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Newforms

Definition
A newform of level N is a normalized modular form in S7¢¥(N) that is a
simultaneous eigenvector for all Hecke operators.

Facts about newforms:
@ A newform is given by its g expansion
f=q+) cq"’
n>2

@ There are finitely many newforms of level N (N € N), and there are exact
formulas for number of newforms of level N

o K=Q(cp,c3,...) is a totally real finite extension of Q

@ The Fourier coefficients ¢, are algebraic integers

Theorem

There are no newforms at levels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25,
28, 60.
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The modularity theorem

A newform f is rational if all ¢, € QQ, otherwise it is irrational.
Theorem

There is a bijection:

rational newforms of level N <> isogeny classes of elliptic curves over Q

of conductor N

f=q+» cnqg" — E

n>2

such that ¢, = a,(E) = p+ 1 — #E¢(F},) for all primes p{ N.

Elliptic curve is modular if it is in the image of the map above.

The Modularity Theorem: All elliptic curves over Q are modular.
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Reminder:
@ We now know the Frey curve
E:y? =x(x—a")(x+ bP)

is modular (supposing it exists) = there is a rational newform associated
to E

@ Still have to show that it cannot be modular (" behaves strangely”)
@ Note: level N = conductor of E depends on a, b, c, p

o lIdea: relate E to a newform of level that doesn’t depend on the solution
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Level-lowering

Let £/Q be an elliptic curve, of conductor N and minimal discriminant A,;,, and
let p be a prime. Define
Np =N/ H q.
ql|N
plordy(A)

If f =g+ ,>,cnq" is a newform of level N’, we say that E arises from f mod
p (E ~, f) if there is an ideal 3 | p of Ok such that ¢, = a(E) (mod ) for all
but finitely many primes £.

Theorem (Ribet 1990, " Level-lowering theorem™)

Let E be an elliptic curve defined over Q and p > 5 prime. Suppose that E has no
p-isogenies over Q and that it is modular.
Then there exists a newform of level N, such that E ~ f.
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Fermat's Last Theorem - revisited

Now we have all the ingredients needed for the proof of FLT.
Suppose that a, b,c € Z, p > 5 prime satisfying

a” +bP+cP =0, abc#0.

Without loss of generality gcd(a, b,c) =1,b=0 (mod 2) and,a= —1 (mod 4).
Define an elliptic curve over E : y?> = x(x — aP)(x + bP) = defined over Q

We have seen that for an elliptic curve of this form
(A=aP,B=b°,C=A+B=—cP)

~ (abe)* _ _
Amln— 256 N—H/—H/

L|ABC L|abc

We can apply Ribet's theorem because:
@ E is modular by the modularity theorem

@ E has no p-isogenies (due to Mazur, because p > 5 and #E(Q)[2] = 4)
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Fermat's Last Theorem - continued

Calculating N, from Ribet’s theorem, we get

N=T]¢/ ] a=2

£|abc ql|[N
plordg(Amin)

By Ribet, there exists a newform f of level 2 such that E ~ f.
But, there are no newforms at level 2.
Contradiciton!
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Further applications

Theorem (Wiles (r = 0); Ribet (r > 2); Darmon, Merel (r = 1))
Suppose p > 5 prime. Then the equation

xP+2"yP 4+ 2P =0

has no solutions with xyz = 0 and x, y, z pairwise coprime except r = 1 and
(Xaya Z) = :l:(_la 17 _1)
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General recipe for modular method

Study a Diophantine equation, suppose it has a solution and associate an elliptic
(Frey) curve E to this solution so that it has properties:

The coefficients of E depend on the solution of the Diophantine equation

A in is of the form C - DP, so that C does not depend on the solutions but
only on the equation itself

E has multiplicative reduction at primes dividing D

Primes dividing D can be removed when we write down N, — N, depends
only on the equation

Only finitely many possibilities for N,
For each N,, only finitely many newforms of level N,

Applying Ribet's, Mazur's and modularity theorem we get a finite list of
possible f-s such that E ~, f.
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