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Introduction

Recall that the Fourier transform of f ∈ L1(Rd) is defined by

f̂ (ξ) =

∫
Rd

f (x)e−2πix ·ξdx , ξ ∈ Rd .

Often, we can completely recover f from f̂ by Fourier inversion:

f (x) =

∫
Rd

f̂ (ξ)e2πix ·ξdξ.

This formula requires knowing f̂ on (almost) all of Rd . What can
we say if have less information about f̂ and a little more about f ?
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A general framework

Let S be a space of continuous functions on Rd (or any LCAG)
and N, N̂ ⊂ Rd subsets. Consider the linear map

R : S → C (N)× C (N̂), R(f ) := (f |N , f̂ |N̂).

• Uniqueness problem: When is R injective?

• Reconstruction problem: Can we recover f from R(f )? Can
we find an, ãn so that

f (x) =

∫
n∈N

an(x)f (n) +

∫
n∈N̂

ãn(x)f̂ (n),

for all f ∈ S and all x ∈ Rd?

• Interpolation problem: What is the image of R? Given
(g , g̃) ∈ C (N)× C (N̂), does

x 7→
∫
n∈N

an(x)g(n) +

∫
n∈N̂

ãn(x)g̃(n),

define an element of S and map to (g , g̃) via R?
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ãn(x)g̃(n),

define an element of S and map to (g , g̃) via R?



Example 0

The classical Whittaker–Shannon interpolation formula.

Theorem
For all continuous f ∈ L2(R) with supp (f̂ ) ⊂ [−1/2, 1/2], one has

f (x) =
∑
n∈Z

f (n)
sinπ(x − n)

π(x − n)
,

with uniformly point-wise convergence and convergence in L2.

Thus, in an appropriate Paley–Wiener space, it is enough to have
information only about f |Z!



Example 1

Theorem (Radchenko, Viazovksa)

There exist even Schwartz functions an ∈ S(R) such that

f (x) =
∞∑
n=0

f (
√
n)an(x) +

∞∑
n=0

f̂ (
√
n)ân(x) (1)

for all even f ∈ S(R).

• Convergence in (1) is absolute and uniform. Point-wise
absolute convergence also holds for many even f /∈ S(R).

• R : f 7→ ((f (
√
n))n∈N0 , (f̂ (

√
n))n∈N0) defines an isomorphism

(of Fréchet spaces) between Srad(R) and a subspace of
S(N0)× S(N0) of codimension 1.

• Similar result holds for odd Schwartz functions.

• Formula (1) makes sense if f ∈ Srad(Rd).



Example 1

Theorem (Radchenko, Viazovksa)

There exist even Schwartz functions an ∈ S(R) such that

f (x) =
∞∑
n=0

f (
√
n)an(x) +

∞∑
n=0

f̂ (
√
n)ân(x) (1)

for all even f ∈ S(R).

• Convergence in (1) is absolute and uniform. Point-wise
absolute convergence also holds for many even f /∈ S(R).

• R : f 7→ ((f (
√
n))n∈N0 , (f̂ (

√
n))n∈N0) defines an isomorphism
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Example 2

Theorem (Cohn, Kumar, Miller, Radchenko, Viazovska)

For d ∈ {8, 24}, there are an, bn ∈ Srad(Rd) so that

f =
∞∑

n=n0

f (
√

2n)an + f ′(
√

2n)bn +
∞∑

n=n0

f̂ (
√

2n)ân + f̂ ′(
√

2n)b̂n,

for all f ∈ Srad(Rd). Here, n0 = 1 if d = 8 and n0 = 2 if d = 24.

• The map “R” gives Srad(Rd) ∼= S(N)4.

• Used to prove universal optimality of the E8- and the Leech
lattice as energy minimizing point configurations.
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Example 3

Theorem (Bondarenko, Radchenko, Seip)

There exist even entire functions Un : C→ C and Vρ,j : C→ C,
indexed by pairs (ρ, j), consisting of:

– a non-trivial zero ρ of the Riemann zeta function,

– an integer j , 0 ≤ j < m(ρ) = the multiplicity of ρ,

and positive real numbers Tk > 0 such that:

for all ε > 0 and all
even holomorphic f : {| Im(z)| < 1/2 + ε} → C having some decay
and all z ∈ C with | Im(z)| < 1/2 we have

f (z) =
∞∑
n=1

Un(z)f̂

(
log(n)

4π

)
+ lim

k→∞

∑
0≤Im(ρ)≤Tk

∑
j≤0<m(ρ)

Vρ,j(z)f (j)

(
ρ− 1/2

i

)
,



Example 3

Theorem (Bondarenko, Radchenko, Seip)

There exist even entire functions Un : C→ C and Vρ,j : C→ C,
indexed by pairs (ρ, j), consisting of:

– a non-trivial zero ρ of the Riemann zeta function,

– an integer j , 0 ≤ j < m(ρ) = the multiplicity of ρ,

and positive real numbers Tk > 0 such that: for all ε > 0 and all
even holomorphic f : {| Im(z)| < 1/2 + ε} → C having some decay
and all z ∈ C with | Im(z)| < 1/2 we have

f (z) =
∞∑
n=1

Un(z)f̂

(
log(n)

4π

)
+ lim

k→∞

∑
0≤Im(ρ)≤Tk

∑
j≤0<m(ρ)

Vρ,j(z)f (j)

(
ρ− 1/2

i

)
,



Example 4

Theorem (S)

Let d ≥ 1 and n0 + n̂0 = 1 + bd/4c. There are an, ãn ∈ Srad(Rd)
so that

f =
∞∑

n=n0

f (
√
n)an +

∞∑
n=n̂0

f̂ (
√
n)ãn,

for all f ∈ Srad(Rd). The map

R(f ) =
(

(f (
√
n))n∈N0 , (f̂ (

√
n))n∈N0

)
defines an isomorphism of Fréchet spaces between Srad(Rd) and a
closed subspace of S(N0)2 defined as the pre-annihilator of the
image of an injection Md/2(Γ(2)) ↪→ (S(N0)2)∗.



Interpolation bases

In the previous theorem, the interpolation functions an, ãn satisfy,
for all n,m ≥ n0 and all i , j ≥ n̂0,

an(
√
m) = δnm âi (

√
j) = 0

ãn(
√
m) = 0 ̂̃ai (√j) = δij

All of the previous examples have similar properties, which makes
these formulas non-redundant, in the sense that the set of
interpolation nodes is minimal.



Example 4 + ε

Since we have some control over the growth/decay of the
interpolation basis an, ãn, we can apply functional-analytic
methods by Ramos–Sousa [4] to obtain perturbed interpolation
formulas. For example, for all sequences of sufficiently small real
numbers εn, ε̂n, there are cn(r), c̃n(r), so that for all f ∈ Srad(R4),

f (r) =
∞∑
n=1

f (
√
n + εn)cn(r) +

∞∑
n=1

f̂ (
√
n + ε̂n)c̃n(r).



Example 5

What can we say if the functions are not radial? Restrictions
f |√nSd−1 , f̂ |√nSd−1 are not constant.

Theorem (S)

Fix d ≥ 2. There exist An, Ãn ∈ C∞(Rd × (Rd \ {0})) and
tempered distributions Tx , T̃x such that

f (x) = Tx(f ) +
∞∑
n=1

∫
Sd−1

An(x , ζ)f (
√
nζ)dζ

+ T̃x(f̂ ) +
∞∑
n=1

∫
Sd−1

Ãn(x , ζ)f̂ (
√
nζ)dζ

for all f ∈ S(Rd) and all x ∈ Rd . Can take Tx = T̃x = 0 if d ≥ 4.
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Using harmonic analysis on spheres

If for all p ∈ {d , d + 2, d + 4, . . . }, there exist ap,n(r), ãp,n(r) such
that

g(v) =
∞∑
n=0

g(
√
n)ap,n(|v |) +

∞∑
n=0

ĝ(
√
n)ãp,n(|v |),

for all g ∈ Srad(Rp) and all v ∈ Rp,

then

f (x) =
∞∑

m=0

( ∞∑
n=0

ad+2m,n(|x |) 1√
n
m

∫
Sd−1

f (
√
nζ)Zd

m(x , ζ)dζ

+
∞∑
n=0

ãd+2m,n(|x |) im√
n
m

∫
Sd−1

f̂ (
√
nζ)Zd

m(x , ζ)dζ
)
,

for all f ∈ S(Rd) and all x ∈ Rd . To get the An, Ãn,Tx , T̃x ,
rearrange these sums.
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Basic strategy to solve the radial reconstruction problem

TFAE for all fixed dimensions d ≥ 1 and fixed radii r ≥ 0.

(1) There exist numbers an(r), ãn(r) ∈ C that grow polynomially
in n, such that for all for all f ∈ Srad(Rd),

f (r) =
∞∑
n=0

an(r)f (
√
n) +

∞∑
n=0

ãn(r)f̂ (
√
n).

(2) There exist holomorphic functions F , F̃ : H→ C of moderate
growth satisfying

F (τ + 2) = F (τ), F̃ (τ + 2) = F̃ (τ),

F (τ) + (τ/i)−d/2F̃ (−1/τ) = eπiτ r
2

The connection between ad ,n(r) and F (τ, r) is

F (τ, r) =
∞∑
n=0

an(r)eπinτ , an(r) =
1

2

∫ iy+1

iy−1
F (τ, r)e−πinτdτ
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Functions with modularity

A piece of convenient notation: For k ∈ 2Z and

M =

(
a b
c d

)
∈ SL2(R) and f : H→ C, define

(f |kM)(τ) := (cτ + d)−k f (Mτ).

Extend notation to the group ring C[PSL2(R)], e.g.
f |k(M − 1) = 0 means f |kM − f = 0.

Definition
Let Γ ≤ SL2(Z) be a subgroup of finite index and let f : H→ C be
a function. Then f is modular of weight k for Γ, if

f |kM = f for all M ∈ Γ

and f is called a modular form of weight k for Γ, if it is in addition
holomorphic on H and holomorphic at all the cusps of Γ.



Poincaré series

How to construct a function which is modular of weight k for a
given subgroup Γ ≤ SL2(Z)?

Given any ϕ : H→ C, we could
average it:

Pk,naive(τ, ϕ) =
∑
M∈Γ

ϕ|kM.

Problems: Convergence, non-vanishing.
Idea: Take ϕ which is already modular with respect to a subgroup
Γ∞ ≤ Γ and average over Γ∞\Γ:

Pk(τ, ϕ) =
∑

M∈Γ∞\Γ

ϕ|kM,

If k > 2, can take ϕ = 1 (Eisenstein series) or ϕ(τ) = e2πimτ for
m ∈ Z≥1 (Poincaré series with parameter m)
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If k > 2, can take ϕ = 1 (Eisenstein series) or ϕ(τ) = e2πimτ for
m ∈ Z≥1 (Poincaré series with parameter m)
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Rewriting the functional equations for F and F̃

Let

S :=

(
0 −1
1 0

)
T :=

(
1 1
0 1

)
be the “standard generators” of PSL2(Z).

To solve the radial
interpolation problem in dimension d , we want, for each radius
r ≥ 0, two holomorphic functions F , F̃ , such that

F |k(T 2 − 1) = 0, F̃ |k(T 2 − 1) = 0, F + F̃ |kS = ϕ,

Here1 , k = d/2 and ϕ(τ) = gτ (r).

1Assume 8|d for simplicity
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Homogeneous and inohomogenous equations
Modular forms and modular integrals

After eliminating F̃ from these equations, we have abstracted our
problem to the following: Given ϕ : H→ C, we want F : H→ C
satisfying

F |k(T 2 − 1) = 0, F |k(ST 2S − 1) = ϕ|k(ST 2S − 1).

If ϕ were zero (homogenous equations), then we need a modular
form F with respect to the subgroup Γ2 ≤ PSL2(Z) generated by
the elements

T 2 =

(
1 2
0 1

)
, ST 2S =

(
1 0
−2 1

)
.

But our equations are inhomogeneous. Its solutions are called
modular integrals. There is related work by M. Eichler and M.
Knopp on this subject, which can be adapted thanks to D.
Radchenko and M. Viazovska.
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Constructing the modular integral F

Can use a construction similar to Eichlers generalized Poincaré
series, as done in [5]; the method requires dimension d > 4.
Alternatively, we can use

F (τ) =

∫
γτ

K (τ, z)ϕ(z)dz ,

for a suitable singular, separately modular integration kernel
K : H×H→ P1(C).

For example

K (τ, z) =
λ′(z)

λ(z)− λ(τ)

Θ(τ)d

Θ(z)d
λ(τ)n0(1− λ(τ))n̂0

λ(z)n0(1− λ(z))n̂0
,

where n0 + n̂0 = 1 + [d/4] and

Θ(τ) =
∑
n∈Z

eπin
2τ , λ(τ) =

Θ(−1/(τ + 1))4

Θ(τ)4

are Jacobi’s theta function and the modular lambda invariant; and
γτ is a suitable path in H ∪ P1(Q).
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