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Rd
Often, we can completely recover f from f by Fourier inversion:
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This formula requires knowing f on (almost) all of R?. What can
we say if have less information about f and a little more about 7
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A general framework

Let S be a space of continuous functions on RY (or any LCAG)
and N, N C R? subsets. Consider the linear map

R:S— C(N)x C(N),  R(f):=(fln,flg).

e Uniqueness problem: When is R injective?
e Reconstruction problem: Can we recover f from R(f)? Can
we find a,, 4, so that

F(x) = / _ af (o) + | ai(o)

neN

for all f € S and all x € R??
e Interpolation problem: What is the image of R? Given
(g,8) € C(N) x C(N), does

XH/ n)—i—/neﬁén(x)g(n),

define an element of S and map to (g, g) via R?



Example O

The classical Whittaker—-Shannon interpolation formula.

Theorem A
For all continuous f € L2(R) with supp (f) C [~1/2,1/2], one has

S|n7r sinm(x —n)
=2_f(n) v
nez TI'(X— n)

with uniformly point-wise convergence and convergence in L2.

Thus, in an appropriate Paley—Wiener space, it is enough to have
information only about f|z!
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Theorem (Radchenko, Viazovksa)

There exist even Schwartz functions a, € S(R) such that

F(x) =Y _ f(Vman(x) + ) F(v/n)an(x) (1)
n=0

n=0
for all even f € S(R).

e Convergence in (1) is absolute and uniform. Point-wise
absolute convergence also holds for many even f ¢ S(R).

~

o R:f— ((F(v/n))neny, (f(v/N))nen,) defines an isomorphism
(of Fréchet spaces) between S,,4(R) and a subspace of

S(Np) x §(Np) of codimension 1.
e Similar result holds for odd Schwartz functions.
e Formula (1) makes sense if f € S;2q(RY).
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For d € {8,24}, there are a,, b, € S;.q(RY) so that

f_Zf n)an + f'(vV/2n b+Zf 2n)a, + f'(v/2n)bn,

n=ng n=ng
for all f € S;,q(RY). Here, ng =1 ifd =8 and ny = 2 if d = 24.
e The map “R" gives S;aq(RY) = S(N)*.

e Used to prove universal optimality of the Eg- and the Leech
lattice as energy minimizing point configurations.
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Theorem (Bondarenko, Radchenko, Seip)

There exist even entire functions U, : C — C and V,,j : C — C,
indexed by pairs (p, j), consisting of:

— a non-trivial zero p of the Riemann zeta function,
— an integer j,0 < j < m(p) = the multiplicity of p,
and positive real numbers T, > 0 such that:



Example 3

Theorem (Bondarenko, Radchenko, Seip)

There exist even entire functions U, : C — C and V,,j : C — C,
indexed by pairs (p, j), consisting of:

— a non-trivial zero p of the Riemann zeta function,
— an integer j,0 < j < m(p) = the multiplicity of p,
and positive real numbers T, > 0 such that: for all € > 0 and all

even holomorphic f : {|Im(z)| < 1/2+ ¢} — C having some decay
and all z € C with |Im(z)| < 1/2 we have

o0

e ()
Hlm Y S v (),

0<Im(p)< Tk j<0<m(p)




Example 4

Theorem (S)
Let d > 1 and ng + g = 1+ |d/4|. There are an, 3, € Sraq(RY)

so that
f= Z f a,, + Z f )ana

n=ng n=ng

for all f € S;.q(R?). The map
R(F) = ((F(V/A)ness, (F(VA)ncry )
defines an isomorphism of Fréchet spaces between S,ad(]Rd) and a

closed subspace of S(Ng)? defined as the pre-annihilator of the
image of an injection My >(I(2)) < (S(No)?)*.



Interpolation bases

In the previous theorem, the interpolation functions a,, 4, satisfy,
for all n,m > ng and all i,j > fp,

) = 6nm é\l(\/J) =0
)=0 5i(V/4) = 6y
All of the previous examples have similar properties, which makes

these formulas non-redundant, in the sense that the set of
interpolation nodes is minimal.

an(

an(

33



Example 4 + ¢

Since we have some control over the growth/decay of the
interpolation basis a,, 3,, we can apply functional-analytic
methods by Ramos—Sousa [4] to obtain perturbed interpolation
formulas. For example, for all sequences of sufficiently small real
numbers €,,2,, there are c,(r), &(r), so that for all f € S;.q(R*),

if n+€n Cn i?\/n‘i‘gn)cn()
n=1 n=1
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Using harmonic analysis on spheres

If forall pe {d,d+2,d+4,...}, there exist ap 5(r), 3p n(r) such
that

[e.e]

o0
= Z g(v/n n)ap,n( Z n)ap,n(
n=0

n=0
for all g € S;ad(RP) and all v € RP, then

— N N a X d X
—mEO(nEO srzmalIX) / F(V/nC)Z3(x, €)d¢
+ fj Sdr2mn(1X])—=m f(v/n¢)Z2(x,¢)d¢ ),

for all f € S(RY) and all x € R?. To get the A,, A,, Ty, Ty,
rearrange these sums.
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Basic strategy to solve the radial reconstruction problem

TFAE for all fixed dimensions d > 1 and fixed radii r > 0.

(1) There exist numbers a,(r), d,(r) € C that grow polynomially
in n, such that for all for all f € S,.q(RY),

F(r)=_an(f(v/n) + > da(r)f(V/n).
n=0 n=0

(2) There exist holomorphic functions F, F : H — C of moderate
growth satisfying

F(r+2)=F(r), F(r+2)=F(7),
F(r)+ (r/i) PF(-1/r) = e
The connection between ay ,(r) and F(7,r) is
1 iy+1

F(’T, r) = Zan(r)eﬂ'im" an(r) = 2/ F(T, r)e*ﬂ'ianT
n=0

iy—1



Functions with modularity

A piece of convenient notation: For k € 27 and

M = (j 2) € SLy(R) and f : H — C, define

(FlxM)(7) := (c7 4 d) < F(MT).

Extend notation to the group ring C[PSL2(R)], e.g.

flk(M —1) =0 means f|yM — f =0.

Definition

Let I < SLy(Z) be a subgroup of finite index and let f : H — C be
a function. Then f is modular of weight k for ', if

flkM=f forall MeTl

and f is called a modular form of weight k for I, if it is in addition
holomorphic on H and holomorphic at all the cusps of T.
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Poincaré series

How to construct a function which is modular of weight k for a
given subgroup I' < SLy(Z)? Given any ¢ : H — C, we could
average it:

Pk,naive(Tu 90) = Z 90|kM
Merl

Problems: Convergence, non-vanishing.
Idea: Take ¢ which is already modular with respect to a subgroup
Moo < T and average over I \I":

Pk(TﬂD): Z Q0|kM,

MeT o\l

If k > 2, can take ¢ = 1 (Eisenstein series) or (1) = e>™'™" for
m € Z>1 (Poincaré series with parameter m)
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Rewriting the functional equations for F and F

Let
0 -1 11
o= <1 0 ) T= <0 1)

be the “standard generators” of PSLy(Z). To solve the radial
interpolation problem in dimension d, we want, for each radius
r > 0, two holomorphic functions F, F, such that

Fle(T?=1)=0, Fl(T>-1)=0, F+FiS=¢,

Here! , k = d/2 and (1) = g-(r).

! Assume 8|d for simplicity



Homogeneous and inohomogenous equations

Modular forms and modular integrals

After eliminating F from these equations, we have abstracted our
problem to the following: Given ¢ : H — C, we want F : H — C
satisfying

Fl«(T?>=1) =0, Fl(ST?S —1) = ¢[((ST?S —1).

If ¢ were zero (homogenous equations), then we need a modular
form F with respect to the subgroup 'y < PSLy(Z) generated by

the elements
> (1 2 2 (1 0
T = (O 1) ST<S = 5 1)



Homogeneous and inohomogenous equations

Modular forms and modular integrals

After eliminating F from these equations, we have abstracted our
problem to the following: Given ¢ : H — C, we want F : H — C
satisfying

Fl«(T?>=1) =0, Fl(ST?S —1) = ¢[((ST?S —1).

If ¢ were zero (homogenous equations), then we need a modular
form F with respect to the subgroup 'y < PSLy(Z) generated by

the elements
> (1 2 2 (1 0
T = <O 1) ST<S = 5 1)

But our equations are inhomogeneous. Its solutions are called
modular integrals. There is related work by M. Eichler and M.
Knopp on this subject, which can be adapted thanks to D.
Radchenko and M. Viazovska.



Constructing the modular integral F

Can use a construction similar to Eichlers generalized Poincaré
series, as done in [5]; the method requires dimension d > 4.
Alternatively, we can use

F(T):/ K(t,z)p(z)dz,

o

for a suitable singular, separately modular integration kernel
K :H x H— PY(C).



Constructing the modular integral F

Can use a construction similar to Eichlers generalized Poincaré
series, as done in [5]; the method requires dimension d > 4.
Alternatively, we can use

F(T):/ K(t,z)p(z)dz,

o

for a suitable singular, separately modular integration kernel
K : H x H — P}(C). For example

X(z)  O()? Ar) (1= X
AZ) = A7) B(2)7 A2)™ (1= Az)>

where ng + Ag = 1+ [d/4] and

N

N

—
3)
S

K(r,z) =

Z eﬂ'ln T 7_) (_1/(T + 1))4
4

neZ @(T)

are Jacobi’'s theta function and the modular lambda invariant; and

7, is a suitable path in HUP}(Q).
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