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Mod-φ convergence



Mod-φ convergence

Mod-φ convergence1:

• has been successfully applied in number theory, combinatorics, random graphs,

random matrices, etc,

• gives precise large deviation and local limit theorems, deviations at all scales (from

central limit theorem to large deviations), full treatment of “normality zone”,

• comes in many flavors, but relies fundamentally on Fourier analysis tools,

• in this talk we focus on mod-φ approximation schemes2 on the torus T := R/2πZ.

Remark: Let (Yk )k∈N be a sequence of centered iid rvs with variance σ2 and set

Xn :=
∑n

k=1 Yk , then

Xn√
nσ

d→ N (0, 1),
(
µ̂Xn (t) ∼ e−n( 1

2
t2σ2)

)
More generally:

µ̂Xn (t) ∼ eλnφ(t),

where φ(t) is the Lévy-Khintchine exponent of an infinitely divisible (i.d.) law.

1Féray, Méliot, Nikeghbali, Mod-ϕ Convergence: Normality Zones and Precise Deviations, Springer, 2016
2Chaibi, Delbaen, Méliot, and Nikeghbali, Mod-phi convergence: Approximation of discrete measures and

harmonic analysis on the torus, Annales de l’Institut Fourier,2020

2



Mod-φ convergence

Mod-φ convergence1:

• has been successfully applied in number theory, combinatorics, random graphs,

random matrices, etc,

• gives precise large deviation and local limit theorems, deviations at all scales (from

central limit theorem to large deviations), full treatment of “normality zone”,

• comes in many flavors, but relies fundamentally on Fourier analysis tools,

• in this talk we focus on mod-φ approximation schemes2 on the torus T := R/2πZ.

Remark: Let (Yk )k∈N be a sequence of centered iid rvs with variance σ2 and set

Xn :=
∑n

k=1 Yk , then

Xn√
nσ

d→ N (0, 1),
(
µ̂Xn (t) ∼ e−n( 1

2
t2σ2)

)

More generally:

µ̂Xn (t) ∼ eλnφ(t),

where φ(t) is the Lévy-Khintchine exponent of an infinitely divisible (i.d.) law.
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Mod-φ convergence

Let (Xn)n∈N be a sequence of Z-valued rvs with laws µXn and characteristic functions

µ̂Xn (on T) and let φ be the Lévy-Khintchine exponent of a reference i.d. law.

Definition (Mod-φ convergence) We say that (Xn)n∈N converges mod-φ with

parameters (λn)n∈N and limiting function ψ if λn →∞ and

µ̂Xn (ξ)

eλnφ(ξ)
=: ψn(ξ), ξ ∈ T (1)

with

lim
n→∞

ψn(ξ) = ψ(ξ) (e.g. in Cr (T)).

Intuition:
• Study the renormalized Fourier transforms, instead of the renormalized rvs.

• Capture the fluctuations of µ̂Xn “modulo” the reference i.d. law.

• By Wiener’s theorem e−λnφ(ξ) is in the Wiener algebra A(T), therefore

ψn(ξ) ∈ A(T) and it can be thought of as deconvolution residue:

µ̂Xn (ξ) = eλnφ(ξ)ψn(ξ)

• From a signal processing perspective, we have the decomposition:

Xn = (λn iid copies of reference i.d. law) + εn

3
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µ̂Xn (on T) and let φ be the Lévy-Khintchine exponent of a reference i.d. law.

Definition (Mod-φ convergence) We say that (Xn)n∈N converges mod-φ with

parameters (λn)n∈N and limiting function ψ if λn →∞ and

µ̂Xn (ξ)

eλnφ(ξ)
=: ψn(ξ), ξ ∈ T (1)

with

lim
n→∞

ψn(ξ) = ψ(ξ) (e.g. in Cr (T)).

Intuition:
• Study the renormalized Fourier transforms, instead of the renormalized rvs.

• Capture the fluctuations of µ̂Xn “modulo” the reference i.d. law.

• By Wiener’s theorem e−λnφ(ξ) is in the Wiener algebra A(T), therefore

ψn(ξ) ∈ A(T) and it can be thought of as deconvolution residue:

µ̂Xn (ξ) = eλnφ(ξ)ψn(ξ)

• From a signal processing perspective, we have the decomposition:

Xn = (λn iid copies of reference i.d. law) + εn

3



Mod-φ convergence

Let (Xn)n∈N be a sequence of Z-valued rvs with laws µXn and characteristic functions
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Mod-φ convergence

Theorem (Mod-Poisson convergence)
Let Xn =

∑n
i=1 Yi be a sum of n independent Bernoulli random variables, with

Yi ∼ Bernoulli(pi ) and let us assume that
∑∞

i=1 pi =∞ and
∑∞

i=1 p
2
i <∞.

Then (Xn)n∈N converges mod-Poisson with parameters λn =
∑n

i=1 pi .

Proof.

ψn(ξ) = µ̂Xn (ξ)e−λn(e iξ−1)

=
n∏

i=1

(
(1 + pi (e

iξ − 1))e−pi (e
iξ−1)

)
→
∞∏
i=1

(
(1 + pi (e

iξ − 1))e−pi (e
iξ−1)

)

where the converge is uniform on T because
∑∞

i=1 p
2
i <∞.
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Mod-φ approximation schemes

• Goal: use mod-φ convergence to approximate µXn .

• The deconvolution residues ψn contain all the information to reconstruct µ̂Xn :

µ̂Xn (ξ) = eλnφ(ξ)ψn(ξ)

• But ψn(ξ) may be as hard as µXn to compute!

• Approximation idea:

=⇒ replace ψn(ξ) on T by its truncated Laurent series around ξ = 0 up to order

r :

χ
(r)
n (ξ) = 1 +

r∑
k=1

bk,n(e iξ − 1)k +
r∑

k=1

ck,n(e−iξ − 1)k ,

=⇒ approximate µ̂Xn (ξ) by

ν̂
(r)
n (ξ) := eλnφ(ξ)χ

(r)
n (ξ).

• The sequence of signed measures (ν
(r)
n )n∈N is the mod-φ approximation scheme

of order r of (Xn)n∈N.

• The Wiener algebra A(T) is the right setting to study these approximations

because:

‖µ̂‖A(T) =
∑
n∈Z
|cn(µ̂)| =

∑
n∈Z
|µ(n)| = ‖µ‖TV ,

where ‖ · ‖TV is the total variation norm of µ.
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Mod-φ approximation schemes

Main results:

dTV (µXn , ν
(r)
n ) =

∑
k∈Z
|µ({k})− ν({k})| =

|β|
√

2π(σ2λn)
r+1

2

∫
R
|Gr+1(α)|dα+ o

(
1

(λn)
r+1

2

)

dL(µXn , ν
(r)
n ) = sup

k∈Z
|µ({k})− ν({k})| =

|β||Gr+1(zr+2)|
√

2π(σ2λn)
r
2

+1
+ o

(
1

(λn)
r
2

+1

)

dK (µXn , ν
(r)
n ) = sup

k∈Z
|µ((−∞, k])− ν((−∞, k])| =

|β||Gr (zr+1)|
√

2π(σ2λn)
r+1

2

+ o

(
1

(λn)
r+1

2

)

Remarks:

• Asymptotic convergence for λn →∞.

• For fixed n, get better convergence rate as r increases, unlike “classical”

asymptotic series (e.g. saddlepoint method, Hedgeworth expansions, large

deviations expansions, Chen-Stein method, etc.).
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Mod-φ approximation schemes

Theorem (Mod-Poisson approximation schemes)
Let Xn =

∑n
i=1 Yi be a sum of n independent Bernoulli random variables, with

Yi ∼ Bernoulli(pi ) and let us assume that
∑∞

i=1 pi =∞ and
∑∞

i=1 p
2
i <∞.

Then (Xn)n∈N converges mod-Poisson with parameters λn =
∑n

i=1 pi .

The residues ψn(ξ) admit the following Laurent series expansion:

ψn(ξ) = 1 +
r∑

k=1

bk,n(e iξ − 1)k ,

with

bk,n =
1

k!

 ∑
π∈Π(k)

µ(0̂, π)
∏
B∈π

p|B|,n

 ,

where

• Π(k) is the lattice of set partitions of {1, 2, . . . , k},

• µ(0̂, π) = (−1)k−|π|
∏

B∈π(|B| − 1)! is the Möbius function for the incidence

algebra of the lattice Π(k),

• pk,n :=
∑n

i=1 p
k
i , with the convention p1,n := 0.
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Mod-Poisson approximation

The first few coefficients of ψn(ξ) are:

ψn(ξ) = 1−
1

2

(
n∑

i=1

p2
i

)
(e iξ − 1)2 +

1

3

(
n∑

i=1

p3
i

)
(e iξ − 1)3 + o(|ξ|3)

• r = 0⇒ classical Poisson approximation3 (Xn ≈ Poisson
(∑n

i=1 pi
)
).

• r = 2⇒ Stein-Chen’s method4

• Higher order coefficients (r ≥ 3) are unique to the mod-φ approach.

3Prohorov, Asymptotic behavior of the binomial distribution, Uspehi Mat. Nauk., 8(3):135:142, 1953.

Le Cam, An approximation theorem for the Poisson binomial distribution, Pacific J. Math, 10(4):1181-1197, 1960.

Kerstan, Verallgemeinerung eines Satzes von Prochorow und Le Cam, Z. Wahrsch. Werw. Gebiete, 2:173-179,

1964.

4Chen, On the convergence of Poisson binomial to Poisson distributions, Ann. Probab., 2:178-180, 1974.

Chen, Poisson approximation for dependent trials, Ann. Probab., 3:534-545, 1975.
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Mod-φ approximation schemes

• Even with full knowledge of the Laurent series coefficients (bk,n, ck,n)rk=1 of

ψn(ξ), the measures (ν
(r)
n )n∈N may be difficult to compute.

• But expectations under the measures ν
(r)
n admit a natural functional

interpretation.

• For any square-integrable function f we have:∑
k∈Z

f (j) ν
(r)
n ({j}) = E [fr (Yn)] ,

where Yn follows the reference i.d. law with exponent λnφ and fr is given by:

fr (j) = f (j) +
r∑

k=1

bk,n(∆k
+(f ))(j) +

r∑
k=1

ck,n(∆k
−(f ))(j),

where ∆k
+ (resp. ∆k

−) is the k-th order forward (resp. backward) finite difference

operator:

(∆k
±(f ))(j) =

k∑
l=0

(−1)k−l
(k
l

)
f (j ± l).

• Therefore we have the approximation E [f (Xn)] ≈ E [fr (Yn)].

9



Mod-φ approximation schemes

• Even with full knowledge of the Laurent series coefficients (bk,n, ck,n)rk=1 of

ψn(ξ), the measures (ν
(r)
n )n∈N may be difficult to compute.

• But expectations under the measures ν
(r)
n admit a natural functional

interpretation.

• For any square-integrable function f we have:∑
k∈Z

f (j) ν
(r)
n ({j}) = E [fr (Yn)] ,

where Yn follows the reference i.d. law with exponent λnφ and fr is given by:

fr (j) = f (j) +
r∑

k=1

bk,n(∆k
+(f ))(j) +

r∑
k=1

ck,n(∆k
−(f ))(j),

where ∆k
+ (resp. ∆k

−) is the k-th order forward (resp. backward) finite difference

operator:

(∆k
±(f ))(j) =

k∑
l=0

(−1)k−l
(k
l

)
f (j ± l).

• Therefore we have the approximation E [f (Xn)] ≈ E [fr (Yn)].

9



Mod-φ approximation schemes

• Even with full knowledge of the Laurent series coefficients (bk,n, ck,n)rk=1 of

ψn(ξ), the measures (ν
(r)
n )n∈N may be difficult to compute.

• But expectations under the measures ν
(r)
n admit a natural functional

interpretation.

• For any square-integrable function f we have:∑
k∈Z

f (j) ν
(r)
n ({j}) = E [fr (Yn)] ,

where Yn follows the reference i.d. law with exponent λnφ and fr is given by:

fr (j) = f (j) +
r∑

k=1

bk,n(∆k
+(f ))(j) +

r∑
k=1

ck,n(∆k
−(f ))(j),

where ∆k
+ (resp. ∆k

−) is the k-th order forward (resp. backward) finite difference

operator:

(∆k
±(f ))(j) =

k∑
l=0

(−1)k−l
(k
l

)
f (j ± l).

• Therefore we have the approximation E [f (Xn)] ≈ E [fr (Yn)].

9



Mod-φ approximation schemes

• Even with full knowledge of the Laurent series coefficients (bk,n, ck,n)rk=1 of

ψn(ξ), the measures (ν
(r)
n )n∈N may be difficult to compute.

• But expectations under the measures ν
(r)
n admit a natural functional

interpretation.

• For any square-integrable function f we have:∑
k∈Z

f (j) ν
(r)
n ({j}) = E [fr (Yn)] ,

where Yn follows the reference i.d. law with exponent λnφ and fr is given by:

fr (j) = f (j) +
r∑

k=1

bk,n(∆k
+(f ))(j) +

r∑
k=1

ck,n(∆k
−(f ))(j),

where ∆k
+ (resp. ∆k

−) is the k-th order forward (resp. backward) finite difference

operator:

(∆k
±(f ))(j) =

k∑
l=0

(−1)k−l
(k
l

)
f (j ± l).

• Therefore we have the approximation E [f (Xn)] ≈ E [fr (Yn)].

9



Mod-Poisson approximation for
credit risk models



Portfolio credit risk models

We want to study the distribution of the total portfolio losses:

Ln =
n∑

i=1

Li =
n∑

i=1

Ei · 1Di

where

• Ei is the exposure at default (deterministic or iid rvs),

• Di = {obligor i defaults}, with probability P(Di ) = pi .

Mixture/threshold/copula models

Key assumption: obligors default independently conditionally on a mixing variable Ψ.

P(Di |Ψ) = pi (Ψ),

for example in the (infamous) Gaussian copula model one has

pi (Ψ) = Φ

(
di −

√
ρ ·Ψ

√
1− ρ

)
,

where Ψ ∼ N (0, 1), Φ denotes the standard Gaussian c.d.f., ρ ∈ (0, 1) is an

equicorrelation coefficient.
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Portfolio credit risk models

Typical credit risk problems are:

Estimation of risk measures:

• Value at Risk (VaR):

VaR(α) := inf{x ∈ R | P (Ln > x) ≤ 1− α}

i.e. you need VaR(99%) in capital to cover total portfolio losses in 99% of cases.

• Expected Shortfall (ES):

ES(α) := E [Ln | Ln ≥ VaR(α)] =
1

1− α

∫ 1

0
VaR(α)du

=⇒ requires good estimates of P(Ln > x)

Pricing of credit derivatives:

• The price of a CDO tranche can be expressed as a sum of expectations of call

functions:

E [max{Ln − K , 0}] , K ∈ R.

=⇒ requires good estimates for E[f (Ln)].
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Mod-Poisson approximation

Mod-Poisson approximation for credit portfolios:

1. Approximate Ln|Ψ using the mod-Poisson approximation scheme of order r .

2. Obtain estimates P (Ln > t|Ψ) and E [f (Ln)|Ψ].

3. Integrate numerically over Ψ.

If f (x) = 1{x≥t} or f (x) = max{x − t, 0}, with t ∈ R, we have:

fr (j) = f (j) +
r∑

k=1

bk,n(∆k
+(f ))(j)

︸ ︷︷ ︸
=:∆(x)

with ∆(x) 6= 0 only on [t − r , r ] ∩ N.

Therefore if Yn = Poisson (λn), with λn =
∑n

i=1 pi , one has:

P (Ln ≥ t) ≈ P (Yn ≥ t) + E [∆(Yn)]

E [max{Ln − t, 0}] ≈ λnP (Yn ≥ dte − 1)− tP (Yn ≥ dte) + E [∆(Yn)]

where

• P (Yn ≥ t) can be computed efficiently as the (upper) incomplete Gamma

function,

• E [∆(Yn)] is numerically inexpensive, because ∆(x) is finitely supported (on at

most r points).
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Overview of other methods

Commonly used methods in credit risk:

• Panjer recursion,

• Monte Carlo simulation,

• Importance sampling,

• Large deviations theory.

13



Overview of other methods

Panjer recursion (benchmark):

• General recursive technique for compound distributions L =
∑N

i=1 Xi with

compounding distribution of Panjer class, i.e.

P (N = k) =

(
a +

b

k

)
P (N = k − 1) .

• Conditionally on Ψ = ψ:

1. For m = 1, set P(1)(L = 0) = 1 − p1

2. For m = 2, 3, . . . , n, set

P(m)(L = k) = P(m−1)(L = k)(1 − pm) + P(m−1)(L = k − 1)pm, for k = 0, 1, . . . ,m.

• Pros: for Li ∼ Bernoulli(pi ), the result is exact,

• Cons: computationally expensive (O(n2)), infeasible for high values of n.

14



Overview of other methods

Monte Carlo simulation:

• Draw m simulations, {ψ1, . . . , ψm}, of Ψ ∼ N(0, 1).

• For each draw ψi simulate L
(i)
j ∼ Bernoulli(pj (ψi )) and compute L

(i)
n =

∑n
j=1 L

(i)
j .

• Compute estimate P(Ln > x) ≈
1

m

m∑
i=1

1({L(j)
n > x})

• Pros: simple, additional sources of randomness (e.g. random exposures, Ei ) are

easy to implement, good for all copula models.

• Cons: computationally expensive, both in time and memory (probabilities of order

10−m require 10m simulations).
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Overview of other methods

Importance Sampling5

• Draw m simulations, {ψ1, . . . , ψm}, of Ψ ∼ N(µ, 1), where µ is (an

approximation to) the exponential tilting that minimizes Var(E[p̂x |Ψ]).

• For each draw ψi , find optimal exponential tilting sx (ψi ), which solves
∂

∂s
φ(s|ψi ) = x and sample L̃

(i)
n from this tilted distribution.

• Compute estimate

P(Ln > x) ≈
1

m

m∑
i=1

1({L̃(j)
n > x}) exp

(
−sx (ψj )L̃

(j)
n + φ(sx (ψi )|ψi )− µψi +

1

2
µ2

)
• Pros: reasonably accurate for the whole tail with only m ≈ 10000 simulations.

• Cons: available for Gaussian copula only (and even in the Gaussian case

optimization of an approximated objective function only), estimate is affected by

sampling noise.

5Glasserman, Paul, and Jingyi Li. ”Importance sampling for portfolio credit risk.” Management science 51.11

(2005): 1643-1656.
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Overview of other methods

Large deviations approximation6:

• Find the optimal exponential tilting, sx (Ψ) that solves
∂

∂s
φ(s|Ψ) = x , where φ is

the cumulant generating function of n independent Bernoulli rvs with probabilities

pi (Ψ).

• Integrate numerically over Ψ the classical large deviations approximation:

p̂x =

∫
pn(ψ)FΨ(dψ)

=

∫
1√

2πnsx (ψ)φ′′(sx (ψ))
exp (−n (s(x , ψ)x − φ(sx (ψ)|ψ)))FΨ(dψ)

• Pros: approximation is analytical ⇒ computationally fast, no sampling noise

• Cons: numerically unstable (integrability issues with φ′′(sx (ψ))−1/2),

convergence is slow in n, especially early in the tail.

6Dembo, Amir, Jean-Dominique Deuschel, and Darrell Duffie. ”Large portfolio losses.” Finance and Stochastics

8.1 (2004): 3-16.
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Estimation of risk measures: results

• All relative errors computed with respect to exact value (Panjer recursion),

• Large deviations converges too slowly

• Monte Carlo estimator variance diverges

18
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Estimation of risk measures: results

Computational time

• Semi-analytical methods (e.g. mod-Poisson and large deviations) are faster,

• For mod-Poisson the time scales linearly in the approximation order r .
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CDO pricing

Important application in credit risk: pricing of derivatives underwritten on the credit

portfolio.

CDO pricing requires the estimation of two different cashflows:

• Premium leg

V Premium(x) = x
N∑

n=1

e−rtn (tn − tn−1)E
[
(Kj−1 − Ln(tn))+ − (Kj − Ln(tn))+

]
• Default leg

VDefault = E
[∫ T

0
e−rtdL

[Kj−1,Kj ]
t

]
≈

N∑
n=1

e−rtnE
[
L

[Kj−1,Kj ]
tn

− L
[Kj−1,Kj ]
tn−1

]
The fair spread of the CDO can be found by solving for x :

V Premium(x) = VDefault

=⇒ We need to estimate well E[(Ln − K)+], for many values of K in the range of Ln.
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Overview of methods

Stein’s method approximation7:

• First-order Gaussian approximation: conditionally on Ψ approximate

L̃n =
∑n

j=1(Lj − E[Lj ]) by Gaussian rv:

E[h(L̃n)] ≈ E[h(Z)] +

∑n
j=1 E[L3

j ]

2σ4
E[h̃(Z)]

where σ2 = Var(Ln), Z ∼ N(0, σ2) and h̃(x) =
(

x2

3σ2 − 1
)
xh(x).

• First-order Poisson approximation: conditionally on Ψ approximate

Ln =
∑n

j=1 Lj by Poisson rv:

E[h(Ln)] ≈ E[h(Z)] +
σ2 − λ

2
E[h̃(Z)]

where σ2 = Var(Ln), λ = E[Ln], Z ∼ Poi(λ) and h̃(x) = h(x + 1)− h(x).

Both estimates require a numerical integration over Ψ.

• Pros: approximation is analytical ⇒ computationally fast, no sampling noise, not

just for tail estimations

• Cons: h ∈ C2, only first order.
7El Karoui, Nicole, and Ying Jiao. ”Stein’s method and zero bias transformation for CDO tranche pricing.”

Finance and Stochastics 13.2 (2009): 151-180.
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CDO pricing: results

• The mod-Poisson approximation is accurate outside the domain of the Poisson

theorem. 23



CDO pricing: results

Attachment

points

Benchmark

(recursive)

Gaussian

approximation

Poisson

approximation

Mod-Poisson

(order=4)

Mod-Poisson

(order=6)

Mod-Poisson

(order=10)

Default leg 232.5975 bp 228.8759 bp 232.5996 bp 232.5979 bp 232.5974 bp 232.5975 bp

0% - 3% Premium leg 452.2145 bp 451.0626 bp 452.2208 bp 452.2137 bp 452.2145 bp 452.2145 bp

Fair spread 5143.5210 bp 5074.1488 bp 5143.4961 bp 5143.5404 bp 5143.5204 bp 5143.5210 bp

Default leg 200.2722 bp 200.7338 bp 200.2540 bp 200.2716 bp 200.2723 bp 200.2722 bp

3% - 7% Premium leg 1364.6971 bp 1362.7014 bp 1364.7217 bp 1364.6987 bp 1364.6971 bp 1364.6971 bp

Fair spread 1467.5213 bp 1473.0575 bp 1467.3613 bp 1467.5153 bp 1467.5218 bp 1467.5213 bp

Default leg 62.8105 bp 62.7749 bp 62.8088 bp 62.8099 bp 62.8104 bp 62.8105 bp

7% - 10% Premium leg 1248.7606 bp 1248.8878 bp 1248.7468 bp 1248.7608 bp 1248.7606 bp 1248.7606 bp

Fair spread 502.9824 bp 502.6464 bp 502.9747 bp 502.9777 bp 502.9820 bp 502.9825 bp

Default leg 33.6304 bp 33.5575 bp 33.6500 bp 33.6310 bp 33.6304 bp 33.6304 bp

10% - 15% Premium leg 2204.4540 bp 2204.5755 bp 2204.4246 bp 2204.4529 bp 2204.4540 bp 2204.4540 bp

Fair spread 152.5566 bp 152.2176 bp 152.6473 bp 152.5594 bp 152.5565 bp 152.5566 bp

Default leg 7.2444 bp 7.2698 bp 7.2461 bp 7.2447 bp 7.2445 bp 7.2444 bp

15% - 30% Premium leg 6738.6074 bp 6738.5758 bp 6738.6165 bp 6738.6076 bp 6738.6073 bp 6738.6074 bp

Fair spread 10.7506 bp 10.7883 bp 10.7531 bp 10.7511 bp 10.7508 bp 10.7507 bp

Table 1: Default leg, premium leg and fair spread for five tranches computed using different

techniques. Benchmark values are exact and computed using the recursive methodology.
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CDO pricing: results

• Accuracy for the estimation of the fair spread grows exponentially with the order

of the mod-Poisson approximation.

• Poisson approximation via mod-Poisson remains good across all tranches (not

just senior ones).
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Conclusions

Recap of results:

Mod-φ approximation schemes:

• provide accurate estimates for tail probabilities and derivative payoffs of large

portfolios,

• allow higher-order approximations that are asymptotically better, unlike

“classical” asymptotic series,

• yield faster and less noisy estimations than simulation-based methods (such as

state-of-the-art importance sampling).

Thanks for your attention!
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