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Motivation

■ Shape Optimisation has many
applications in the industry.

■ A bone implant should have the
same material properties as a real
bone.

■ We can think of a bone as a
periodic scaffold structure.

■ How shall we choose the shapes of
the holes?
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Homogenisation

■ Define T3 = R3/
[
−1

2 ,
1
2

]3
.

■ Let A : T3 → R3×3, ε > 0 and
Aε(x) = A

(x
ε

)
.

■ For a domain D ⊆ R3, we are
interested in the solution uε of the
partial differential equation{

− div
(
Aε∇uε

)
= f in D,

uε = 0 on ∂D.
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Homogenisation

■ Homogenisation treats the
behaviour of uε in the limit case
ε→ 0.

■ There exists a homogenised
problem{

− div
(
A0∇u0

)
= f in D,

u0 = 0 on ∂D.

with a homogenised solution u0
such that uε ⇀ u0 weakly in
H1(D).
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Homogenisation

The effective material tensor
A0 =

[
ai ,j

]3
i ,j=1

, is given by the entries

ai ,j =

∫
T3

〈
A(e i+∇wi ), e j+∇wj

〉
dV ,

where for i = 1, 2, 3, wi is the solution
of the cell problem

find wi ∈ H1
per (T3) s.t. div

(
A(e i+∇wi )

)
= 0.
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Homogenisation

■ For a scaffold structure, we define A = 1T3\ΩI.

■ Then, the cell problem is equivalent to the exterior Neumann problem{
∆wi = 0 in T3 \ Ω,
∂nwi = −ni on Γ = ∂Ω.

■ The compatibility condition is satisfied, as∫
Γ
−ni dA = −

∫
Γ
⟨e i ,n⟩ dA = −

∫
Ω
div(e i ) dV = 0.

■ The effective material tensor only depends on the size and the shape of Ω.
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Shape Optimisation

For a desired material tensor B, we define the shape functional

J(Ω) =
1

2

∥∥A0(Ω)− B
∥∥2
F
=

1

2

3∑
i ,j=1

(
ai ,j(Ω)− bi ,j

)2
.

Goal: Optimise the shape of Ω such that J(Ω) is minimal.

It is crucial to know the behaviour of J(Ω) when Ω is slightly deformed.
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Shape Optimisation

■ Let f̃ :
[
− 1

2 ,
1
2

]3 → [
− 1

2 ,
1
2

]3
be a sufficiently smooth vector field with compact

support, and f : T3 → T3 be the periodic continuation of f̃ .
■ We define the perturbation of the identity as

Tt,f (x) = x + tf (x).

For t > 0 small enough, Tt,f is a diffeomorphism that preserves each cell.
■ We define the shape derivative of ai ,j in the direction of f as

a′i ,j [f ](Ω) =
[
d

dt
ai ,j

(
Tt,f (Ω)

)]
t=0

= lim
t→0

ai ,j
(
Tt,f (Ω)

)
− ai ,j(Ω)

t
.

■ Consequently,

J ′[f ](Ω) =
3∑

i ,j=1

a′i ,j [f ](Ω)
(
ai ,j(Ω)− bi ,j

)
.
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Shape Optimisation

Remember the solutions of the cell problems wi . By defining φi = xi + wi , it holds:

Theorem (Dambrine and Harbrecht, 2020)

The coefficient ai ,j(Ω) and its shape derivative are given by

ai ,j(Ω) =

∫
T3\Ω

〈
∇φi , ∇φj

〉
dV ,

a′i ,j [f ](Ω) = −
∫
Γ

〈
∇Γφi , ∇Γφj

〉
⟨f ,n⟩ dA,

where ∇Γ is the tangential gradient.
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Boundary Elements

Remember that we have to solve the exterior Neumann problems{
∆wi = 0 in T3 \ Ω,
∂nwi = −ni on Γ = ∂Ω.

■ In every iteration step, the shape of the domain Ω changes.

■ The values of wi will be needed on the boundary Γ = ∂Ω only.

■ The resulting shape might not be convex.

Solution: Use Boundary Elements.
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Boundary Elements: Theoretical Background

Definition

Let d ∈ N, Ω ⊆ Rd , and let L be an elliptic, second order differential operator. The
fundamental solution or Green’s function is a function that satisfies the
distributional equation

LyG (x , y) = δ0(x − y).

Examples:

L = −∆, G (x , y) =

{
− 1

2π log
(
∥x − y∥

)
, d = 2,

1
4π∥x−y∥ , d = 3.

L = −∆− κ2I, G (x , y) =


i
4H

(1)
0

(
κ∥x − y∥

)
, d = 2,

exp
(
iκ∥x−y∥

)
4π∥x−y∥ , d = 3.
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Boundary Elements: Theoretical Background

Let Ω ⊆ R3 with a Lipschitz boundary Γ = ∂Ω. Consider the interior Laplace problem
with Dirichlet boundary conditions{

∆u = 0 in Ω,

u = g on Γ.

Green’s representation formula gives us

u(x) = −
∫
Ω

(
∆yG

)
(x , y)u(y) dVy

=

∫
Γ
G (x , y)

(
∂nu

)
(y) dAy −

∫
Γ

(
∂nyG

)
(x , y)u(y) dAy , x ∈ Ω.
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Boundary Elements: Theoretical Background

Using the trace properties, one obtains

V∂nu =

(
K +

1

2
I
)
u
∣∣
Γ
,

with

Vϱ(x) =
∫
Γ
G (x , y)ϱ(y) dAy , Kϱ(x) =

∫
Γ
∂nyG (x , y)ϱ(y) dAy .

Having ∂nu, one can calculate u(x) for every x ∈ Ω according to Green’s representation
formula.
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Boundary Elements: Theoretical Background

■ On a Lipschitz domain in three dimensions, the operator
V : H−1/2+s(Γ) → H1/2+s(Γ) is continuous for |s| ≤ 1

2 , and invertible for s = 0.

■ On a Lipschitz domain in three dimensions, the operator
K : H1/2+s(Γ) → H1/2+s(Γ) is continuous for |s| ≤ 1

2 , but ker
(
K + 1

2I
)
= span{1}.

■ In a periodic setting, the fundamental solution satisfies
−∆yG (x , y) = δ0(x − y)− 1.

■ In a periodic setting, the fundamental solution cannot be represented explicitly, but
as the series

G (x , y) =
1

4π∥x − y∥
+

∥x − y∥2

6
+

∞∑
n=0

n∑
m=−n

αm
n φ

m
n (x − y).

Here, αm
n ∈ C are scalar coefficients and φmn denote the solid spherical harmonics.
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Boundary Elements: Discretisation

Definition

For an admissible decomposition T = {T1, ...,TN}
of Γ, with nodes {x1, ..., xM}, we define the ansatz
space S1

h(Γ) = span{ψ1, ...,ψM}, where

ψi (x) =


1, x = x i ,

0, x = x j , i ̸= j ,

transformed bilinear, else.
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Boundary Elements: Discretisation

Remember that we want to solve

Vt =
(
K +

1

2
I
)
g ,

where t = ∂nu and g = u
∣∣
Γ
are the given Dirichlet data.
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Boundary Elements: Discretisation

Remember that we want to solve

Vt =
(
K +

1

2
I
)
g ,

where t = ∂nu and g = u
∣∣
Γ
are the given Dirichlet data.

We can pose the variational problem

find t ∈ L2(Γ), such that

⟨Vt, ψ⟩Γ =

〈(
K +

1

2
I
)
g , ψ

〉
Γ

for any ψ ∈ L2(Γ).
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Boundary Elements: Discretisation

Remember that we want to solve

Vt =
(
K +

1

2
I
)
g ,

where t = ∂nu and g = u
∣∣
Γ
are the given Dirichlet data.

If Qh : L2(Γ) → S1
h (Γ) denotes the L2(Γ)-orthogonal projection, we solve the Galerkin

problem

find th ∈ S1
h (Γ), such that

⟨Vth, ψi ⟩Γ =

〈(
K +

1

2
I
)
Qhg , ψi

〉
Γ

, i = 1, ...,M.
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Boundary Elements: Discretisation

Let us define

Kh =
[〈
Kψj ,ψi

〉
Γ

]M
i ,j=1

, Vh =
[〈
Vψj ,ψi

〉
Γ

]M
i ,j=1

,

Mh =
[〈
ψj ,ψi

〉
Γ

]M
i ,j=1

, gh =
[〈
g ,ψi

〉
Γ

]M
i=1

.

Then, the Galerkin variational formulation is equivalent to

Vhth =

(
Kh +

1

2
Mh

)
M−1

h gh.
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Boundary Elements: Neumann Problem

■ For an exterior Neumann problem, the resulting equation is
(
K − 1

2I
)
u
∣∣
Γ
= V∂nu.

■ The operator
(
K − 1

2I
)
: Hs(Γ) → Hs(Γ) is continuously invertible for s = 0, 1/2.

■ To make the solution of an interior Neumann problem unique, one can factor out
the constant, i.e., set

t̃h = th −
⟨th, 1⟩Γ
∥1∥2

L2(Γ)

1, t̃h = th −
tTh Mh1h

1Th Mh1h
1h.
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Boundary Elements: Convergence

Using the described procedure, one can show that∥∥u − uh
∥∥
L2(Γ)

≤ Ch2∥u∥H2(Γ),
∣∣u(x)− uh(x)

∣∣ ≤ Ch4∥u∥H2(Γ), x ∈ Ω.
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Boundary Elements: Remarks

■ The equation is solved on the boundary only.

■ No volume mesh has to be generated, or updated, respectively.

■ Singularities arising from the geometry are treated in a natural way.

■ One dimension lower, but full matrices instead.

■ There exist fast boundary element methods to overcome the full population.
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Implementation

We use the Boundary Element Method
Based Engineering Library BEMBEL.

■ Written in C++, compatible with
Eigen3.

■ Fast multipole method, combined
with H2-matrices.

■ Parametric surface representation.
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Implementation: Shape Representation

■ Decomposition into surface patches
Γi with parametrisations γ i .

■ On each element, the
parametrisation γ i is approximated
by a piecewise polynomial.

■ In the case of a quintic polynomial,
we achieve an L2

(
[0, 1]2

)
-accuracy

of O(h6).
Γi

γ i

0

1

1

1
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Implementation: Shape Discretisation

■ Take a correlation kernel C (r), for example a Matérn kernel.

■ Calculate the eigenfunctions of the corresponding Hilbert-Schmidt operator.
■ This gives us a deformation basis, with some spacial relation to the geometry.

• A Sphere delivers spherical harmonics.
• Each geometry delivers another basis

■ Calculate the deformation functions by a quintic interpolation.
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Implementation: Shape Calculus

Lemma (Harbrecht, Multerer, and v. R., 2021)

It holds

ai ,j(Ω) = δi ,j
(
1− |Ω|

)
−
∫
Γ
wj⟨e i ,n⟩ dA,

a′i ,j [f ](Ω) = −
∫
Γ

[〈
e i +∇Γwi , e j +∇Γwj

〉
− ⟨e i ,n⟩⟨n, e j⟩

]
⟨f ,n⟩ dA.

■ It holds

|Ω| =
∫
Ω
div

(x
3

)
dV =

1

3

∫
Γ
⟨x ,n⟩ dA.

■ For b ∈ span{n}⊥, and c ∈ R3, we have ⟨b, c⟩ = ⟨n × b, n × c⟩. This allows us to
use the surface curl instead of the tangential gradient.
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Implementation: Shape Update

■ Let us define
g(y) = J

(
(I+ y1f 1 + ...+ yN f N)(Ω)

)
.

We use the direction of the steepest descent

d = −∇g(0) = −
[
J ′[f 1](Ω), ..., J

′[f N ](Ω)
]T

.

■ If g(d ) < g(0), set

Ωnew =
(
I+ d1f 1 + ...+ dN f N

)
(Ω).

If not, decrease the step size.
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Implementation: Shape Update

■ In practice, we calculate the quadratic polynomial h(t), which interpolates g(td ) at
the points (

0, g(0)
)
,

(
0, g ′(0)

)
,

(
1, g(d )

)
.

Afterwards, we use its minimum t∗ ∈ (0, 1) as the new step size.

■ An evaluation of the shape functional is expensive, so we do not want to apply an
Armijo line search.

■ The BFGS method was also applied, but did not perform well.

Boundary Element Methods for Shape Optimisation in Homogenisation 27



Numerical Examples

■ The initial deformation basis is used throughout the whole process.

■ In all of the subsequent examples, the optimisation was stopped if J(Ω) < 1e-5.

■ The calculations were carried out on the fourth refinement level, resulting in

N ∼ Np

(
24 + 1)2

unknowns.

■ If not stated otherwise, N = 16 deformation functions were used.
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Numerical Examples: Sphere
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Desired Tensor B = 0.9I, Initial Guess B0.3(0), Iterations: 3.
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Numerical Examples: Sphere
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Desired Tensor B = 0.6I, Initial Guess B0.3(0), Iterations: 6.
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Numerical Examples: Sphere
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Desired Tensor B = diag(0.9, 0.88, 0.86), Initial Guess B0.3(0), Iterations: 17.
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Numerical Examples: Sphere
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For the next example, we define the transformation matrix T as

T =


1√
3

0 2√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

 .
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Numerical Examples: Sphere
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Desired Tensor B = Tdiag(0.9, 0.88, 0.86)TT , Initial Guess B0.3(0), Iterations: 25.
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Numerical Examples: Cube
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Desired Tensor B = diag(0.9, 0.88, 0.86), Initial Guess [−0.15, 0.15]3, Iterations: 13.
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Numerical Examples: Cube
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Desired Tensor B = Tdiag(0.9, 0.88, 0.86)TT , Initial Guess [−0.15, 0.15]3, Iterations:
14.
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Numerical Examples: Cube
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Desired Tensor B = diag(0.9, 0.88, 0.86), Initial Guess T[−0.15, 0.15]3, Iterations: 15.
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Numerical Examples: Cube
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Desired Tensor B = Tdiag(0.9, 0.88, 0.86)TT , Initial Guess T[−0.15, 0.15]3, Iterations:
25.
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Numerical Examples: Sphere and Cube

In the following examples, we use the initial guess

B0.15

−0.25
−0.25
−0.25

 ∪ [0.175, 0.325]3.

As the desired tensor, we use

B = diag(1, 0.995, 0.99).

We also use a correlation length ℓ different from 1. If ℓ is small, the correlation is small.
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Numerical Examples: Sphere and Cube
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ℓ = 1, Iterations: 12, Deformation Functions: 16.
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Numerical Examples: Sphere and Cube

y

z

x

x

z

y

x

y

z

ℓ = 1
4 , Iterations: 8, Deformation Functions: 50.
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Numerical Examples: Toy

These calculations can be extended to
higher-order ansatz spaces and more
complex geometries.
In the following example, the initial toy
box is contained in [−0.3, 0.3]3. The
desired tensor is

B = diag(0.82, 0.78, 0.74).

The calculations were performed with
200 piecewise (bi-)quadratic ansatz
functions.
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Numerical Examples: Toy

Iteration: 0, J(Ω) = 1.92e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 1, J(Ω) = 1.69e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 2, J(Ω) = 1.40e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 3, J(Ω) = 1.34e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 4, J(Ω) = 1.26e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 5, J(Ω) = 1.21e-3, Step Size: 1.
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Numerical Examples: Toy

Iteration: 6, J(Ω) = 3.38e-5, Step Size: 0.49.
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Numerical Examples: Toy

Iteration: 7, J(Ω) = 1.41e-5, Step Size: 0.10.
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Numerical Examples: Toy

Iteration: 8, J(Ω) = 8.53e-6, Step Size: 0.03.
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Numerical Examples: Toy

200 deformation functions 50 deformation functions
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Conclusion

■ The final shape is not unique, but depends on the choice of the deformation
functions and the initial shape.

■ The shape optimisation procedure was successfully implemented with the boundary
element method library BEMBEL.

■ Boundary elements are useful for shape optimisation problems, as no mesh volume
mesh has to be updated.

■ The calculations can be extended to higher-order ansatz functions.

■ The shape optimisation can be performed with a reference shape of an arbitrary
topology.
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Thank you for your attention!
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