Lösung 9

1. Polynome sind überall differenzierbar.

Der Beweis hier ist optional. Beachte $(a+b)^k = \sum_{m=0}^k \binom{k}{m} a^{k-m} b^m$, wobei $\binom{k}{m} = \frac{k!}{(k-m)!m!}$ Für $k \ge 0$ gilt

$$\frac{(x+h)^k - x^k}{h} = \frac{\sum_{m=0}^k \binom{k}{m} x^{k-m} h^m - x^k}{h} = \frac{\sum_{m=1}^k \binom{k}{m} x^{k-m} h^m}{h} = kx^{k-1} + \underbrace{h \sum_{m=2}^k \binom{k}{m} x^{k-m} h^{m-2}}_{\to 0 \text{ für } h \to 0}.$$

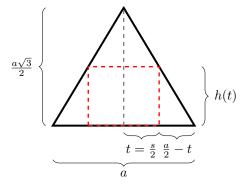
 $\Rightarrow (x^k)' = \lim_{h \to 0} \frac{(x+h)^k - x^k}{h} = kx^{k-1}.$ Aus Linearität folgt die Ableitung

$$x \mapsto a_1 + 2a_2x + \ldots + ka_kx^{k-1} + \ldots + na_nx^{n-1}.$$

2. (a) direkte Ableitung: $f(x) = (\sqrt{x} - q)(1 + \sqrt{x}) = \sqrt{x}(1 - q) - q + x \Rightarrow f'(x) = 1 + \frac{1 - q}{2\sqrt{x}}$

Produktregel: $f'(x) = \frac{1+\sqrt{x}}{2\sqrt{x}} + \frac{\sqrt{x}-q}{2\sqrt{2}} = \frac{1+2\sqrt{x}-q}{2\sqrt{x}} = 1 + \frac{1-q}{2\sqrt{x}}$

- (b) $f(x) = (1 x^{-4})(x^{-1} + x^2) = x^{-1} + x^2 x^{-5} x^{-2} \Rightarrow f'(x) = -x^{-2} + 2x + 5x^{-6} + 2x^{-3}$
- (c) $f(x) = x^x = e^{\log(x^x)} = e^{x \log(x)} \Rightarrow f'(x) = e^{x \log(x)} (x \cdot \frac{1}{x} + \log(x)) = x^x (\log x + 1)$
- (d) $f(x) = \log(ax + b) \Rightarrow f'(x) = \frac{a}{ax+b}$
- 3. Die Ableitung $f'(x_0)$ muss in x_0 gleich ± 1 sein. (a) $\{(1/2, 1/4), (-1/2, 1/4)\},$ (b) $\{\pm(\frac{1}{\sqrt{3}}, \frac{1}{3^{3/2}})\},$ (c) $\{(1, 2), (2, 2)\}$ und (d) $\{(0, 1)\}.$
- 4. Maximiere x(a-x). Dies ergibt x=a/2. Also: $a_1=a_2=a/2$.
- 5. Sei a die Seitenlänge des gleichseitigen Dreiecks und s=2t die Seitenlänge des Rechtecks.



Betrachte $A(t) = s(t) \cdot h(t)$ für $t \in [0, a/2]$, wobei $h(t) = (\frac{a}{2} - t)\sqrt{3}$. Nun maximieren wir A(t), d.h. gesucht sei t^* mit $A'(t^*) = 0$.

 $A'(t)=(2\sqrt{3}t(\tfrac{a}{2}-t))'=2\sqrt{3}(\tfrac{a}{2}-2t)=0 \Rightarrow t=\tfrac{a}{4}. \text{ Wegen } A''(t)<0 \text{ für alle } t \text{ und } A(0)=A(a/2)=0 \text{ ist } t^*=\tfrac{a}{4} \text{ das eindeutige, globale Maximum von } A \text{ mit } A_\square=A(t^*)=\tfrac{a^2\sqrt{3}}{8}.$

Die Fläche des Dreiecks sei hier $A_{\Delta}=\frac{a^2\sqrt{3}}{4}.$ Daraus folgt

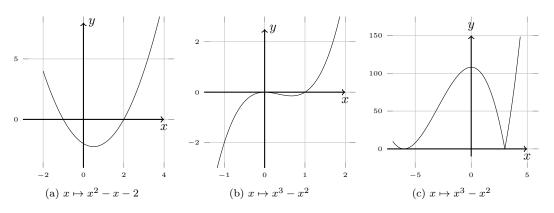
$$\frac{A_{\Delta}}{A_{\square}} = \frac{\frac{a^2\sqrt{3}}{4}}{\frac{a^2\sqrt{3}}{8}} = 2$$

15

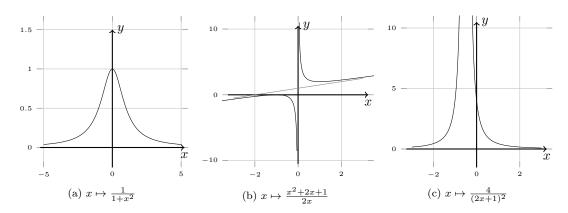
bzw. Dreiecksfläche : Rechtecksfläche = 2:1.

- 6. Sei g(x) = 50x K(x) der Gewinn. Wir lösen $g'(x^*) = 0$ und bekommen $x^* = 5.708$ und $g''(x^*) \approx -32.5 < 0$, d.h. es sollten 5708 Stück Radiergummi produziert werden.
- 7. (a) Nullstellen bei x = -1, x = 2, absolutes Minimum in (1/2, -9/4), (b) Nullstellen bei x = 0, x = 1, relatives Maximum in (0,0), relatives Minimum in (2/3, -4/27) und (c) Nullstellen und absolute Minima in (-6,0) und (3,0), relatives Maximum in (0,108)

Bemerkung: $x^3 + 9x^2 - 108 = (x+6)^2(x-3)$



8. (a) Definitionsbereich: \mathbb{R} ; keine Polstellen; keine Nullstelle; Asymptote: x-Achse y=0; absolutes Maximum (0,1). (b) Definitionsbereich: $\mathbb{R}\setminus\{0\}$; Polstelle in x=0; Nullstelle in x=-1; Asymptote: $y=\frac{1}{2}x+1$, relatives Maximum in (-1,0), relatives Minimum in (1,2). (c) Definitionsbereich: $\mathbb{R}\setminus\{-\frac{1}{2}\}$; Polstelle in $x=-\frac{1}{2}$; keine Nullstelle; Asymptote: x-Achse y=0; keine Extrema.



9. (a) $f(x) = x^2 - 2x + 3 \Rightarrow f'(x) = 2x - 2$ und f''(x) = 2 > 0. Das absolute Minimum liegt bei (1, 2).

(b)
$$f(x) = \frac{x}{x^2+1} \Rightarrow f'(x) = \frac{x^2+1-2x^2}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2}$$
 und $f''(x) = \frac{2x(x^2-3)}{(x^2+1)^3}$
 $f'(x) = 0 \iff x = \pm 1 \text{ und } f''(1) = -1/2 < 0, f''(-1) = 1/2 > 0.$

Das Minimum liegt bei (-1, -1/2), das Maximum liegt bei (1, 1/2) und

(c)
$$f(x) = (x - a)^4 \ge 0$$
 und $f(x) = 0 \iff x = a$, d.h. das Minimum liegt bei $(a, 0)$.

- 10. Wurfbahn: $f: x \mapsto -2x^2 + 4x$, Ableitung in 0 ist 4, also Schiesswinkel mit der x-Achse ist gleich $\arctan 4 = 1.3258 = 75.964^{\circ}$.
- 11. Finde die Extrema von $x + \frac{a}{x}$. Dies ergibt $x = \pm \sqrt{a}$. Da nur positive Lösungen gesucht sind ist die Lösung also $a_1 = a_2 = \sqrt{a}$.

16

12. Sei $f(x) = \frac{1}{x}$ und $d(x) = x^2 + f(x)^2$, der quadratische Abstand von f zum Nullpunkt. Dann gilt

$$d'(x) = 2x + 2f'(x)f(x) = 2x - 2x^{-3} = 2 \cdot (x - x^{-3}), \qquad d''(x) = 2 \cdot (1 + 3x^{-4})$$

und somit $d'(x)=0\iff x=\pm 1$ und $d''(\pm 1)=8>0$, d.h. $x=\pm 1$ minimiert den Abstand von f zum Nullpunkt. Die Punkte seien (1,1) und (-1,-1).