then he saw [wisdom] and declared it, yes, he set it up and searched it out...

Job 28, The Hebrew Bible

Dr. Hon To Hardy Chan


Lehrbeauftragter (Fachbereich Mathematik)

Büro

Departement Mathematik und Informatik
Spiegelgasse 1
4051 Basel
Schweiz

Wissenschaftlicher Mitarbeiter (FG Lenzmann)

Büro

Spiegelgasse 1
4051 Basel
Schweiz

Lecture dates: Thursdays, from 20.02.2025 to 29.05.2025, except 13.03.2025 (Fasnachstferien), 17.04.2025 (Ostern), 01.05.2025 (Tag der Arbeit), 29.05.2025 (Auffahrt).

Lecture time: 10.15-12.00

Lecture room: Kollegienhaus, Hörsaal 119

Practical course dates: Mondays, from 24.02.2025 to 19.05.2025, except 10.03.2025 (Fasnachstferien), 21.04.2025 (Ostern).

Practical course time: 14.15-16.00

Practical course room: Spiegelgasse 5, Seminarraum 05.002

Exam date: Monday, 26.05.2025

Exam time: 14.15-16.00

Exam room: Spiegelgasse 5, Seminarraum 05.002

 

References:

S. Dipierro and E. Valdinoci, Elliptic partial differential equations from an elementary viewpoint---a fresh glance at the classical theory, World Sci. Publ., Hackensack, NJ, [2024]; MR4784613

L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, RI, 1998; MR1625845

X. Fern\'andez-Real and X. Ros-Oton, Regularity theory for elliptic PDE, Zurich Lectures in Advanced Mathematics, 28, EMS Press, Berlin, [2022]; MR4560756

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer, Berlin, 2001; MR1814364

 

 

2022-present

SNF Ambizione Fellow (PI)

2021-2022

Severo Ochoa Postdoctoral Fellow (ICMAT, Madrid)

2018-2021

ERC Postdoctoral Fellow (ETH Zurich)

Ph.D. (2018)

Dissertation "New solutions to local and non-local elliptic equations." under Juncheng Wei and Nassif Ghoussoub, University of British Columbia

M.Phil. (2013)

Thesis "Convergence of bounded solutions for nonlinear parabolic equations" under Kai-Seng Chou, Chinese University of Hong Kong

Nonlinear partial differential equations, semilinear elliptic equations, nonlocal equations, phase transitions, Yamabe problem, nonlocal minimal surfaces, construction of solutions, singular solutions, free boundary problems

Flatness of stable free boundary, classificaiton of stable nonlocal minimal surfaces, theory of nonlocal ODEs, fractional elliptic gluing scheme, new boundary singular phenomena

W. Ao, H. Chan, A. DelaTorre, M.A. Fontelos, M.d.M. Gonzalez, J. Wei. On higher-dimensional singularities for the fractional Yamabe problem: A nonlocal Mazzeo–Pacard program, Duke Math. J. 168 (2019), no. 17, 3297–3411.

H. Chan, X. Fernandez-Real, A. Figalli, J. Serra, Stable free boundaries in dimension 3:Allen–Cahn and Alt–Caffarelli, forthcoming.

H. Chan, S. Dipierro, J. Serra, E. Valdinoci. Nonlocal approximation of minimal surfaces: optimal estimates from stability, arXiv:2308.06328.

H. Chan, Y. Liu, J. Wei. Existence and instability of deformed catenoidal solutions for fractional Allen–Cahn equation, arXiv:1711.03215.