Participation
Please register for the course to gain access to the Adam workspace.
Lecture Slides
No. | Topic | Date | Slides |
---|---|---|---|
A1 | Organizational Matters | 18.09. | printer handout screen |
A2 | What is Planning? | 18.09. | printer handout screen |
A3 | Getting to Know a Planner | 23.09. | printer handout screen |
B1 | Transition Systems and Propositional Logic | 23.09. | printer handout screen |
B2 | Introduction to Planning Tasks | 25.09. | printer handout screen |
B3 | Formal Definition of Planning | 25.09. | printer handout screen |
B4 | Equivalent Operators and Normal Forms | 30.09. | printer handout screen |
B5 | Positive Normal Form and STRIPS | 30.09. | printer handout screen |
B6 | Computational Complexity of Planning | 02.10. | printer handout screen |
C1 | Overview of Classical Planning Algorithms | 07.10. | printer handout screen |
C2 | Progression and Regression Search | 09.10. | printer handout screen |
C3 | General Regression | 09.10. | printer handout screen |
C4 | SAT Planning: Core Idea and Sequential Encoding | 14.10. | printer handout screen |
C5 | SAT Planning: Parallel Encoding | 14.10. | printer handout screen |
C6 | Symbolic Search: Binary Decision Diagrams | 16.10. | printer handout screen |
C7 | Symbolic Search: Full Algorithm | 16.10. | printer handout screen |
D1 | Delete Relaxation: Relaxed Planning Tasks | 21.10. | printer handout screen |
D2 | Delete Relaxation: Properties of Relaxed Planning Tasks | 21.10. | printer handout screen |
D3 | Delete Relaxation: Finding Relaxed Plans | 23.10. | printer handout screen |
D4 | Delete Relaxation: AND/OR Graphs | 23.10. | printer handout screen |
D5 | Delete Relaxation: Relaxed Task Graphs | 28.10. | printer handout screen |
D6 | Delete Relaxation: hmax and hadd | 28.10. | printer handout screen |
D7 | Delete Relaxation: Analysis of hmax and hadd | 30.10. | printer handout screen |
D8 | Delete Relaxation: hFF and Comparison of Heuristics | 30.10. | printer handout screen |
E1 | Planning Tasks in Finite-Domain Representation | 04.11. | printer handout screen |
E2 | Invariants and Mutexes | 04.11. | printer handout screen |
Extra Material
No. | Title | Files |
---|---|---|
B6 | Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelligence, 69(1-2), pp. 165-204, 1994. | |
C1/D8 | Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research, 14, pp. 253-302, 2001. | |
C1 | Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning with landmarks. Journal of Artificial Intelligence Research, 39, pp. 127-177, 2010. | |
C3 | Jussi Rintanen.Regression for Classical and Nondeterministic Planning. Proc. ECAI 2008, pp. 568-572, 2008. | |
C5 | Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä.Planning as satisfiability: parallel plans and algorithms for plan search. Artificial Intelligence, 170(12-13), pp. 1031-1080, 2006. | |
C7 | Álvaro Torralba. Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning. PhD thesis, 2015. | |
C7 | David Speck. Symbolic Search for Optimal Planning with Expressive Extensions. PhD thesis, 2022. | |
D6 | Blai Bonet and Hector Geffner. Planning as Heuristic Search. Artificial Intelligence, 129(1), pp. 5-33, 2001. | |
D8 | Emil Keyder and Hector Geffner. Heuristics for Planning with Action Costs Revisited. ECAI 2008, pp. 588-592, 2008. | |
E1 | Jussi Rintanen. An Iterative Algorithm for Synthesizing Invariants. Proc. AAAI 2000, pp. 806-811, 2000. | |
E2 | Daniel Fišer and Antonín Komenda. Fact-Alternating Mutex Groups for Classical Planning. Journal of Artificial Intelligence Research, 61, pp. 475-521, 2018. |