19 Sep 2025
11:00  - 12:30

Room 05.001, Spiegelgasse 5, 4051 Basel

Seminar in Numerical Analysis: Niraj Kumar Shukla (Indian Institute of Technology Indore)

Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups

The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in satisfying the local integrability condition (LIC) and having the Calderón sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in and , using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems. This is a joint work with Navneet Redhu and Anupam Gumber.

For further information about the seminar, please visit this webpage.


Export event as iCal

To top