29 Apr 2015
15:15  - 16:15

Spiegelgasse 1, Lecture Room 0.003

Seminar Analysis: Bernard Dacorogna (EPFL)

Some recent results on the Jacobian equation

 

Given two functions f and g,we want to find a map φ such that

g(φ(x)) det∇φ(x)=f(x)   x∈Ω,
                   φ(x)=x       x∈∂Ω.

Local case. We first consider the (local) existence, uniqueness and optimal regularity for the problem

gi(φ(x)) det∇φ(x)=fi(x)  for every 1≤i≤n

where gi·fi>0.

Global case. A necessary condition is then

Ω f =∫Ω g.                             (1)

(i) We discuss the case where g·f>0 and give three different ideas for the existence problem with optimal regularity.

(ii) We then briefly comment on the case where g>0 but f is allowed to change sign.

A problem without the condition (1). We consider a more general problem of the form

            det∇φ(x)=f(x,φ(x),∇φ(x))   x∈Ω,
                   φ(x)=x                        x∈∂Ω.

where no constraint of the type (1) is needed.

 


Veranstaltung übernehmen als iCal